An incomplete quadcopter control programme.

Dependencies:   mbed

Revision:
0:9cb9445a11f0
diff -r 000000000000 -r 9cb9445a11f0 MPU6050/GurvIMU.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050/GurvIMU.cpp	Wed Jul 17 15:58:25 2013 +0000
@@ -0,0 +1,187 @@
+#include "GurvIMU.h"
+#include "MPU6050.h"
+#include "mbed.h"
+
+#define  M_PI 3.1415926535897932384626433832795
+
+#define twoKpDef    (2.0f * 1.0f)   // 2 * proportional gain
+#define twoKiDef    (2.0f * 0.0f)   // 2 * integral gain
+
+
+GurvIMU::GurvIMU()
+{
+    //MPU
+    mpu = MPU6050(0x69); //0x69 = MPU6050 I2C ADDRESS
+
+    // Variable definitions
+    q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f;  // quaternion of sensor frame relative to auxiliary frame
+    twoKp = twoKpDef;                                            // 2 * proportional gain (Kp)
+    twoKi = twoKiDef;                                            // 2 * integral gain (Ki)
+    integralFBx = 0.0f,  integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
+    cycle_nb = 0;
+    timer_us.start();    
+}
+
+//Function definitions
+
+void GurvIMU::getValues(float * values)
+{
+    int16_t accgyroval[6];
+    mpu.getMotion6(&accgyroval[0], &accgyroval[1], &accgyroval[2], &accgyroval[3], &accgyroval[4], &accgyroval[5]);
+    for(int i = 0; i<3; i++) values[i] = (float) accgyroval[i];
+    for(int i = 3; i<6; i++) values[i] = (accgyroval[i]-offset[i]) * (M_PI / 180) / 16.4f;
+}
+
+void GurvIMU::getVerticalAcceleration(float av)
+{
+    float values[6];
+    float q[4]; // quaternion
+    float g_x, g_y, g_z; // estimated gravity direction
+    getQ(q);
+  
+    g_x = 2 * (q[1]*q[3] - q[0]*q[2]);
+    g_y = 2 * (q[0]*q[1] + q[2]*q[3]);
+    g_z = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];   
+    
+    getValues(values);
+    av = g_x*values[0]+g_y*values[1]+g_z*values[2]-offset[2];
+}
+     
+
+void GurvIMU::getOffset(void)
+{
+    int sample_nb = 50;
+    float values[6];
+    for(int i=0; i<6 ; i++) offset[i] = 0;
+    for(int i=0; i<sample_nb; i++) {
+        getValues(values);
+        for(int j=0; j<6; j++) offset[j]+=values[j];        
+    }     
+    for(int j=0; j<6; j++) offset[j]/=sample_nb;
+}
+
+
+void GurvIMU::AHRS_update(float gx, float gy, float gz, float ax, float ay, float az)
+{
+    float recipNorm;
+    float halfvx, halfvy, halfvz;
+    float halfex, halfey, halfez;
+    float qa, qb, qc;
+    
+    dt_us=timer_us.read_us();
+    sample_freq = 1.0 / ((dt_us) / 1000000.0);
+    timer_us.reset();
+    
+    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+        // Normalise accelerometer measurement
+        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+        ax *= recipNorm;
+        ay *= recipNorm;
+        az *= recipNorm;        
+
+        // Estimated direction of gravity
+        halfvx = q1 * q3 - q0 * q2;
+        halfvy = q0 * q1 + q2 * q3;
+        halfvz = q0 * q0 - 0.5f + q3 * q3;
+    
+        // Error is sum of cross product between estimated and measured direction of gravity
+        halfex = (ay * halfvz - az * halfvy);
+        halfey = (az * halfvx - ax * halfvz);
+        halfez = (ax * halfvy - ay * halfvx);
+
+        // Compute and apply integral feedback if enabled
+        if(twoKi > 0.0f) {
+            integralFBx += twoKi * halfex * (1.0f / sample_freq);    // integral error scaled by Ki
+            integralFBy += twoKi * halfey * (1.0f / sample_freq);
+            integralFBz += twoKi * halfez * (1.0f / sample_freq);
+            gx += integralFBx;  // apply integral feedback
+            gy += integralFBy;
+            gz += integralFBz;
+        }
+        else {
+            integralFBx = 0.0f; // prevent integral windup
+            integralFBy = 0.0f;
+            integralFBz = 0.0f;
+        }
+
+        // Apply proportional feedback
+        gx += twoKp * halfex;
+        gy += twoKp * halfey;
+        gz += twoKp * halfez;
+    }
+    
+    // Integrate rate of change of quaternion
+    gx *= (0.5f * (1.0f / sample_freq));     // pre-multiply common factors
+    gy *= (0.5f * (1.0f / sample_freq));
+    gz *= (0.5f * (1.0f / sample_freq));
+    qa = q0;
+    qb = q1;
+    qc = q2;
+    q0 += (-qb * gx - qc * gy - q3 * gz);
+    q1 += (qa * gx + qc * gz - q3 * gy);
+    q2 += (qa * gy - qb * gz + q3 * gx);
+    q3 += (qa * gz + qb * gy - qc * gx); 
+    
+    // Normalise quaternion
+    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+    q0 *= recipNorm;
+    q1 *= recipNorm;
+    q2 *= recipNorm;
+    q3 *= recipNorm;
+}
+
+void GurvIMU::getQ(float * q) {
+  float val[6];
+  getValues(val);
+  //while(cycle_nb < 1000){
+    AHRS_update(val[3], val[4], val[5], val[0], val[1], val[2]);
+  //cycle_nb++;}
+
+  q[0] = q0;
+  q[1] = q1;
+  q[2] = q2;
+  q[3] = q3;
+  
+}
+
+void GurvIMU::getYawPitchRollRad(float * ypr) {
+  float q[4]; // quaternion
+  float g_x, g_y, g_z; // estimated gravity direction
+  getQ(q);
+  
+  g_x = 2 * (q[1]*q[3] - q[0]*q[2]);
+  g_y = 2 * (q[0]*q[1] + q[2]*q[3]);
+  g_z = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
+  
+  ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1);
+  ypr[1] = atan(g_x * invSqrt(g_y*g_y + g_z*g_z));
+  ypr[2] = atan(g_y * invSqrt(g_x*g_x + g_z*g_z));
+}
+
+void GurvIMU::init()
+{
+    mpu.initialize();
+    mpu.setI2CMasterModeEnabled(0);
+    mpu.setI2CBypassEnabled(0);
+    mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_2000);
+    getOffset();
+    wait(0.005);
+}
+
+
+float invSqrt(float number)
+{
+    volatile long i;
+    volatile float x, y;
+    volatile const float f = 1.5F;
+
+    x = number * 0.5F;
+    y = number;
+    i = * ( long * ) &y;
+    i = 0x5f375a86 - ( i >> 1 );
+    y = * ( float * ) &i;
+    y = y * ( f - ( x * y * y ) );
+    return y;
+}
\ No newline at end of file