WIZNet W5500 with additional enhancements
Fork of WIZnetInterface by
arch/int/W7500x_toe.cpp
- Committer:
- Soohwan Kim
- Date:
- 2015-06-15
- Revision:
- 0:6f28332c466f
- Child:
- 2:26df0dc6e227
File content as of revision 0:6f28332c466f:
/* Copyright (C) 2012 mbed.org, MIT License * * and associated documentation files (the "Software"), to deal in the Software without restriction, * including without limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "mbed.h" #include "mbed_debug.h" #include "W7500x_toe.h" #include "DNSClient.h" #ifdef USE_W7500 /* * MDIO via GPIO * mdio via gpio is supported and related functions as follows. * - mdio_init(),mdio_read(),mdio_write() * - input_MDIO(),output_MDIO(),turnaroud_MDIO(),idle_MDIO() * called by ethernet_link() and ethernet_set_link() */ #define MDIO GPIO_Pin_14 #define MDC GPIO_Pin_15 #define GPIO_MDC GPIOB #define PHY_ADDR_IP101G 0x07 #define PHY_ADDR PHY_ADDR_IP101G #define SVAL 0x2 //right shift val = 2 #define PHYREG_CONTROL 0x0 //Control Register address (Contorl basic register) #define PHYREG_STATUS 0x1 //Status Register address (Status basic register) #define CNTL_DUPLEX (0x01ul<< 7) #define CNTL_AUTONEGO (0x01ul<<11) #define CNTL_SPEED (0x01ul<<12) #define MDC_WAIT (1) void mdio_init(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin_MDC, uint16_t GPIO_Pin_MDIO); void mdio_write(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr, uint32_t val); uint32_t mdio_read(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr); WIZnet_Chip* WIZnet_Chip::inst; WIZnet_Chip::WIZnet_Chip() { inst = this; mdio_init(GPIO_MDC, MDC, MDIO); } // Set the IP bool WIZnet_Chip::setip() { reg_wr<uint32_t>(SIPR, ip); reg_wr<uint32_t>(GAR, gateway); reg_wr<uint32_t>(SUBR, netmask); return true; } bool WIZnet_Chip::setProtocol(int socket, Protocol p) { if (socket < 0) { return false; } sreg<uint8_t>(socket, Sn_MR, p); return true; } bool WIZnet_Chip::connect(int socket, const char * host, int port, int timeout_ms) { if (socket < 0) { return false; } sreg<uint8_t>(socket, Sn_MR, TCP); scmd(socket, OPEN); sreg_ip(socket, Sn_DIPR, host); sreg<uint16_t>(socket, Sn_DPORT, port); sreg<uint16_t>(socket, Sn_PORT, new_port()); scmd(socket, CONNECT); Timer t; t.reset(); t.start(); while(!is_connected(socket)) { if (t.read_ms() > timeout_ms) { return false; } } return true; } bool WIZnet_Chip::gethostbyname(const char* host, uint32_t* ip) { uint32_t addr = str_to_ip(host); char buf[17]; snprintf(buf, sizeof(buf), "%d.%d.%d.%d", (uint8_t)((addr>>24)&0xff), (uint8_t)((addr>>16)&0xff), (uint8_t)((addr>>8)&0xff), (uint8_t)(addr&0xff)); if (strcmp(buf, host) == 0) { *ip = addr; printf("addr : %x\r\n", *ip); return true; } DNSClient client; if(client.lookup(host)) { *ip = client.ip; return true; } return false; } bool WIZnet_Chip::is_connected(int socket) { /* if (sreg<uint8_t>(socket, Sn_SR) == SOCK_ESTABLISHED) { return true; } */ uint8_t tmpSn_SR; tmpSn_SR = sreg<uint8_t>(socket, Sn_SR); // packet sending is possible, when state is SOCK_CLOSE_WAIT. if ((tmpSn_SR == SOCK_ESTABLISHED) || (tmpSn_SR == SOCK_CLOSE_WAIT)) { return true; } return false; } // Reset the chip & set the buffer void WIZnet_Chip::reset() { /* S/W Reset PHY */ mdio_write(GPIO_MDC, PHYREG_CONTROL, 0x8000); wait_ms(10);//for S/W reset wait_ms(10);//for MDC I/F RDY /* S/W Reset WZTOE */ reg_wr<uint8_t>(MR, MR_RST); // set PAD strengh and pull-up for TXD[3:0] and TXE #ifdef __DEF_USED_IC101AG__ //For using IC+101AG *(volatile uint32_t *)(0x41003068) = 0x64; //TXD0 *(volatile uint32_t *)(0x4100306C) = 0x64; //TXD1 *(volatile uint32_t *)(0x41003070) = 0x64; //TXD2 *(volatile uint32_t *)(0x41003074) = 0x64; //TXD3 *(volatile uint32_t *)(0x41003050) = 0x64; //TXE #endif // set ticker counter reg_wr<uint32_t>(TIC100US, (SystemCoreClock/10000)); // write MAC address inside the WZTOE MAC address register reg_wr_mac(SHAR, mac); /* * set RX and TX buffer size * for (int socket = 0; socket < MAX_SOCK_NUM; socket++) { * sreg<uint8_t>(socket, Sn_RXBUF_SIZE, 2); * sreg<uint8_t>(socket, Sn_TXBUF_SIZE, 2); * } */ } bool WIZnet_Chip::close(int socket) { if (socket < 0) { return false; } // if SOCK_CLOSED, return if (sreg<uint8_t>(socket, Sn_SR) == SOCK_CLOSED) { return true; } // if SOCK_ESTABLISHED, send FIN-Packet to peer if (sreg<uint8_t>(socket, Sn_MR) == TCP) { scmd(socket, DISCON); } // close socket scmd(socket, CLOSE); // clear Socket Interrupt Register sreg<uint8_t>(socket, Sn_ICR, 0xff); return true; } int WIZnet_Chip::wait_readable(int socket, int wait_time_ms, int req_size) { if (socket < 0) { return -1; } Timer t; t.reset(); t.start(); while(1) { int size = sreg<uint16_t>(socket, Sn_RX_RSR); if (size > req_size) { return size; } if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) { break; } } return -1; } int WIZnet_Chip::wait_writeable(int socket, int wait_time_ms, int req_size) { if (socket < 0) { return -1; } Timer t; t.reset(); t.start(); while(1) { int size = sreg<uint16_t>(socket, Sn_TX_FSR); if (size > req_size) { return size; } if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) { break; } } return -1; } int WIZnet_Chip::send(int socket, const char * str, int len) { if (socket < 0) { return -1; } uint16_t ptr = sreg<uint16_t>(socket, Sn_TX_WR); uint32_t sn_tx_base = W7500x_TXMEM_BASE + (uint32_t)(socket<<18); for(int i=0; i<len; i++) *(volatile uint8_t *)(sn_tx_base + ((ptr+i)&0xFFFF)) = str[i]; sreg<uint16_t>(socket, Sn_TX_WR, ptr + len); scmd(socket, SEND); uint8_t tmp_Sn_IR; while (( (tmp_Sn_IR = sreg<uint8_t>(socket, Sn_IR)) & INT_SEND_OK) != INT_SEND_OK) { // @Jul.10, 2014 fix contant name, and udp sendto function. switch (sreg<uint8_t>(socket, Sn_SR)) { case SOCK_CLOSED : close(socket); return 0; //break; case SOCK_UDP : // ARP timeout is possible. if ((tmp_Sn_IR & INT_TIMEOUT) == INT_TIMEOUT) { sreg<uint8_t>(socket, Sn_ICR, INT_TIMEOUT); return 0; } break; default : break; } } sreg<uint8_t>(socket, Sn_ICR, INT_SEND_OK); return len; } int WIZnet_Chip::recv(int socket, char* buf, int len) { if (socket < 0) { return -1; } uint16_t ptr = sreg<uint16_t>(socket, Sn_RX_RD); uint32_t sn_rx_base = W7500x_RXMEM_BASE + (uint32_t)(socket<<18); for(int i=0; i<len; i++) buf[i] = *(volatile uint8_t *)(sn_rx_base + ((ptr+i)&0xFFFF)); sreg<uint16_t>(socket, Sn_RX_RD, ptr + len); scmd(socket, RECV); return len; } int WIZnet_Chip::new_socket() { for(int s = 0; s < MAX_SOCK_NUM; s++) { if (sreg<uint8_t>(s, Sn_SR) == SOCK_CLOSED) { return s; } } return -1; } uint16_t WIZnet_Chip::new_port() { uint16_t port = rand(); port |= 49152; return port; } bool WIZnet_Chip::link(int wait_time_ms) { Timer t; t.reset(); t.start(); while(1) { int is_link = ethernet_link(); printf("is_link:%d\r\n", is_link); if (is_link) { return true; } if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) { break; } } return 0; } void WIZnet_Chip::set_link(PHYMode phymode) { int speed = -1; int duplex = 0; switch(phymode) { case AutoNegotiate : speed = -1; duplex = 0; break; case HalfDuplex10 : speed = 0; duplex = 0; break; case FullDuplex10 : speed = 0; duplex = 1; break; case HalfDuplex100 : speed = 1; duplex = 0; break; case FullDuplex100 : speed = 1; duplex = 1; break; } ethernet_set_link(speed, duplex); } uint32_t str_to_ip(const char* str) { uint32_t ip = 0; char* p = (char*)str; for(int i = 0; i < 4; i++) { ip |= atoi(p); p = strchr(p, '.'); if (p == NULL) { break; } ip <<= 8; p++; } return ip; } void printfBytes(char* str, uint8_t* buf, int len) { printf("%s %d:", str, len); for(int i = 0; i < len; i++) { printf(" %02x", buf[i]); } printf("\n"); } void printHex(uint8_t* buf, int len) { for(int i = 0; i < len; i++) { if ((i%16) == 0) { printf("%p", buf+i); } printf(" %02x", buf[i]); if ((i%16) == 15) { printf("\n"); } } printf("\n"); } void debug_hex(uint8_t* buf, int len) { for(int i = 0; i < len; i++) { if ((i%16) == 0) { debug("%p", buf+i); } debug(" %02x", buf[i]); if ((i%16) == 15) { debug("\n"); } } debug("\n"); } void WIZnet_Chip::scmd(int socket, Command cmd) { sreg<uint8_t>(socket, Sn_CR, cmd); while(sreg<uint8_t>(socket, Sn_CR)); } void mdio_init(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin_MDC, uint16_t GPIO_Pin_MDIO) { /* Set GPIOs for MDIO and MDC */ GPIO_InitTypeDef MDIO_InitDef; HAL_PAD_AFConfig(PAD_PB, GPIO_Pin_MDIO, PAD_AF1); HAL_PAD_AFConfig(PAD_PB, GPIO_Pin_MDC, PAD_AF1); MDIO_InitDef.GPIO_Pin = GPIO_Pin_MDC | GPIO_Pin_MDIO; MDIO_InitDef.GPIO_Mode = GPIO_Mode_OUT; HAL_GPIO_Init(GPIOx, &MDIO_InitDef); } void output_MDIO(GPIO_TypeDef* GPIOx, uint32_t val, uint32_t n) { for(val <<= (32-n); n; val<<=1, n--) { if(val & 0x80000000) HAL_GPIO_SetBits(GPIOx, MDIO); else HAL_GPIO_ResetBits(GPIOx, MDIO); wait_ms(MDC_WAIT); HAL_GPIO_SetBits(GPIOx, MDC); wait_ms(MDC_WAIT); HAL_GPIO_ResetBits(GPIOx, MDC); } } uint32_t input_MDIO( GPIO_TypeDef* GPIOx ) { uint32_t i, val=0; for(i=0; i<16; i++) { val <<=1; HAL_GPIO_SetBits(GPIOx, MDC); wait_ms(MDC_WAIT); HAL_GPIO_ResetBits(GPIOx, MDC); wait_ms(MDC_WAIT); val |= HAL_GPIO_ReadInputDataBit(GPIOx, MDIO); } return (val); } void turnaround_MDIO( GPIO_TypeDef* GPIOx) { GPIOx->OUTENCLR = MDIO ; HAL_GPIO_SetBits(GPIOx, MDC); wait_ms(MDC_WAIT); HAL_GPIO_ResetBits(GPIOx, MDC); wait_ms(MDC_WAIT); } void idle_MDIO( GPIO_TypeDef* GPIOx ) { GPIOx->OUTENSET = MDIO ; HAL_GPIO_SetBits(GPIOx,MDC); wait_ms(MDC_WAIT); HAL_GPIO_ResetBits(GPIOx, MDC); wait_ms(MDC_WAIT); } uint32_t mdio_read(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr) { output_MDIO(GPIOx, 0xFFFFFFFF, 32); output_MDIO(GPIOx, 0x06, 4); output_MDIO(GPIOx, PHY_ADDR, 5); output_MDIO(GPIOx, PhyRegAddr, 5); turnaround_MDIO(GPIOx); uint32_t val = input_MDIO(GPIOx ); idle_MDIO(GPIOx); return val; } void mdio_write(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr, uint32_t val) { output_MDIO(GPIOx, 0xFFFFFFFF, 32); output_MDIO(GPIOx, 0x05, 4); output_MDIO(GPIOx, PHY_ADDR, 5); output_MDIO(GPIOx, PhyRegAddr, 5); output_MDIO(GPIOx, 0x02, 2); output_MDIO(GPIOx, val, 16); idle_MDIO(GPIOx); } int ethernet_link(void) { return ((mdio_read(GPIO_MDC, PHYREG_STATUS)>>SVAL)&0x01); } void ethernet_set_link(int speed, int duplex) { uint32_t val=0; if((speed < 0) || (speed > 1)) { val = CNTL_AUTONEGO; } else { val = ((CNTL_SPEED&(speed<<11))|(CNTL_DUPLEX&(duplex<<7))); } mdio_write(GPIO_MDC, PHYREG_CONTROL, val); } #endif