wefggfre2erfg

main.cpp

Committer:
HarryKeane
Date:
2020-05-05
Revision:
0:9378ee4374a1

File content as of revision 0:9378ee4374a1:

#include "mbed.h"
#include "MPU6050.h"
#include "stdio.h"

void mpuLoop(void);




float sum = 0;
uint32_t sumCount = 0;

MPU6050 mpu6050; 

Timer t;


Serial pc(USBTX, USBRX); // tx, rx



void mpuInit(void); 



    

        
int main(){
    
   mpuInit(); 



while(1){
   // If data ready bit set, all data registers have new data
  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
    mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
    mpu6050.getAres();
    
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
    ay = (float)accelCount[1]*aRes - accelBias[1];   
    az = (float)accelCount[2]*aRes - accelBias[2];  
   
    mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
    mpu6050.getGres();
 
    // Calculate the gyro value into actual degrees per second
    gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
    gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
    gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   

    tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
    temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
   }  
   
    Now = t.read_us();
    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
    lastUpdate = Now;
    
    sum += deltat;
    sumCount++;
    
    if(lastUpdate - firstUpdate > 10000000.0f) {
     beta = 0.04;  // decrease filter gain after stabilized
     zeta = 0.015; // increasey bias drift gain after stabilized
    }
    
   // Pass gyro rate as rad/s
    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);


    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
    pitch *= 180.0f / PI;
    yaw   *= 180.0f / PI; 
    roll  *= 180.0f / PI;



     pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
 //    pc.printf("average rate = %f\n\r", (float) sumCount/sum);
 
    myled= !myled;
   // count = t.read_ms(); 
    sum = 0;
    sumCount = 0; 
    
    //wait(0.5); //So i can read the data 

    
    
}



    
}
















        
  






void mpuInit(){
                   pc.baud(9600);  
              i2c.frequency(10);  // use fast (400 kHz) I2C   
              t.start();        
              
             
              // Read the WHO_AM_I register, this is a good test of communication
              uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
              pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
              
              if (whoami == 0x68) // WHO_AM_I should always be 0x68
              {  
                pc.printf("MPU6050 is online...");
                wait(1);
            
            
                mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
                pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
                pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
                pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
                pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
                pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
                pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
                wait(1);
            
                if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
                {
                mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
                mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
                mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
            
            
                wait(2);
                   }
                else
                {
                pc.printf("Device did not the pass self-test!\n\r");
                
                  }
                }
                else
                {
                pc.printf("Could not connect to MPU6050: \n\r");
                pc.printf("%#x \n",  whoami);
             
            
             
                while(1) ; // Loop forever if communication doesn't happen
              }
       }