
Macros Corregidas
main.cpp
- Committer:
- Gustavo_Eduardo338
- Date:
- 2016-09-19
- Revision:
- 10:5580ae8cbe7e
- Parent:
- 9:501a9e6710d2
- Child:
- 11:965d5afe3a63
File content as of revision 10:5580ae8cbe7e:
/* Copyright (c) 2012-2014 RedBearLab Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "mbed.h" #include "ble/BLE.h" #include "GattCallbackParamTypes.h" #define BLE_UUID_TXRX_SERVICE 0x0000 /**< The UUID of the Nordic UART Service. */ #define BLE_UUID_TX_CHARACTERISTIC 0x0002 /**< The UUID of the TX Characteristic. */ #define BLE_UUIDS_RX_CHARACTERISTIC 0x0003 /**< The UUID of the RX Characteristic. */ #define TXRX_BUF_LEN 20 #define ON 1 #define OFF 0 #define IN 1 #define OUT 0 #define PWM 2 #define NONE -1 //Solo puede estar definido un solo Board //#define nRF51-DK_board #define redBearLab_board #ifdef nRF51-DK_board //Aqui se define el hardware del nRF51-DK //Analog in #define A0 P0_1 //Analog 0 #define A1 P0_2 //Analog 1 #define A2 P0_3 //Analog 2 #define A3 P0_4 //Analog 3 #define A4 P0_5 //Analog 4 #define A5 P0_6 //Analog 5 //Digital #define D0 P0_14 //Digital I/O #define D1 P0_12 //Digital I/O #define D2 P0_13 //Digital I/O #define D3 P0_15 //Digital I/O #define D4 P0_21 //Digital I/O (LED 1) #define D5 P0_22 //Digital I/O (LED 2) #define D6 P0_23 //Digital I/O (LED 3) #define D7 P0_24 //Digital I/O (LED 4) #define D8 P0_17 //Digital I/O (BUTTON 1) #define D9 P0_19 //Digital I/O (BUTTON 3) #define D10 P0_18 //Digital I/O (BUTTON 2) #define D11 P0_20 //Digital I/O (BUTTON 4) #define D12 P0_7 //Digital I/O #define D13 P0_30 //Digital I/O #define D14 P0_8 //Digital I/O #define D15 P0_16 //Digital I/O //Aplicacion #define LED_1 P0_21 //Digital I/O (LED 1) #define LED_2 P0_22 //Digital I/O (LED 2) #define LED_3 P0_23 //Digital I/O (LED 3) #define LED_4 P0_24 //Digital I/O (LED 4) #define BTN_1 P0_17 //Digital I/O (BUTTON 1) #define BTN_2 P0_18 //Digital I/O (BUTTON 2) #define BTN_3 P0_19 //Digital I/O (BUTTON 3) #define BTN_4 P0_20 //Digital I/O (BUTTON 4) // Aqui se acaba la configuracion del board NRF51-DK #else //Aqui se define el hardware del redBearLab //Analog in #define A0 P0_1 //Analog 0 #define A1 P0_2 //Analog 0 #define A2 P0_3 //Analog 0 #define A3 P0_4 //Analog 0 #define A4 P0_5 //Analog 0 #define A5 P0_6 //Analog 0 //Digital #define D0 P0_11 //Digital I/O #define D1 P0_9 //Digital I/O #define D2 P0_10 //Digital I/O #define D3 P0_8 //Digital I/O #define D4 P0_21 //Digital I/O #define D5 P0_23 //Digital I/O (PWM RBL) #define D6 P0_16 //Digital I/O (PWM RBL) #define D7 P0_17 //Digital I/O #define D8 P0_19 //Digital I/O #define D9 P0_18 //Digital I/O (PWM RBL) #define D10 P0_14 //Digital I/O #define D11 P0_12 //Digital I/O #define D12 P0_13 //Digital I/O (LED RBL) #define D13 P0_15 //Digital I/O #define D14 P0_29 //Digital I/O #define D15 P0_28 //Digital I/O //Aplicacion #define LED_1 P0_21 //Digital I/O (LED 1) #define LED_2 P0_23 //Digital I/O (LED 2) #define LED_3 P0_16 //Digital I/O (LED 3) #define LED_4 P0_17 //Digital I/O (LED 4) #define BTN_1 P0_11 //Digital I/O (BUTTON 1) #define BTN_2 P0_9 //Digital I/O (BUTTON 2) #define BTN_3 P0_10 //Digital I/O (BUTTON 3) #define BTN_4 P0_8 //Digital I/O (BUTTON 4) #endif // Aqui se acabo la definicion del board REDBEARLAB /**** Aqui se definen los pines necesarios independientemente del board seleccionado ****************** Instrucciones: Pines digitales --> ON --> Usado OFF --> No sera usado IN --> Entrada OUT --> Salida Pines Analogicos --> ON --> Usado OFF --> No sera usado Valor del TED en numero reales, ejemplo 39.1, sino se va a usar se queda con 0 ********************************************************************************************************/ #define A0_USO ON //-> Divisor de voltaje para medir bateria VDD #define A1_USO ON //-> Temperatura PT1000 (Borneras Shield de pruebas) Borneras #define A2_USO OFF //-> Temperatura PT1000 (Borneras Shield de pruebas) #define A3_USO OFF //-> Humedad (Borneras Shield de pruebas) #define A4_USO OFF //-> Humedad (Borneras Shield de pruebas) #define A5_USO OFF //-> Conectarlo al LM35 #define A0_TED 39.1 //Volts, bateria #define A1_TED 39.2 // ºC temperatura PT 1000 #define A2_TED 0 // ºC temperatura PT 1000 #define A3_TED 0 #define A4_TED 0 #define A5_TED 0 // ºC temperatura ambiental con el LM35 #define D0_USO OFF //Ejemplo: ON #define D1_USO OFF //Ejemplo: OFF #define D2_USO ON #define D3_USO ON #define D4_USO ON #define D5_USO ON #define D6_USO OFF #define D7_USO ON #define D8_USO ON #define D9_USO ON //BUTTON 1 (NRF51-DK) #define D10_USO OFF //BUTTON 2 (NRF51-DK) #define D11_USO OFF //BUTTON 3 (NRF51-DK) #define D12_USO OFF //BUTTON 4 (NRF51-DK) #define D13_USO OFF #define D14_USO OFF #define D15_USO OFF #define D0_TYPE NONE // Ejemplo: OUT #define D1_TYPE NONE // Ejemplo: IN #define D2_TYPE IN // Para medir Humedad con Resistencia AC #define D3_TYPE IN // Led encienden con 1 #define D4_TYPE IN // Led encienden con 0 #define D5_TYPE IN // Led encienden con 0 #define D6_TYPE NONE // Led encienden con 1 #define D7_TYPE OUT // Pushbuttons (Activos en bajo) #define D8_TYPE OUT // Pushbuttons (Activos en bajo) #define D9_TYPE PWM // DIP Switch 1 (Activos en bajo) #define D10_TYPE NONE // DIP Switch 2 (Activos en bajo) #define D11_TYPE NONE // DIP Switch 3 (Activos en bajo) #define D12_TYPE NONE // Para medir Humedad con Resistencia AC #define D13_TYPE NONE // DIP Switch 4 (Activos en bajo) #define D14_TYPE NONE // Para medir Humedad con Resistencia AC #define D15_TYPE NONE // Para medir Humedad con Resistencia AC //Macros de mbed /*** Aqui Se definen todas macros en funcion de si el bit esta ON u OFF ************ Estos son las macors ya definidas: DigitalOut LED_SET(DIGITAL_OUT_PIN); //Modo de uso --> LED_SET = 1 o LED_SET = 0; DigitalIn BUTTON(DIGITAL_IN_PIN); //Modo de uso --> if (BUTTON != old_state) PwmOut PWM(PWM_PIN); //Modo de uso --> PWM = value; AnalogIn ANALOGTEMP(ANALOG_IN_PIN); //Modo de uso -> float s = ANALOG_A0; AnalogIn ANALOGBAT(ANALOG_IN_BAT); Servo MYSERVO(SERVO_PIN); *************************************************************************************/ //Macros analogicas AnalogIn ANALOG_A0(A0); //Bateria AnalogIn ANALOG_A1(A1); AnalogIn ANALOG_A2(A2); AnalogIn ANALOG_A3(A3); AnalogIn ANALOG_A4(A4); AnalogIn ANALOG_A5(A5); //Temperatura ambiental con LM35 //Macros Digitales DigitalIn BUTTON_0(D0); DigitalIn BUTTON_1(D1); DigitalIn BUTTON_2(D2); DigitalIn BUTTON_3(D3); DigitalIn BUTTON_4(D4); DigitalIn BUTTON_5(D5); DigitalIn BUTTON_6(D6); DigitalIn BUTTON_7(D7); DigitalIn BUTTON_8(D8); DigitalIn BUTTON_9(D9); DigitalIn BUTTON_10(D10); DigitalIn BUTTON_11(D11); DigitalIn BUTTON_12(D12); DigitalIn BUTTON_13(D13); DigitalIn BUTTON_14(D14); DigitalIn BUTTON_15(D15); DigitalOut LED_SET_0(D0); DigitalOut LED_SET_1(D1); DigitalOut LED_SET_2(D2); DigitalOut LED_SET_3(D3); DigitalOut LED_SET_4(D4); DigitalOut LED_SET_5(D5); DigitalOut LED_SET_6(D6); DigitalOut LED_SET_7(D7); DigitalOut LED_SET_8(D8); DigitalOut LED_SET_9(D9); DigitalOut LED_SET_10(D10); DigitalOut LED_SET_11(D11); DigitalOut LED_SET_12(D12); DigitalOut LED_SET_13(D13); DigitalOut LED_SET_14(D14); DigitalOut LED_SET_15(D15); PwmOut PWM_5(D5); PwmOut PWM_6(D6); PwmOut PWM_9(D9); //Hasta aqui la definicion de macos //Digital Inputs --> DATA VALUE uint16_t DigitalInput_DATA = 0x0000; //Mapa de bits con los valores de la entrada digital segun la posicion uint16_t PAQUETE_ID = 0; float AnalogInput_Ted [6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; //Si el TED es cero, es que no está en uso //Digital input, cantidad, posiciones --> de todos, ted = 0, tipico hasta 16 uint16_t DigitalInput_Pos = 0x0000; //Mapa de bits, seran usados los bytes del TED 16 bits //Digital output, cantidad, pocisiones --> de todos, ted = 0, tipico hasta 16 uint16_t DigitalOutput_Pos = 0x0000; //Mapa de bits, seran usados los bytes del TED 16 bits uint16_t DigitalPwm_Pos = 0x0000; //Mapa de bits, seran usados los bytes del TED 16 bits //Digital input, cantidad, posiciones --> de todos, ted = 0, tipico hasta 16 uint8_t AnalogInput_Pos = 0x0000; //Mapa de bits, seran usados los bytes del TED 16 bits //Digital output, cantidad, pocisiones --> de todos, ted = 0, tipico hasta 16 uint8_t AnalogOutput_Pos = 0x0000; //Mapa de bits, seran usados los bytes del TED 16 bits // Declarando los pines //static int32_t send_config = 0; static int8_t SEND_CONFIG_GENERAL = 0; static int8_t SEND_CONFIG_ANALOG_0 = 0, SEND_CONFIG_ANALOG_1 = 0, SEND_CONFIG_ANALOG_2 = 0, SEND_CONFIG_ANALOG_3 = 0, SEND_CONFIG_ANALOG_4 = 0, SEND_CONFIG_ANALOG_5 = 0; BLE ble; // Permite imprimir mensajes en la consola Serial pc(USBTX, USBRX); static uint8_t analog_enabled = 0; static uint8_t state_button_2 = 0, state_button_3 = 0,state_button_4 = 0,state_button_5 = 0 ; static uint8_t state_button_6 = 0, state_button_7 = 0, state_button_8 = 0, state_button_9 = 0,state_button_10 = 0,state_button_11 = 0 ; static uint8_t state_button_12 = 0, state_button_13 = 0, state_button_14 = 0, state_button_15 = 0; // The Nordic UART Service static const uint8_t uart_base_uuid[] = {0x71, 0x3D, 0, 0, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E}; static const uint8_t uart_tx_uuid[] = {0x71, 0x3D, 0, 3, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E}; static const uint8_t uart_rx_uuid[] = {0x71, 0x3D, 0, 2, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E}; static const uint8_t uart_base_uuid_rev[] = {0x1E, 0x94, 0x8D, 0xF1, 0x48, 0x31, 0x94, 0xBA, 0x75, 0x4C, 0x3E, 0x50, 0, 0, 0x3D, 0x71}; // Trama de Configuracion de los Pines (a). static uint8_t TRAMA_CONFIG_GENERAL[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 , 0x00}; // Length 12 uint8_t txPayload[TXRX_BUF_LEN] = {0,}; uint8_t rxPayload[TXRX_BUF_LEN] = {0,}; GattCharacteristic txCharacteristic (uart_tx_uuid, txPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE_WITHOUT_RESPONSE); GattCharacteristic rxCharacteristic (uart_rx_uuid, rxPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY); GattCharacteristic *uartChars[] = {&txCharacteristic, &rxCharacteristic}; GattService uartService(uart_base_uuid, uartChars, sizeof(uartChars) / sizeof(GattCharacteristic *)); float in[] = { 100.00, 100.39, 100.78, 101.17, 101.56, 101.95, 102.34, 102.73, 103.12, 103.51, 103.90, 104.29, 104.68, 105.07, 105.46, 105.85, 106.24, 106.63, 107.02, 107.40, 107.79, 108.18, 108.57, 108.96, 109.35, 109.73, 110.12, 110.51, 110.90, 111.29, 111.67, 112.06, 112.45, 112.83, 113.22, 113.61, 114.00, 114.38, 114.77, 115.15, 115.54, 115.93, 116.31, 116.70, 117.08, 117.47, 117.86, 118.24, 118.63, 119.01, 119.40, 119.78, 120.17, 120.55, 120.94, 121.32, 121.71, 122.09, 122.47, 122.86, 123.24, 123.63, 124.01, 124.39, 124.78, 125.16, 125.54, 125.93, 126.31, 126.69, 127.08, 127.46, 127.84, 128.22, 128.61, 128.99, 129.37, 129.75, 130.13, 130.52 }; // known resistance in voltage divider int R1 = 217; float MultiMap(float val, float* _in, uint8_t size) { // calculate if value is out of range if (val < _in[0] ) return -99.99; if (val > _in[size-1] ) return 99.99; // search for 'value' in _in array to get the position No. uint8_t pos = 0; while(val > _in[pos]) pos++; // handles the 'rare' equality case if (val == _in[pos]) return pos; float r1 = _in[pos-1]; float r2 = _in[pos]; int c1 = pos-1; int c2 = pos; return c1 + (val - r1) / (r2-r1) * (c2-c1); } // https://developer.mbed.org/forum/repo-61676-BLE_GAP_Example-community/topic/17193/ void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *) { BLE& ble = BLE::Instance(BLE::DEFAULT_INSTANCE); pc.printf("Disconnected \r\n"); pc.printf("Restart advertising \r\n"); ble.startAdvertising(); analog_enabled = 0; // Deja que envie lecturas el PT 1000 SEND_CONFIG_GENERAL = 0; // En caso de no completarse el envio de la configuraciones las detenemos por completo, y dehabilitamos el envio. SEND_CONFIG_ANALOG_0 == OFF; SEND_CONFIG_ANALOG_1 == OFF; SEND_CONFIG_ANALOG_2 == OFF; SEND_CONFIG_ANALOG_3 == OFF; SEND_CONFIG_ANALOG_4 == OFF; SEND_CONFIG_ANALOG_5 == OFF; } //Leemos todos las entradas digitales que esten activas y lo ponemos en la posicion correspondiente void readDigitalInputs_Value () { // DigitalInput_DATA = (uint16_t) ((BUTTON_15 << 15) | (BUTTON_14 << 14) | (BUTTON_13 << 13) | (BUTTON_12 << 12) | (BUTTON_11 << 11) | (BUTTON_10 << 10) | (BUTTON_9 << 9) | (BUTTON_8 << 8) | (BUTTON_7 << 7) | (BUTTON_6 << 6) |(BUTTON_5 << 5) | (BUTTON_4 << 4) | (BUTTON_3 << 3) | (BUTTON_2 << 2) | (BUTTON_1 << 1) | (BUTTON_1 << 0)); DigitalInput_DATA = (uint16_t) ((BUTTON_15 << 15) | (BUTTON_14 << 14) | (BUTTON_13 << 13) | (BUTTON_12 << 12) | (BUTTON_11 << 11) | (BUTTON_10 << 10) | (BUTTON_9 << 9) | (BUTTON_8 << 8) | (BUTTON_7 << 7) | (BUTTON_6 << 6) |(BUTTON_5 << 5) | (BUTTON_4 << 4) | (BUTTON_3 << 3) | (BUTTON_2 << 2)); } //Funcion para crear los extra bytes void makeExtraBytes_CONFIG () { // Teds de los Analog inputs AnalogInput_Ted [0] = A0_TED; AnalogInput_Ted [1] = A1_TED; AnalogInput_Ted [2] = A2_TED; AnalogInput_Ted [3] = A3_TED; AnalogInput_Ted [4] = A4_TED; AnalogInput_Ted [5] = A5_TED; if (D15_USO == ON && D15_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D15_USO << 15); if (D14_USO == ON && D14_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D14_USO << 14); if (D13_USO == ON && D13_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D13_USO << 13); if (D12_USO == ON && D12_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D12_USO << 12); if (D11_USO == ON && D11_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D11_USO << 11); if (D10_USO == ON && D10_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D10_USO << 10); if (D9_USO == ON && D9_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D9_USO << 9); if (D8_USO == ON && D8_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D8_USO << 8); if (D7_USO == ON && D7_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D7_USO << 7); if (D6_USO == ON && D6_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D6_USO << 6); if (D5_USO == ON && D5_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D5_USO << 5); if (D4_USO == ON && D4_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D4_USO << 4); if (D3_USO == ON && D3_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D3_USO << 3); if (D2_USO == ON && D2_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D2_USO << 2); if (D1_USO == ON && D1_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D1_USO << 1); if (D0_USO == ON && D0_TYPE == IN) DigitalInput_Pos |= (uint16_t) (D0_USO << 0); if (D15_USO == 1 && D15_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D15_USO << 15); if (D14_USO == 1 && D14_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D14_USO << 14); if (D13_USO == 1 && D13_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D13_USO << 13); if (D12_USO == 1 && D12_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D12_USO << 12); if (D11_USO == 1 && D11_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D11_USO << 11); if (D10_USO == 1 && D10_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D10_USO << 10); if (D9_USO == 1 && D9_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D9_USO << 9); if (D8_USO == 1 && D8_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D8_USO << 8); if (D7_USO == 1 && D7_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D7_USO << 7); if (D6_USO == 1 && D6_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D6_USO << 6); if (D5_USO == 1 && D5_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D5_USO << 5); if (D4_USO == 1 && D4_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D4_USO << 4); if (D3_USO == 1 && D3_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D3_USO << 3); if (D2_USO == 1 && D2_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D2_USO << 2); if (D1_USO == 1 && D1_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D1_USO << 1); if (D0_USO == 1 && D0_TYPE == OUT) DigitalOutput_Pos |= (uint16_t) (D0_USO << 0); if (D15_USO == 1 && D15_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D15_USO << 15); if (D14_USO == 1 && D14_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D14_USO << 14); if (D13_USO == 1 && D13_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D13_USO << 13); if (D12_USO == 1 && D12_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D12_USO << 12); if (D11_USO == 1 && D11_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D11_USO << 11); if (D10_USO == 1 && D10_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D10_USO << 10); if (D9_USO == 1 && D9_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D9_USO << 9); if (D8_USO == 1 && D8_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D8_USO << 8); if (D7_USO == 1 && D7_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D7_USO << 7); if (D6_USO == 1 && D6_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D6_USO << 6); if (D5_USO == 1 && D5_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D5_USO << 5); if (D4_USO == 1 && D4_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D4_USO << 4); if (D3_USO == 1 && D3_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D3_USO << 3); if (D2_USO == 1 && D2_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D2_USO << 2); if (D1_USO == 1 && D1_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D1_USO << 1); if (D0_USO == 1 && D0_TYPE == PWM) DigitalPwm_Pos |= (uint16_t) (D0_USO << 0); //Digital inputs AnalogInput_Pos = (uint16_t) ((A5_USO << 5) | (A4_USO << 4) | (A3_USO << 3) | (A2_USO << 2) | (A1_USO << 1) | (A0_USO << 0)); //Digital Outputs //para probar pc.printf("DigitalInput_Pos = %x \r\n", DigitalInput_Pos); pc.printf("DigitalOutput_Pos = %x \r\n", DigitalOutput_Pos); pc.printf("AnalogInput_Pos = %x \r\n", AnalogInput_Pos); pc.printf("AnalogOutput_Pos = %x \r\n", DigitalPwm_Pos); pc.printf("---------------------------\r\n"); // Definimos la trama de configuracion general TRAMA_CONFIG_GENERAL [0] = 0xC1; // Codigo de configuracion general TRAMA_CONFIG_GENERAL [1] = 0xA1; // Codigo de entradas analogicas TRAMA_CONFIG_GENERAL [2] = AnalogInput_Pos; // Valor de las entradas analogicas TRAMA_CONFIG_GENERAL [3] = 0xA0; // Codigo de las salidas analogicas TRAMA_CONFIG_GENERAL [4] = (DigitalPwm_Pos >> 8); // Valor de las salidas analogicas TRAMA_CONFIG_GENERAL [5] = (DigitalPwm_Pos); // Valor de las salidas analogicas TRAMA_CONFIG_GENERAL [6] = 0xD1; // Codigo de las entradas digitales TRAMA_CONFIG_GENERAL [7] = (DigitalInput_Pos >> 8); TRAMA_CONFIG_GENERAL [8] = DigitalInput_Pos; TRAMA_CONFIG_GENERAL [9] = 0xD0; // Codigo de las salidas difitales TRAMA_CONFIG_GENERAL [10] = (DigitalOutput_Pos>> 8); TRAMA_CONFIG_GENERAL [11] = DigitalOutput_Pos; } // Ingresa por este metdo unicamente la primera vez que se conecta al mote. // Tomado desde: https://developer.mbed.org/teams/Bluetooth-Low-Energy/code/BLE_LEDBlinker/file/dc392bde2b3c/main.cpp void connectionCallback(const Gap::ConnectionCallbackParams_t *) { pc.printf("connectionCallback \r\n"); makeExtraBytes_CONFIG(); SEND_CONFIG_GENERAL = 1; } // Recepta las caracteristicas que se desea escribir en el mote. void WrittenHandler(const GattWriteCallbackParams *Handler) { pc.printf("WrittenHandler(const GattWriteCallbackParams *Handler) \r\n"); uint8_t buf[TXRX_BUF_LEN]; uint16_t bytesRead, index; if (Handler->handle == txCharacteristic.getValueAttribute().getHandle()) { ble.readCharacteristicValue(txCharacteristic.getValueAttribute().getHandle(), buf, &bytesRead); memset(txPayload, 0, TXRX_BUF_LEN); memcpy(txPayload, buf, TXRX_BUF_LEN); for(index=0; index<bytesRead; index++) pc.putc(buf[index]); pc.printf("Leemos la trama: \r\n"); for(index=0; index<bytesRead; index++) { pc.printf("buf[%02x]: %02x\r\n", index, buf[index]); } // Desde el telefono desactiva el envio de tramas de configuracion general o de cada sensor. if (buf[0] == 0xDC) { // Dato Configuracion if(buf[1] == 0xC1) { // Hace referencia a la configuración general SEND_CONFIG_GENERAL = buf[2]; // Debe ser cero, hace que ya no se vuelva a enviar la conf general del mote // Comprueba si estan habilitados las salidas analogicas, y las // inicializa a 1 para que mas adelante envie la configuracion // de cada sensor SEND_CONFIG_ANALOG_0 = (A0_USO == ON)?1:0; SEND_CONFIG_ANALOG_1 = (A1_USO == ON)?1:0; SEND_CONFIG_ANALOG_2 = (A2_USO == ON)?1:0; SEND_CONFIG_ANALOG_3 = (A3_USO == ON)?1:0; SEND_CONFIG_ANALOG_4 = (A4_USO == ON)?1:0; SEND_CONFIG_ANALOG_5 = (A5_USO == ON)?1:0; } // Maneja las Tramas de confirmacion de la configuracion detallada de cada senssor analogico if(buf[1] == 0xC2) { // Hace referencia a la configuracion detallada por sensor. switch (buf[2]) { // Evalua la posición case 0x00: // 0xA0 SEND_CONFIG_ANALOG_0 = buf[3]; // buf[3] debe ser 0, para detenerse el envió SEND_CONFIG_ANALOG_0 break; case 0x01: // 0xA1 SEND_CONFIG_ANALOG_1 = buf[3]; // buf[3] debe ser 0, para detenerse el envió SEND_CONFIG_ANALOG_1 break; case 0x02: // 0xA2 SEND_CONFIG_ANALOG_2 = buf[3]; // buf[3] debe ser 0, para detenerse el envió SEND_CONFIG_ANALOG_2 break; case 0x03: // 0xA3 SEND_CONFIG_ANALOG_3 = buf[3]; // buf[3] debe ser 0, para detenerse el envió SEND_CONFIG_ANALOG_3 break; case 0x04: // 0xA4 SEND_CONFIG_ANALOG_4 = buf[3]; // buf[3] debe ser 0, para detenerse el envió SEND_CONFIG_ANALOG_4 break; case 0x05: // 0xA5 SEND_CONFIG_ANALOG_5 = buf[3]; // buf[3] debe ser 0, para detenerse el envió SEND_CONFIG_ANALOG_5 break; } } } // Verifico si es una trama de Escitura. if(buf[0] == 0xEE) { PAQUETE_ID = buf[1]; // Verifico si es un signal Digital Out if(buf[2] == 0xD0) { // Evaluo sobre que pin se debe actuar. switch (buf[3]) { case 0x00: LED_SET_0 = (buf[4] == 0x01) ? 1:0; break; case 0x01: LED_SET_1 = (buf[4] == 0x01) ? 1:0; break; case 0x02: LED_SET_2 = (buf[4] == 0x01) ? 1:0; break; case 0x03: LED_SET_3 = (buf[4] == 0x01) ? 1:0; break; case 0x04: LED_SET_4 = (buf[4] == 0x01) ? 1:0; break; case 0x05: LED_SET_5 = (buf[4] == 0x01) ? 1:0; break; case 0x06: LED_SET_6 = (buf[4] == 0x01) ? 1:0; break; case 0x07: LED_SET_7 = (buf[4] == 0x01) ? 1:0; break; case 0x08: LED_SET_8 = (buf[4] == 0x01) ? 1:0; break; case 0x09: LED_SET_9 = (buf[4] == 0x01) ? 1:0; break; case 0x10: LED_SET_10 = (buf[4] == 0x01) ? 1:0; break; case 0x11: LED_SET_11 = (buf[4] == 0x01) ? 1:0; break; case 0x12: LED_SET_12 = (buf[4] == 0x01) ? 1:0; break; case 0x13: LED_SET_13 = (buf[4] == 0x01) ? 1:0; break; case 0x14: LED_SET_14 = (buf[4] == 0x01) ? 1:0; break; case 0x15: LED_SET_15 = (buf[4] == 0x01) ? 1:0; break; } // Verifico si es un signal Analog out } else if(buf[2] == 0xA0) { float value = (float)buf[4]/255; switch (buf[3]) { case 0x05: PWM_5 = value; break; case 0x06: PWM_6 = value; break; case 0x09: PWM_9 =value; break; } } } } } /* * Desde este metodo envia las tramas al Gateway. */ void m_status_check_handle(void) { uint8_t TRAMA_CONFIG_ANALOG[5]; uint8_t LECTURA_DIGITAL[6]; /**if (analog_enabled) { // if analog reading enabled // Read and send out float s = ANALOG; uint16_t value = s*1024; buf[0] = (0xDD); // Codigo buf[1] = (0x00); // paquete id buf[2] = (0xA1); // A1| A0| D1| D0 buf[3] = (20); // Posicion buf[4] = (value >> 8); // Valor buf[5] = (value); // Valor //pc.printf("buf[4]: %d\r\n", buf[4]); //pc.printf("buf[5]: %d\r\n", buf[5]); //pc.printf("value pt 1000: %d\r\n", value); // Imprimo en terminal lo que esta enviando desde el mote. ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), buf, 6); // Para el RTD } **/ //pc.printf("enviar_config %d \r\n", enviar_config_01); if (SEND_CONFIG_GENERAL == 1) { // Envia la configuracion Genaral del Mote. pc.printf("TRAMA_CONFIG_GENERAL0 %d \r\n", TRAMA_CONFIG_GENERAL[0]); pc.printf("TRAMA_CONFIG_GENERAL1 %d \r\n", TRAMA_CONFIG_GENERAL[1]); pc.printf("SEND_CONFIG_GENERAL %d \r\n", SEND_CONFIG_GENERAL); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_GENERAL, 12); } // Envio de las tramas de Configuracion del Mote. // -- Configuracion detallada de los sensores. // Evalua si se encuentra pendiente enviar la configuracion de los sensores. if (SEND_CONFIG_ANALOG_0 == ON||SEND_CONFIG_ANALOG_1 == ON||SEND_CONFIG_ANALOG_2 == ON||SEND_CONFIG_ANALOG_3 == ON||SEND_CONFIG_ANALOG_4 == ON||SEND_CONFIG_ANALOG_5 == ON) { TRAMA_CONFIG_ANALOG[0] = (0xC2); // Codigo que indica que la configuracion sera por cada Pin. TRAMA_CONFIG_ANALOG[1] = (0x05); // Categoria puede ser: A (Actuador) | 5 (Sensor) TRAMA_CONFIG_ANALOG[2] = (0xAA); // Tipo de Signal AA | DD if (A0_USO == ON && SEND_CONFIG_ANALOG_0 == ON) { TRAMA_CONFIG_ANALOG[3] = 0x00; // Posicion que ocupa en el mote TRAMA_CONFIG_ANALOG[4] = A0_TED; pc.printf("SEND_CONFIG_ANALOG_0 \r\n"); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_ANALOG, 5); } else if (A1_USO == ON && SEND_CONFIG_ANALOG_1 == ON) { TRAMA_CONFIG_ANALOG[3] = 0x01; // Posicion que ocupa en el mote TRAMA_CONFIG_ANALOG[4] = A1_TED; pc.printf("SEND_CONFIG_ANALOG_1 \r\n"); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_ANALOG, 5); } else if (A2_USO == ON && SEND_CONFIG_ANALOG_2 == ON) { TRAMA_CONFIG_ANALOG[3] = 0x02; // Posicion que ocupa en el mote TRAMA_CONFIG_ANALOG[4] = A2_TED; pc.printf("SEND_CONFIG_ANALOG_2 \r\n"); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_ANALOG, 5); } else if (A3_USO == ON && SEND_CONFIG_ANALOG_3 == ON) { TRAMA_CONFIG_ANALOG[3] = 0x03; // Posicion que ocupa en el mote TRAMA_CONFIG_ANALOG[4] = A3_TED; pc.printf("SEND_CONFIG_ANALOG_3 \r\n"); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_ANALOG, 5); } else if (A4_USO == ON && SEND_CONFIG_ANALOG_4 == ON) { TRAMA_CONFIG_ANALOG[3] = 0x04; // Posicion que ocupa en el mote TRAMA_CONFIG_ANALOG[4] = A4_TED; pc.printf("SEND_CONFIG_ANALOG_4 \r\n"); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_ANALOG, 5); } else if (A5_USO == ON && SEND_CONFIG_ANALOG_5 == ON) { TRAMA_CONFIG_ANALOG[3] = 0x05; // Posicion que ocupa en el mote TRAMA_CONFIG_ANALOG[4] = A5_TED; pc.printf("SEND_CONFIG_ANALOG_5 \r\n"); ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), TRAMA_CONFIG_ANALOG, 5); } } // Envio de las tramas de lecturas del Mote. // -- Envio las lecturas digitales if (PAQUETE_ID != 0) { PAQUETE_ID = 0; readDigitalInputs_Value(); // Leemos los estados digitales. LECTURA_DIGITAL[0] = (0xDD); // Codigo LECTURA_DIGITAL[1] = PAQUETE_ID; // paquete id LECTURA_DIGITAL[2] = PAQUETE_ID; // paquete id LECTURA_DIGITAL[3] = 0xDD; // A1| A0| D1| D0 LECTURA_DIGITAL[4] = DigitalInput_DATA; // Posicion pc.printf("Envio LECTURA_DIGITAL \r\n"); // Imprimo en terminal lo que esta enviando desde el mote. ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), LECTURA_DIGITAL, 5); // Para el RTD } // -- Envio de las lecturas Analogicas. /** if (resp_digital_out_7 != 0) { // Envia trama de lectura buf[0] = (0xDD); // Codigo buf[1] = resp_digital_out_7; // paquete id buf[2] = (0xD0); // A1| A0| D1| D0 buf[3] = (10); // Posicion buf[4] = LED_SET_7; // Valor pc.printf("resp_digital_out_7 %d\r\n", resp_digital_out_7); // Imprimo en terminal lo que esta enviando desde el mote. ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), buf, 5); // Para el RTD }**/ //wait_ms(100); // If digital in changes, report the state if ((BUTTON_2 != state_button_2 && D2_TYPE == IN) || (BUTTON_3 != state_button_3 && D3_TYPE == IN) || (BUTTON_3 != state_button_3 && D3_TYPE == IN) || (BUTTON_4 != state_button_4 && D4_TYPE == IN) || (BUTTON_5 != state_button_5 && D5_TYPE == IN) || (BUTTON_6 != state_button_6 && D6_TYPE == IN) || (BUTTON_7 != state_button_7 && D7_TYPE == IN) || (BUTTON_8 != state_button_8 && D8_TYPE == IN) || (BUTTON_9 != state_button_9 && D9_TYPE == IN) || (BUTTON_10 != state_button_10 && D10_TYPE == IN) || (BUTTON_11 != state_button_11 && D11_TYPE == IN) || (BUTTON_12 != state_button_12 && D12_TYPE == IN) || (BUTTON_13 != state_button_13 && D13_TYPE == IN) || (BUTTON_14 != state_button_14 && D14_TYPE == IN) || (BUTTON_15 != state_button_15 && D15_TYPE == IN)) { // Lecturas digitales readDigitalInputs_Value(); // Actualizando estados de las variables auxiliares state_button_2 = (D2_USO == ON && D2_TYPE == IN) ? BUTTON_2 : 0; state_button_3 = (D3_USO == ON && D3_TYPE == IN) ? BUTTON_3:0; state_button_4 = (D4_USO == ON && D4_TYPE == IN) ? BUTTON_4:0; state_button_5 = (D5_USO == ON && D5_TYPE == IN) ? BUTTON_5:0; state_button_6 = (D6_USO == ON && D6_TYPE == IN) ? BUTTON_6:0; state_button_7 = (D7_USO == ON && D7_TYPE == IN) ? BUTTON_7:0; state_button_8 = (D8_USO == ON && D8_TYPE == IN) ? BUTTON_8:0; state_button_9 = (D9_USO == ON && D9_TYPE == IN) ? BUTTON_9:0; state_button_10 = (D10_USO == ON && D10_TYPE == IN) ? BUTTON_10:0; state_button_11 = (D11_USO == ON && D11_TYPE == IN) ? BUTTON_11:0; state_button_12 = (D12_USO == ON && D12_TYPE == IN) ? BUTTON_12:0; state_button_13 = (D13_USO == ON && D13_TYPE == IN) ? BUTTON_13:0; state_button_14 = (D14_USO == ON && D14_TYPE == IN) ? BUTTON_14:0; state_button_15 = (D15_USO == ON && D15_TYPE == IN) ? BUTTON_15:0; PAQUETE_ID = 0x3E8; pc.printf("DigitalInput_DATA: %d \r\n", DigitalInput_DATA); LECTURA_DIGITAL[0] = 0xDD; // Codigo LECTURA_DIGITAL[1] = (PAQUETE_ID >> 8); // primera parte del paquete LECTURA_DIGITAL[2] = PAQUETE_ID ; // segunda parte del paquete LECTURA_DIGITAL[3] = 0xD0; // A1| A0| D1| D0 LECTURA_DIGITAL[4] = (DigitalInput_DATA >> 8); // Valor de las salidas digitales LECTURA_DIGITAL[5] = (DigitalInput_DATA); // Valor de las salidas digitales ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), LECTURA_DIGITAL, 6); // Para el RTD } /**int pt100 = ANALOG_A5.read(); pc.printf("pt100: %f Ohm\r\n", pt100); float Vout = pt100 * (5.0 / 1023.0); float R2 = R1 * 1/(5.0/Vout - 1); float c = MultiMap(R2,in,80); pc.printf("Resistance: %f Ohm\r\n", R2); pc.printf("Temperature: %f C\r\n", c); */ } int main(void) { Ticker ticker; ticker.attach_us(m_status_check_handle, 200000); ble.init(); ble.onDisconnection(disconnectionCallback); ble.onConnection(connectionCallback); ble.onDataWritten(WrittenHandler); pc.baud(9600); pc.printf("SimpleChat Init \r\n"); //pc.attach( uartCB , pc.RxIrq); // setup advertising ble.accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED); ble.setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); ble.accumulateAdvertisingPayload(GapAdvertisingData::SHORTENED_LOCAL_NAME, (const uint8_t *)"Biscuit", sizeof("Biscuit") - 1); // Original: Biscuit ble.accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_128BIT_SERVICE_IDS, (const uint8_t *)uart_base_uuid_rev, sizeof(uart_base_uuid)); ble.setAdvertisingInterval(160); ble.addService(uartService); ble.startAdvertising(); pc.printf("Advertising Start \r\n"); //por dixys // para probar, luego quitar. Esto hace que cada ticker se envie un dato analogico via BLE analog_enabled = 0; while(1) { ble.waitForEvent(); } }