Example program to test AES-GCM functionality. Used for a workshop

Dependencies:   mbed

Revision:
0:796d0f61a05b
diff -r 000000000000 -r 796d0f61a05b SSL/library/rsa.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/SSL/library/rsa.c	Thu Sep 27 06:34:22 2018 +0000
@@ -0,0 +1,1613 @@
+/*
+ *  The RSA public-key cryptosystem
+ *
+ *  Copyright (C) 2006-2014, Brainspark B.V.
+ *
+ *  This file is part of PolarSSL (http://www.polarssl.org)
+ *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
+ *
+ *  All rights reserved.
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License along
+ *  with this program; if not, write to the Free Software Foundation, Inc.,
+ *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+/*
+ *  RSA was designed by Ron Rivest, Adi Shamir and Len Adleman.
+ *
+ *  http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
+ *  http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf
+ */
+
+#if !defined(POLARSSL_CONFIG_FILE)
+#include "polarssl/config.h"
+#else
+#include POLARSSL_CONFIG_FILE
+#endif
+
+#if defined(POLARSSL_RSA_C)
+
+#include "polarssl/rsa.h"
+#include "polarssl/oid.h"
+
+#if defined(POLARSSL_PKCS1_V21)
+#include "polarssl/md.h"
+#endif
+
+#include <stdlib.h>
+#include <stdio.h>
+
+#if defined(POLARSSL_PLATFORM_C)
+#include "polarssl/platform.h"
+#else
+#define polarssl_printf printf
+#endif
+
+/*
+ * Initialize an RSA context
+ */
+void rsa_init( rsa_context *ctx,
+               int padding,
+               int hash_id )
+{
+    memset( ctx, 0, sizeof( rsa_context ) );
+
+    rsa_set_padding( ctx, padding, hash_id );
+
+#if defined(POLARSSL_THREADING_C)
+    polarssl_mutex_init( &ctx->mutex );
+#endif
+}
+
+/*
+ * Set padding for an existing RSA context
+ */
+void rsa_set_padding( rsa_context *ctx, int padding, int hash_id )
+{
+    ctx->padding = padding;
+    ctx->hash_id = hash_id;
+}
+
+#if defined(POLARSSL_GENPRIME)
+
+/*
+ * Generate an RSA keypair
+ */
+int rsa_gen_key( rsa_context *ctx,
+                 int (*f_rng)(void *, unsigned char *, size_t),
+                 void *p_rng,
+                 unsigned int nbits, int exponent )
+{
+    int ret;
+    mpi P1, Q1, H, G;
+
+    if( f_rng == NULL || nbits < 128 || exponent < 3 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
+
+    /*
+     * find primes P and Q with Q < P so that:
+     * GCD( E, (P-1)*(Q-1) ) == 1
+     */
+    MPI_CHK( mpi_lset( &ctx->E, exponent ) );
+
+    do
+    {
+        MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0,
+                                f_rng, p_rng ) );
+
+        MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,
+                                f_rng, p_rng ) );
+
+        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
+            mpi_swap( &ctx->P, &ctx->Q );
+
+        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
+            continue;
+
+        MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
+        if( mpi_msb( &ctx->N ) != nbits )
+            continue;
+
+        MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
+        MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
+        MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
+        MPI_CHK( mpi_gcd( &G, &ctx->E, &H  ) );
+    }
+    while( mpi_cmp_int( &G, 1 ) != 0 );
+
+    /*
+     * D  = E^-1 mod ((P-1)*(Q-1))
+     * DP = D mod (P - 1)
+     * DQ = D mod (Q - 1)
+     * QP = Q^-1 mod P
+     */
+    MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H  ) );
+    MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
+    MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
+    MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );
+
+    ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;
+
+cleanup:
+
+    mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
+
+    if( ret != 0 )
+    {
+        rsa_free( ctx );
+        return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret );
+    }
+
+    return( 0 );
+}
+
+#endif /* POLARSSL_GENPRIME */
+
+/*
+ * Check a public RSA key
+ */
+int rsa_check_pubkey( const rsa_context *ctx )
+{
+    if( !ctx->N.p || !ctx->E.p )
+        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
+
+    if( ( ctx->N.p[0] & 1 ) == 0 ||
+        ( ctx->E.p[0] & 1 ) == 0 )
+        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
+
+    if( mpi_msb( &ctx->N ) < 128 ||
+        mpi_msb( &ctx->N ) > POLARSSL_MPI_MAX_BITS )
+        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
+
+    if( mpi_msb( &ctx->E ) < 2 ||
+        mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
+        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
+
+    return( 0 );
+}
+
+/*
+ * Check a private RSA key
+ */
+int rsa_check_privkey( const rsa_context *ctx )
+{
+    int ret;
+    mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2, DP, DQ, QP;
+
+    if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )
+        return( ret );
+
+    if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )
+        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
+
+    mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );
+    mpi_init( &H  ); mpi_init( &I  ); mpi_init( &G  ); mpi_init( &G2 );
+    mpi_init( &L1 ); mpi_init( &L2 ); mpi_init( &DP ); mpi_init( &DQ );
+    mpi_init( &QP );
+
+    MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );
+    MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) );
+    MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
+    MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
+    MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
+    MPI_CHK( mpi_gcd( &G, &ctx->E, &H  ) );
+
+    MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );
+    MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) );
+    MPI_CHK( mpi_mod_mpi( &I, &DE, &L1  ) );
+
+    MPI_CHK( mpi_mod_mpi( &DP, &ctx->D, &P1 ) );
+    MPI_CHK( mpi_mod_mpi( &DQ, &ctx->D, &Q1 ) );
+    MPI_CHK( mpi_inv_mod( &QP, &ctx->Q, &ctx->P ) );
+    /*
+     * Check for a valid PKCS1v2 private key
+     */
+    if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 ||
+        mpi_cmp_mpi( &DP, &ctx->DP ) != 0 ||
+        mpi_cmp_mpi( &DQ, &ctx->DQ ) != 0 ||
+        mpi_cmp_mpi( &QP, &ctx->QP ) != 0 ||
+        mpi_cmp_int( &L2, 0 ) != 0 ||
+        mpi_cmp_int( &I, 1 ) != 0 ||
+        mpi_cmp_int( &G, 1 ) != 0 )
+    {
+        ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+cleanup:
+    mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );
+    mpi_free( &H  ); mpi_free( &I  ); mpi_free( &G  ); mpi_free( &G2 );
+    mpi_free( &L1 ); mpi_free( &L2 ); mpi_free( &DP ); mpi_free( &DQ );
+    mpi_free( &QP );
+
+    if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )
+        return( ret );
+
+    if( ret != 0 )
+        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );
+
+    return( 0 );
+}
+
+/*
+ * Do an RSA public key operation
+ */
+int rsa_public( rsa_context *ctx,
+                const unsigned char *input,
+                unsigned char *output )
+{
+    int ret;
+    size_t olen;
+    mpi T;
+
+    mpi_init( &T );
+
+    MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
+
+    if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
+    {
+        mpi_free( &T );
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+    }
+
+    olen = ctx->len;
+    MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
+    MPI_CHK( mpi_write_binary( &T, output, olen ) );
+
+cleanup:
+
+    mpi_free( &T );
+
+    if( ret != 0 )
+        return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );
+
+    return( 0 );
+}
+
+#if !defined(POLARSSL_RSA_NO_CRT)
+/*
+ * Generate or update blinding values, see section 10 of:
+ *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
+ *  DSS, and other systems. In : Advances in Cryptology—CRYPTO’96. Springer
+ *  Berlin Heidelberg, 1996. p. 104-113.
+ */
+static int rsa_prepare_blinding( rsa_context *ctx, mpi *Vi, mpi *Vf,
+                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
+{
+    int ret, count = 0;
+
+#if defined(POLARSSL_THREADING_C)
+    polarssl_mutex_lock( &ctx->mutex );
+#endif
+
+    if( ctx->Vf.p != NULL )
+    {
+        /* We already have blinding values, just update them by squaring */
+        MPI_CHK( mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
+        MPI_CHK( mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
+        MPI_CHK( mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
+        MPI_CHK( mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
+
+        goto done;
+    }
+
+    /* Unblinding value: Vf = random number, invertible mod N */
+    do {
+        if( count++ > 10 )
+            return( POLARSSL_ERR_RSA_RNG_FAILED );
+
+        MPI_CHK( mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
+        MPI_CHK( mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) );
+    } while( mpi_cmp_int( &ctx->Vi, 1 ) != 0 );
+
+    /* Blinding value: Vi =  Vf^(-e) mod N */
+    MPI_CHK( mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
+    MPI_CHK( mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
+
+done:
+    if( Vi != &ctx->Vi )
+    {
+        MPI_CHK( mpi_copy( Vi, &ctx->Vi ) );
+        MPI_CHK( mpi_copy( Vf, &ctx->Vf ) );
+    }
+
+cleanup:
+#if defined(POLARSSL_THREADING_C)
+    polarssl_mutex_unlock( &ctx->mutex );
+#endif
+
+    return( ret );
+}
+#endif /* !POLARSSL_RSA_NO_CRT */
+
+/*
+ * Do an RSA private key operation
+ */
+int rsa_private( rsa_context *ctx,
+                 int (*f_rng)(void *, unsigned char *, size_t),
+                 void *p_rng,
+                 const unsigned char *input,
+                 unsigned char *output )
+{
+    int ret;
+    size_t olen;
+    mpi T, T1, T2;
+#if !defined(POLARSSL_RSA_NO_CRT)
+    mpi *Vi, *Vf;
+
+    /*
+     * When using the Chinese Remainder Theorem, we use blinding values.
+     * Without threading, we just read them directly from the context,
+     * otherwise we make a local copy in order to reduce locking contention.
+     */
+#if defined(POLARSSL_THREADING_C)
+    mpi Vi_copy, Vf_copy;
+
+    mpi_init( &Vi_copy ); mpi_init( &Vf_copy );
+    Vi = &Vi_copy;
+    Vf = &Vf_copy;
+#else
+    Vi = &ctx->Vi;
+    Vf = &ctx->Vf;
+#endif
+#endif /* !POLARSSL_RSA_NO_CRT */
+
+    mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );
+
+    MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
+    if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
+    {
+        mpi_free( &T );
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+    }
+
+#if defined(POLARSSL_RSA_NO_CRT)
+    ((void) f_rng);
+    ((void) p_rng);
+    MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );
+#else
+    if( f_rng != NULL )
+    {
+        /*
+         * Blinding
+         * T = T * Vi mod N
+         */
+        MPI_CHK( rsa_prepare_blinding( ctx, Vi, Vf, f_rng, p_rng ) );
+        MPI_CHK( mpi_mul_mpi( &T, &T, Vi ) );
+        MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
+    }
+
+    /*
+     * faster decryption using the CRT
+     *
+     * T1 = input ^ dP mod P
+     * T2 = input ^ dQ mod Q
+     */
+    MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) );
+    MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );
+
+    /*
+     * T = (T1 - T2) * (Q^-1 mod P) mod P
+     */
+    MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );
+    MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );
+    MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );
+
+    /*
+     * T = T2 + T * Q
+     */
+    MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );
+    MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );
+
+    if( f_rng != NULL )
+    {
+        /*
+         * Unblind
+         * T = T * Vf mod N
+         */
+        MPI_CHK( mpi_mul_mpi( &T, &T, Vf ) );
+        MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
+    }
+#endif /* POLARSSL_RSA_NO_CRT */
+
+    olen = ctx->len;
+    MPI_CHK( mpi_write_binary( &T, output, olen ) );
+
+cleanup:
+    mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );
+#if !defined(POLARSSL_RSA_NO_CRT) && defined(POLARSSL_THREADING_C)
+    mpi_free( &Vi_copy ); mpi_free( &Vf_copy );
+#endif
+
+    if( ret != 0 )
+        return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );
+
+    return( 0 );
+}
+
+#if defined(POLARSSL_PKCS1_V21)
+/**
+ * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
+ *
+ * \param dst       buffer to mask
+ * \param dlen      length of destination buffer
+ * \param src       source of the mask generation
+ * \param slen      length of the source buffer
+ * \param md_ctx    message digest context to use
+ */
+static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
+                      size_t slen, md_context_t *md_ctx )
+{
+    unsigned char mask[POLARSSL_MD_MAX_SIZE];
+    unsigned char counter[4];
+    unsigned char *p;
+    unsigned int hlen;
+    size_t i, use_len;
+
+    memset( mask, 0, POLARSSL_MD_MAX_SIZE );
+    memset( counter, 0, 4 );
+
+    hlen = md_ctx->md_info->size;
+
+    // Generate and apply dbMask
+    //
+    p = dst;
+
+    while( dlen > 0 )
+    {
+        use_len = hlen;
+        if( dlen < hlen )
+            use_len = dlen;
+
+        md_starts( md_ctx );
+        md_update( md_ctx, src, slen );
+        md_update( md_ctx, counter, 4 );
+        md_finish( md_ctx, mask );
+
+        for( i = 0; i < use_len; ++i )
+            *p++ ^= mask[i];
+
+        counter[3]++;
+
+        dlen -= use_len;
+    }
+}
+#endif /* POLARSSL_PKCS1_V21 */
+
+#if defined(POLARSSL_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
+ */
+int rsa_rsaes_oaep_encrypt( rsa_context *ctx,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng,
+                            int mode,
+                            const unsigned char *label, size_t label_len,
+                            size_t ilen,
+                            const unsigned char *input,
+                            unsigned char *output )
+{
+    size_t olen;
+    int ret;
+    unsigned char *p = output;
+    unsigned int hlen;
+    const md_info_t *md_info;
+    md_context_t md_ctx;
+
+    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    md_info = md_info_from_type( ctx->hash_id );
+    if( md_info == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    olen = ctx->len;
+    hlen = md_get_size( md_info );
+
+    if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    memset( output, 0, olen );
+
+    *p++ = 0;
+
+    // Generate a random octet string seed
+    //
+    if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
+        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
+
+    p += hlen;
+
+    // Construct DB
+    //
+    md( md_info, label, label_len, p );
+    p += hlen;
+    p += olen - 2 * hlen - 2 - ilen;
+    *p++ = 1;
+    memcpy( p, input, ilen );
+
+    md_init_ctx( &md_ctx, md_info );
+
+    // maskedDB: Apply dbMask to DB
+    //
+    mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
+               &md_ctx );
+
+    // maskedSeed: Apply seedMask to seed
+    //
+    mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
+               &md_ctx );
+
+    md_free_ctx( &md_ctx );
+
+    return( ( mode == RSA_PUBLIC )
+            ? rsa_public(  ctx, output, output )
+            : rsa_private( ctx, f_rng, p_rng, output, output ) );
+}
+#endif /* POLARSSL_PKCS1_V21 */
+
+#if defined(POLARSSL_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
+ */
+int rsa_rsaes_pkcs1_v15_encrypt( rsa_context *ctx,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng,
+                                 int mode, size_t ilen,
+                                 const unsigned char *input,
+                                 unsigned char *output )
+{
+    size_t nb_pad, olen;
+    int ret;
+    unsigned char *p = output;
+
+    if( ctx->padding != RSA_PKCS_V15 || f_rng == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    olen = ctx->len;
+
+    if( olen < ilen + 11 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    nb_pad = olen - 3 - ilen;
+
+    *p++ = 0;
+    if( mode == RSA_PUBLIC )
+    {
+        *p++ = RSA_CRYPT;
+
+        while( nb_pad-- > 0 )
+        {
+            int rng_dl = 100;
+
+            do {
+                ret = f_rng( p_rng, p, 1 );
+            } while( *p == 0 && --rng_dl && ret == 0 );
+
+            // Check if RNG failed to generate data
+            //
+            if( rng_dl == 0 || ret != 0)
+                return POLARSSL_ERR_RSA_RNG_FAILED + ret;
+
+            p++;
+        }
+    }
+    else
+    {
+        *p++ = RSA_SIGN;
+
+        while( nb_pad-- > 0 )
+            *p++ = 0xFF;
+    }
+
+    *p++ = 0;
+    memcpy( p, input, ilen );
+
+    return( ( mode == RSA_PUBLIC )
+            ? rsa_public(  ctx, output, output )
+            : rsa_private( ctx, f_rng, p_rng, output, output ) );
+}
+#endif /* POLARSSL_PKCS1_V15 */
+
+/*
+ * Add the message padding, then do an RSA operation
+ */
+int rsa_pkcs1_encrypt( rsa_context *ctx,
+                       int (*f_rng)(void *, unsigned char *, size_t),
+                       void *p_rng,
+                       int mode, size_t ilen,
+                       const unsigned char *input,
+                       unsigned char *output )
+{
+    switch( ctx->padding )
+    {
+#if defined(POLARSSL_PKCS1_V15)
+        case RSA_PKCS_V15:
+            return rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
+                                                input, output );
+#endif
+
+#if defined(POLARSSL_PKCS1_V21)
+        case RSA_PKCS_V21:
+            return rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
+                                           ilen, input, output );
+#endif
+
+        default:
+            return( POLARSSL_ERR_RSA_INVALID_PADDING );
+    }
+}
+
+#if defined(POLARSSL_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
+ */
+int rsa_rsaes_oaep_decrypt( rsa_context *ctx,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng,
+                            int mode,
+                            const unsigned char *label, size_t label_len,
+                            size_t *olen,
+                            const unsigned char *input,
+                            unsigned char *output,
+                            size_t output_max_len )
+{
+    int ret;
+    size_t ilen, i, pad_len;
+    unsigned char *p, bad, pad_done;
+    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
+    unsigned char lhash[POLARSSL_MD_MAX_SIZE];
+    unsigned int hlen;
+    const md_info_t *md_info;
+    md_context_t md_ctx;
+
+    /*
+     * Parameters sanity checks
+     */
+    if( ctx->padding != RSA_PKCS_V21 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    ilen = ctx->len;
+
+    if( ilen < 16 || ilen > sizeof( buf ) )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    md_info = md_info_from_type( ctx->hash_id );
+    if( md_info == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    /*
+     * RSA operation
+     */
+    ret = ( mode == RSA_PUBLIC )
+          ? rsa_public(  ctx, input, buf )
+          : rsa_private( ctx, f_rng, p_rng, input, buf );
+
+    if( ret != 0 )
+        return( ret );
+
+    /*
+     * Unmask data and generate lHash
+     */
+    hlen = md_get_size( md_info );
+
+    md_init_ctx( &md_ctx, md_info );
+
+    /* Generate lHash */
+    md( md_info, label, label_len, lhash );
+
+    /* seed: Apply seedMask to maskedSeed */
+    mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
+               &md_ctx );
+
+    /* DB: Apply dbMask to maskedDB */
+    mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
+               &md_ctx );
+
+    md_free_ctx( &md_ctx );
+
+    /*
+     * Check contents, in "constant-time"
+     */
+    p = buf;
+    bad = 0;
+
+    bad |= *p++; /* First byte must be 0 */
+
+    p += hlen; /* Skip seed */
+
+    /* Check lHash */
+    for( i = 0; i < hlen; i++ )
+        bad |= lhash[i] ^ *p++;
+
+    /* Get zero-padding len, but always read till end of buffer
+     * (minus one, for the 01 byte) */
+    pad_len = 0;
+    pad_done = 0;
+    for( i = 0; i < ilen - 2 * hlen - 2; i++ )
+    {
+        pad_done |= p[i];
+        pad_len += ( pad_done == 0 );
+    }
+
+    p += pad_len;
+    bad |= *p++ ^ 0x01;
+
+    /*
+     * The only information "leaked" is whether the padding was correct or not
+     * (eg, no data is copied if it was not correct). This meets the
+     * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
+     * the different error conditions.
+     */
+    if( bad != 0 )
+        return( POLARSSL_ERR_RSA_INVALID_PADDING );
+
+    if (ilen - (p - buf) > output_max_len)
+        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );
+
+    *olen = ilen - (p - buf);
+    memcpy( output, p, *olen );
+
+    return( 0 );
+}
+#endif /* POLARSSL_PKCS1_V21 */
+
+#if defined(POLARSSL_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
+ */
+int rsa_rsaes_pkcs1_v15_decrypt( rsa_context *ctx,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng,
+                                 int mode, size_t *olen,
+                                 const unsigned char *input,
+                                 unsigned char *output,
+                                 size_t output_max_len)
+{
+    int ret;
+    size_t ilen, pad_count = 0, i;
+    unsigned char *p, bad, pad_done = 0;
+    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
+
+    if( ctx->padding != RSA_PKCS_V15 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    ilen = ctx->len;
+
+    if( ilen < 16 || ilen > sizeof( buf ) )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    ret = ( mode == RSA_PUBLIC )
+          ? rsa_public(  ctx, input, buf )
+          : rsa_private( ctx, f_rng, p_rng, input, buf );
+
+    if( ret != 0 )
+        return( ret );
+
+    p = buf;
+    bad = 0;
+
+    /*
+     * Check and get padding len in "constant-time"
+     */
+    bad |= *p++; /* First byte must be 0 */
+
+    /* This test does not depend on secret data */
+    if( mode == RSA_PRIVATE )
+    {
+        bad |= *p++ ^ RSA_CRYPT;
+
+        /* Get padding len, but always read till end of buffer
+         * (minus one, for the 00 byte) */
+        for( i = 0; i < ilen - 3; i++ )
+        {
+            pad_done |= ( p[i] == 0 );
+            pad_count += ( pad_done == 0 );
+        }
+
+        p += pad_count;
+        bad |= *p++; /* Must be zero */
+    }
+    else
+    {
+        bad |= *p++ ^ RSA_SIGN;
+
+        /* Get padding len, but always read till end of buffer
+         * (minus one, for the 00 byte) */
+        for( i = 0; i < ilen - 3; i++ )
+        {
+            pad_done |= ( p[i] != 0xFF );
+            pad_count += ( pad_done == 0 );
+        }
+
+        p += pad_count;
+        bad |= *p++; /* Must be zero */
+    }
+
+    if( bad )
+        return( POLARSSL_ERR_RSA_INVALID_PADDING );
+
+    if (ilen - (p - buf) > output_max_len)
+        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );
+
+    *olen = ilen - (p - buf);
+    memcpy( output, p, *olen );
+
+    return( 0 );
+}
+#endif /* POLARSSL_PKCS1_V15 */
+
+/*
+ * Do an RSA operation, then remove the message padding
+ */
+int rsa_pkcs1_decrypt( rsa_context *ctx,
+                       int (*f_rng)(void *, unsigned char *, size_t),
+                       void *p_rng,
+                       int mode, size_t *olen,
+                       const unsigned char *input,
+                       unsigned char *output,
+                       size_t output_max_len)
+{
+    switch( ctx->padding )
+    {
+#if defined(POLARSSL_PKCS1_V15)
+        case RSA_PKCS_V15:
+            return rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
+                                                input, output, output_max_len );
+#endif
+
+#if defined(POLARSSL_PKCS1_V21)
+        case RSA_PKCS_V21:
+            return rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
+                                           olen, input, output,
+                                           output_max_len );
+#endif
+
+        default:
+            return( POLARSSL_ERR_RSA_INVALID_PADDING );
+    }
+}
+
+#if defined(POLARSSL_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
+ */
+int rsa_rsassa_pss_sign( rsa_context *ctx,
+                         int (*f_rng)(void *, unsigned char *, size_t),
+                         void *p_rng,
+                         int mode,
+                         md_type_t md_alg,
+                         unsigned int hashlen,
+                         const unsigned char *hash,
+                         unsigned char *sig )
+{
+    size_t olen;
+    unsigned char *p = sig;
+    unsigned char salt[POLARSSL_MD_MAX_SIZE];
+    unsigned int slen, hlen, offset = 0;
+    int ret;
+    size_t msb;
+    const md_info_t *md_info;
+    md_context_t md_ctx;
+
+    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    olen = ctx->len;
+
+    if( md_alg != POLARSSL_MD_NONE )
+    {
+        // Gather length of hash to sign
+        //
+        md_info = md_info_from_type( md_alg );
+        if( md_info == NULL )
+            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+        hashlen = md_get_size( md_info );
+    }
+
+    md_info = md_info_from_type( ctx->hash_id );
+    if( md_info == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    hlen = md_get_size( md_info );
+    slen = hlen;
+
+    if( olen < hlen + slen + 2 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    memset( sig, 0, olen );
+
+    // Generate salt of length slen
+    //
+    if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
+        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
+
+    // Note: EMSA-PSS encoding is over the length of N - 1 bits
+    //
+    msb = mpi_msb( &ctx->N ) - 1;
+    p += olen - hlen * 2 - 2;
+    *p++ = 0x01;
+    memcpy( p, salt, slen );
+    p += slen;
+
+    md_init_ctx( &md_ctx, md_info );
+
+    // Generate H = Hash( M' )
+    //
+    md_starts( &md_ctx );
+    md_update( &md_ctx, p, 8 );
+    md_update( &md_ctx, hash, hashlen );
+    md_update( &md_ctx, salt, slen );
+    md_finish( &md_ctx, p );
+
+    // Compensate for boundary condition when applying mask
+    //
+    if( msb % 8 == 0 )
+        offset = 1;
+
+    // maskedDB: Apply dbMask to DB
+    //
+    mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
+
+    md_free_ctx( &md_ctx );
+
+    msb = mpi_msb( &ctx->N ) - 1;
+    sig[0] &= 0xFF >> ( olen * 8 - msb );
+
+    p += hlen;
+    *p++ = 0xBC;
+
+    return( ( mode == RSA_PUBLIC )
+            ? rsa_public(  ctx, sig, sig )
+            : rsa_private( ctx, f_rng, p_rng, sig, sig ) );
+}
+#endif /* POLARSSL_PKCS1_V21 */
+
+#if defined(POLARSSL_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
+ */
+/*
+ * Do an RSA operation to sign the message digest
+ */
+int rsa_rsassa_pkcs1_v15_sign( rsa_context *ctx,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng,
+                               int mode,
+                               md_type_t md_alg,
+                               unsigned int hashlen,
+                               const unsigned char *hash,
+                               unsigned char *sig )
+{
+    size_t nb_pad, olen, oid_size = 0;
+    unsigned char *p = sig;
+    const char *oid;
+
+    if( ctx->padding != RSA_PKCS_V15 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    olen = ctx->len;
+    nb_pad = olen - 3;
+
+    if( md_alg != POLARSSL_MD_NONE )
+    {
+        const md_info_t *md_info = md_info_from_type( md_alg );
+        if( md_info == NULL )
+            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+        if( oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
+            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+        nb_pad -= 10 + oid_size;
+
+        hashlen = md_get_size( md_info );
+    }
+
+    nb_pad -= hashlen;
+
+    if( ( nb_pad < 8 ) || ( nb_pad > olen ) )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    *p++ = 0;
+    *p++ = RSA_SIGN;
+    memset( p, 0xFF, nb_pad );
+    p += nb_pad;
+    *p++ = 0;
+
+    if( md_alg == POLARSSL_MD_NONE )
+    {
+        memcpy( p, hash, hashlen );
+    }
+    else
+    {
+        /*
+         * DigestInfo ::= SEQUENCE {
+         *   digestAlgorithm DigestAlgorithmIdentifier,
+         *   digest Digest }
+         *
+         * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
+         *
+         * Digest ::= OCTET STRING
+         */
+        *p++ = ASN1_SEQUENCE | ASN1_CONSTRUCTED;
+        *p++ = (unsigned char) ( 0x08 + oid_size + hashlen );
+        *p++ = ASN1_SEQUENCE | ASN1_CONSTRUCTED;
+        *p++ = (unsigned char) ( 0x04 + oid_size );
+        *p++ = ASN1_OID;
+        *p++ = oid_size & 0xFF;
+        memcpy( p, oid, oid_size );
+        p += oid_size;
+        *p++ = ASN1_NULL;
+        *p++ = 0x00;
+        *p++ = ASN1_OCTET_STRING;
+        *p++ = hashlen;
+        memcpy( p, hash, hashlen );
+    }
+
+    return( ( mode == RSA_PUBLIC )
+            ? rsa_public(  ctx, sig, sig )
+            : rsa_private( ctx, f_rng, p_rng, sig, sig ) );
+}
+#endif /* POLARSSL_PKCS1_V15 */
+
+/*
+ * Do an RSA operation to sign the message digest
+ */
+int rsa_pkcs1_sign( rsa_context *ctx,
+                    int (*f_rng)(void *, unsigned char *, size_t),
+                    void *p_rng,
+                    int mode,
+                    md_type_t md_alg,
+                    unsigned int hashlen,
+                    const unsigned char *hash,
+                    unsigned char *sig )
+{
+    switch( ctx->padding )
+    {
+#if defined(POLARSSL_PKCS1_V15)
+        case RSA_PKCS_V15:
+            return rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
+                                              hashlen, hash, sig );
+#endif
+
+#if defined(POLARSSL_PKCS1_V21)
+        case RSA_PKCS_V21:
+            return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
+                                        hashlen, hash, sig );
+#endif
+
+        default:
+            return( POLARSSL_ERR_RSA_INVALID_PADDING );
+    }
+}
+
+#if defined(POLARSSL_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
+ */
+int rsa_rsassa_pss_verify( rsa_context *ctx,
+                           int (*f_rng)(void *, unsigned char *, size_t),
+                           void *p_rng,
+                           int mode,
+                           md_type_t md_alg,
+                           unsigned int hashlen,
+                           const unsigned char *hash,
+                           const unsigned char *sig )
+{
+    int ret;
+    size_t siglen;
+    unsigned char *p;
+    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
+    unsigned char result[POLARSSL_MD_MAX_SIZE];
+    unsigned char zeros[8];
+    unsigned int hlen;
+    size_t slen, msb;
+    const md_info_t *md_info;
+    md_context_t md_ctx;
+
+    if( ctx->padding != RSA_PKCS_V21 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    siglen = ctx->len;
+
+    if( siglen < 16 || siglen > sizeof( buf ) )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    ret = ( mode == RSA_PUBLIC )
+          ? rsa_public(  ctx, sig, buf )
+          : rsa_private( ctx, f_rng, p_rng, sig, buf );
+
+    if( ret != 0 )
+        return( ret );
+
+    p = buf;
+
+    if( buf[siglen - 1] != 0xBC )
+        return( POLARSSL_ERR_RSA_INVALID_PADDING );
+
+    if( md_alg != POLARSSL_MD_NONE )
+    {
+        // Gather length of hash to sign
+        //
+        md_info = md_info_from_type( md_alg );
+        if( md_info == NULL )
+            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+        hashlen = md_get_size( md_info );
+    }
+
+    md_info = md_info_from_type( ctx->hash_id );
+    if( md_info == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    hlen = md_get_size( md_info );
+    slen = siglen - hlen - 1;
+
+    memset( zeros, 0, 8 );
+
+    // Note: EMSA-PSS verification is over the length of N - 1 bits
+    //
+    msb = mpi_msb( &ctx->N ) - 1;
+
+    // Compensate for boundary condition when applying mask
+    //
+    if( msb % 8 == 0 )
+    {
+        p++;
+        siglen -= 1;
+    }
+    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    md_init_ctx( &md_ctx, md_info );
+
+    mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
+
+    buf[0] &= 0xFF >> ( siglen * 8 - msb );
+
+    while( p < buf + siglen && *p == 0 )
+        p++;
+
+    if( p == buf + siglen ||
+        *p++ != 0x01 )
+    {
+        md_free_ctx( &md_ctx );
+        return( POLARSSL_ERR_RSA_INVALID_PADDING );
+    }
+
+    slen -= p - buf;
+
+    // Generate H = Hash( M' )
+    //
+    md_starts( &md_ctx );
+    md_update( &md_ctx, zeros, 8 );
+    md_update( &md_ctx, hash, hashlen );
+    md_update( &md_ctx, p, slen );
+    md_finish( &md_ctx, result );
+
+    md_free_ctx( &md_ctx );
+
+    if( memcmp( p + slen, result, hlen ) == 0 )
+        return( 0 );
+    else
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+}
+#endif /* POLARSSL_PKCS1_V21 */
+
+#if defined(POLARSSL_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
+ */
+int rsa_rsassa_pkcs1_v15_verify( rsa_context *ctx,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng,
+                                 int mode,
+                                 md_type_t md_alg,
+                                 unsigned int hashlen,
+                                 const unsigned char *hash,
+                                 const unsigned char *sig )
+{
+    int ret;
+    size_t len, siglen, asn1_len;
+    unsigned char *p, *end;
+    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
+    md_type_t msg_md_alg;
+    const md_info_t *md_info;
+    asn1_buf oid;
+
+    if( ctx->padding != RSA_PKCS_V15 )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    siglen = ctx->len;
+
+    if( siglen < 16 || siglen > sizeof( buf ) )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+
+    ret = ( mode == RSA_PUBLIC )
+          ? rsa_public(  ctx, sig, buf )
+          : rsa_private( ctx, f_rng, p_rng, sig, buf );
+
+    if( ret != 0 )
+        return( ret );
+
+    p = buf;
+
+    if( *p++ != 0 || *p++ != RSA_SIGN )
+        return( POLARSSL_ERR_RSA_INVALID_PADDING );
+
+    while( *p != 0 )
+    {
+        if( p >= buf + siglen - 1 || *p != 0xFF )
+            return( POLARSSL_ERR_RSA_INVALID_PADDING );
+        p++;
+    }
+    p++;
+
+    len = siglen - ( p - buf );
+
+    if( len == hashlen && md_alg == POLARSSL_MD_NONE )
+    {
+        if( memcmp( p, hash, hashlen ) == 0 )
+            return( 0 );
+        else
+            return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+    }
+
+    md_info = md_info_from_type( md_alg );
+    if( md_info == NULL )
+        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
+    hashlen = md_get_size( md_info );
+
+    end = p + len;
+
+    // Parse the ASN.1 structure inside the PKCS#1 v1.5 structure
+    //
+    if( ( ret = asn1_get_tag( &p, end, &asn1_len,
+            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( asn1_len + 2 != len )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( ( ret = asn1_get_tag( &p, end, &asn1_len,
+            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( asn1_len + 6 + hashlen != len )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( ( ret = asn1_get_tag( &p, end, &oid.len, ASN1_OID ) ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    oid.p = p;
+    p += oid.len;
+
+    if( oid_get_md_alg( &oid, &msg_md_alg ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( md_alg != msg_md_alg )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    /*
+     * assume the algorithm parameters must be NULL
+     */
+    if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_NULL ) ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_OCTET_STRING ) ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( asn1_len != hashlen )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    if( memcmp( p, hash, hashlen ) != 0 )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    p += hashlen;
+
+    if( p != end )
+        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
+
+    return( 0 );
+}
+#endif /* POLARSSL_PKCS1_V15 */
+
+/*
+ * Do an RSA operation and check the message digest
+ */
+int rsa_pkcs1_verify( rsa_context *ctx,
+                      int (*f_rng)(void *, unsigned char *, size_t),
+                      void *p_rng,
+                      int mode,
+                      md_type_t md_alg,
+                      unsigned int hashlen,
+                      const unsigned char *hash,
+                      const unsigned char *sig )
+{
+    switch( ctx->padding )
+    {
+#if defined(POLARSSL_PKCS1_V15)
+        case RSA_PKCS_V15:
+            return rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
+                                                hashlen, hash, sig );
+#endif
+
+#if defined(POLARSSL_PKCS1_V21)
+        case RSA_PKCS_V21:
+            return rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
+                                          hashlen, hash, sig );
+#endif
+
+        default:
+            return( POLARSSL_ERR_RSA_INVALID_PADDING );
+    }
+}
+
+/*
+ * Copy the components of an RSA key
+ */
+int rsa_copy( rsa_context *dst, const rsa_context *src )
+{
+    int ret;
+
+    dst->ver = src->ver;
+    dst->len = src->len;
+
+    MPI_CHK( mpi_copy( &dst->N, &src->N ) );
+    MPI_CHK( mpi_copy( &dst->E, &src->E ) );
+
+    MPI_CHK( mpi_copy( &dst->D, &src->D ) );
+    MPI_CHK( mpi_copy( &dst->P, &src->P ) );
+    MPI_CHK( mpi_copy( &dst->Q, &src->Q ) );
+    MPI_CHK( mpi_copy( &dst->DP, &src->DP ) );
+    MPI_CHK( mpi_copy( &dst->DQ, &src->DQ ) );
+    MPI_CHK( mpi_copy( &dst->QP, &src->QP ) );
+
+    MPI_CHK( mpi_copy( &dst->RN, &src->RN ) );
+    MPI_CHK( mpi_copy( &dst->RP, &src->RP ) );
+    MPI_CHK( mpi_copy( &dst->RQ, &src->RQ ) );
+
+#if !defined(POLARSSL_RSA_NO_CRT)
+    MPI_CHK( mpi_copy( &dst->Vi, &src->Vi ) );
+    MPI_CHK( mpi_copy( &dst->Vf, &src->Vf ) );
+#endif
+
+    dst->padding = src->padding;
+    dst->hash_id = src->hash_id;
+
+cleanup:
+    if( ret != 0 )
+        rsa_free( dst );
+
+    return( ret );
+}
+
+/*
+ * Free the components of an RSA key
+ */
+void rsa_free( rsa_context *ctx )
+{
+#if !defined(POLARSSL_RSA_NO_CRT)
+    mpi_free( &ctx->Vi ); mpi_free( &ctx->Vf );
+#endif
+    mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN );
+    mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP );
+    mpi_free( &ctx->Q  ); mpi_free( &ctx->P  ); mpi_free( &ctx->D );
+    mpi_free( &ctx->E  ); mpi_free( &ctx->N  );
+
+#if defined(POLARSSL_THREADING_C)
+    polarssl_mutex_free( &ctx->mutex );
+#endif
+}
+
+#if defined(POLARSSL_SELF_TEST)
+
+#include "polarssl/sha1.h"
+
+/*
+ * Example RSA-1024 keypair, for test purposes
+ */
+#define KEY_LEN 128
+
+#define RSA_N   "9292758453063D803DD603D5E777D788" \
+                "8ED1D5BF35786190FA2F23EBC0848AEA" \
+                "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
+                "7130B9CED7ACDF54CFC7555AC14EEBAB" \
+                "93A89813FBF3C4F8066D2D800F7C38A8" \
+                "1AE31942917403FF4946B0A83D3D3E05" \
+                "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
+                "5E94BB77B07507233A0BC7BAC8F90F79"
+
+#define RSA_E   "10001"
+
+#define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
+                "66CA472BC44D253102F8B4A9D3BFA750" \
+                "91386C0077937FE33FA3252D28855837" \
+                "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
+                "DF79C5CE07EE72C7F123142198164234" \
+                "CABB724CF78B8173B9F880FC86322407" \
+                "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
+                "071513A1E85B5DFA031F21ECAE91A34D"
+
+#define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
+                "2C01CAD19EA484A87EA4377637E75500" \
+                "FCB2005C5C7DD6EC4AC023CDA285D796" \
+                "C3D9E75E1EFC42488BB4F1D13AC30A57"
+
+#define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
+                "E211C2B9E5DB1ED0BF61D0D9899620F4" \
+                "910E4168387E3C30AA1E00C339A79508" \
+                "8452DD96A9A5EA5D9DCA68DA636032AF"
+
+#define RSA_DP  "C1ACF567564274FB07A0BBAD5D26E298" \
+                "3C94D22288ACD763FD8E5600ED4A702D" \
+                "F84198A5F06C2E72236AE490C93F07F8" \
+                "3CC559CD27BC2D1CA488811730BB5725"
+
+#define RSA_DQ  "4959CBF6F8FEF750AEE6977C155579C7" \
+                "D8AAEA56749EA28623272E4F7D0592AF" \
+                "7C1F1313CAC9471B5C523BFE592F517B" \
+                "407A1BD76C164B93DA2D32A383E58357"
+
+#define RSA_QP  "9AE7FBC99546432DF71896FC239EADAE" \
+                "F38D18D2B2F0E2DD275AA977E2BF4411" \
+                "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \
+                "A74206CEC169D74BF5A8C50D6F48EA08"
+
+#define PT_LEN  24
+#define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
+                "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
+
+#if defined(POLARSSL_PKCS1_V15)
+static int myrand( void *rng_state, unsigned char *output, size_t len )
+{
+#if !defined(__OpenBSD__)
+    size_t i;
+
+    if( rng_state != NULL )
+        rng_state  = NULL;
+
+    for( i = 0; i < len; ++i )
+        output[i] = rand();
+#else
+    if( rng_state != NULL )
+        rng_state = NULL;
+
+    arc4random_buf( output, len );
+#endif /* !OpenBSD */
+
+    return( 0 );
+}
+#endif /* POLARSSL_PKCS1_V15 */
+
+/*
+ * Checkup routine
+ */
+int rsa_self_test( int verbose )
+{
+    int ret = 0;
+#if defined(POLARSSL_PKCS1_V15)
+    size_t len;
+    rsa_context rsa;
+    unsigned char rsa_plaintext[PT_LEN];
+    unsigned char rsa_decrypted[PT_LEN];
+    unsigned char rsa_ciphertext[KEY_LEN];
+#if defined(POLARSSL_SHA1_C)
+    unsigned char sha1sum[20];
+#endif
+
+    rsa_init( &rsa, RSA_PKCS_V15, 0 );
+
+    rsa.len = KEY_LEN;
+    MPI_CHK( mpi_read_string( &rsa.N , 16, RSA_N  ) );
+    MPI_CHK( mpi_read_string( &rsa.E , 16, RSA_E  ) );
+    MPI_CHK( mpi_read_string( &rsa.D , 16, RSA_D  ) );
+    MPI_CHK( mpi_read_string( &rsa.P , 16, RSA_P  ) );
+    MPI_CHK( mpi_read_string( &rsa.Q , 16, RSA_Q  ) );
+    MPI_CHK( mpi_read_string( &rsa.DP, 16, RSA_DP ) );
+    MPI_CHK( mpi_read_string( &rsa.DQ, 16, RSA_DQ ) );
+    MPI_CHK( mpi_read_string( &rsa.QP, 16, RSA_QP ) );
+
+    if( verbose != 0 )
+        polarssl_printf( "  RSA key validation: " );
+
+    if( rsa_check_pubkey(  &rsa ) != 0 ||
+        rsa_check_privkey( &rsa ) != 0 )
+    {
+        if( verbose != 0 )
+            polarssl_printf( "failed\n" );
+
+        return( 1 );
+    }
+
+    if( verbose != 0 )
+        polarssl_printf( "passed\n  PKCS#1 encryption : " );
+
+    memcpy( rsa_plaintext, RSA_PT, PT_LEN );
+
+    if( rsa_pkcs1_encrypt( &rsa, myrand, NULL, RSA_PUBLIC, PT_LEN,
+                           rsa_plaintext, rsa_ciphertext ) != 0 )
+    {
+        if( verbose != 0 )
+            polarssl_printf( "failed\n" );
+
+        return( 1 );
+    }
+
+    if( verbose != 0 )
+        polarssl_printf( "passed\n  PKCS#1 decryption : " );
+
+    if( rsa_pkcs1_decrypt( &rsa, myrand, NULL, RSA_PRIVATE, &len,
+                           rsa_ciphertext, rsa_decrypted,
+                           sizeof(rsa_decrypted) ) != 0 )
+    {
+        if( verbose != 0 )
+            polarssl_printf( "failed\n" );
+
+        return( 1 );
+    }
+
+    if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
+    {
+        if( verbose != 0 )
+            polarssl_printf( "failed\n" );
+
+        return( 1 );
+    }
+
+#if defined(POLARSSL_SHA1_C)
+    if( verbose != 0 )
+        polarssl_printf( "passed\n  PKCS#1 data sign  : " );
+
+    sha1( rsa_plaintext, PT_LEN, sha1sum );
+
+    if( rsa_pkcs1_sign( &rsa, myrand, NULL, RSA_PRIVATE, POLARSSL_MD_SHA1, 0,
+                        sha1sum, rsa_ciphertext ) != 0 )
+    {
+        if( verbose != 0 )
+            polarssl_printf( "failed\n" );
+
+        return( 1 );
+    }
+
+    if( verbose != 0 )
+        polarssl_printf( "passed\n  PKCS#1 sig. verify: " );
+
+    if( rsa_pkcs1_verify( &rsa, NULL, NULL, RSA_PUBLIC, POLARSSL_MD_SHA1, 0,
+                          sha1sum, rsa_ciphertext ) != 0 )
+    {
+        if( verbose != 0 )
+            polarssl_printf( "failed\n" );
+
+        return( 1 );
+    }
+
+    if( verbose != 0 )
+        polarssl_printf( "passed\n\n" );
+#endif /* POLARSSL_SHA1_C */
+
+cleanup:
+    rsa_free( &rsa );
+#else /* POLARSSL_PKCS1_V15 */
+    ((void) verbose);
+#endif /* POLARSSL_PKCS1_V15 */
+    return( ret );
+}
+
+#endif /* POLARSSL_SELF_TEST */
+
+#endif /* POLARSSL_RSA_C */
+
+