An incomplete quadcopter control programme.

Dependencies:   mbed

Committer:
Gurvan
Date:
Wed Jul 17 15:58:25 2013 +0000
Revision:
0:9cb9445a11f0
Pour Zobson, fi(r)st commit.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Gurvan 0:9cb9445a11f0 1 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
Gurvan 0:9cb9445a11f0 2 //written by szymon gaertig (email: szymon@gaertig.com.pl)
Gurvan 0:9cb9445a11f0 3 //
Gurvan 0:9cb9445a11f0 4 //Changelog:
Gurvan 0:9cb9445a11f0 5 //2013-01-08 - first beta release
Gurvan 0:9cb9445a11f0 6
Gurvan 0:9cb9445a11f0 7 // I2Cdev library collection - MPU6050 I2C device class
Gurvan 0:9cb9445a11f0 8 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
Gurvan 0:9cb9445a11f0 9 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
Gurvan 0:9cb9445a11f0 10 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
Gurvan 0:9cb9445a11f0 11 //
Gurvan 0:9cb9445a11f0 12 // Changelog:
Gurvan 0:9cb9445a11f0 13 // ... - ongoing debug release
Gurvan 0:9cb9445a11f0 14
Gurvan 0:9cb9445a11f0 15 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
Gurvan 0:9cb9445a11f0 16 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
Gurvan 0:9cb9445a11f0 17 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
Gurvan 0:9cb9445a11f0 18
Gurvan 0:9cb9445a11f0 19 /* ============================================
Gurvan 0:9cb9445a11f0 20 I2Cdev device library code is placed under the MIT license
Gurvan 0:9cb9445a11f0 21 Copyright (c) 2012 Jeff Rowberg
Gurvan 0:9cb9445a11f0 22
Gurvan 0:9cb9445a11f0 23 Permission is hereby granted, free of charge, to any person obtaining a copy
Gurvan 0:9cb9445a11f0 24 of this software and associated documentation files (the "Software"), to deal
Gurvan 0:9cb9445a11f0 25 in the Software without restriction, including without limitation the rights
Gurvan 0:9cb9445a11f0 26 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Gurvan 0:9cb9445a11f0 27 copies of the Software, and to permit persons to whom the Software is
Gurvan 0:9cb9445a11f0 28 furnished to do so, subject to the following conditions:
Gurvan 0:9cb9445a11f0 29
Gurvan 0:9cb9445a11f0 30 The above copyright notice and this permission notice shall be included in
Gurvan 0:9cb9445a11f0 31 all copies or substantial portions of the Software.
Gurvan 0:9cb9445a11f0 32
Gurvan 0:9cb9445a11f0 33 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Gurvan 0:9cb9445a11f0 34 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Gurvan 0:9cb9445a11f0 35 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Gurvan 0:9cb9445a11f0 36 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Gurvan 0:9cb9445a11f0 37 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Gurvan 0:9cb9445a11f0 38 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Gurvan 0:9cb9445a11f0 39 THE SOFTWARE.
Gurvan 0:9cb9445a11f0 40 ===============================================
Gurvan 0:9cb9445a11f0 41 */
Gurvan 0:9cb9445a11f0 42
Gurvan 0:9cb9445a11f0 43 #include "MPU6050.h"
Gurvan 0:9cb9445a11f0 44
Gurvan 0:9cb9445a11f0 45 //#define useDebugSerial
Gurvan 0:9cb9445a11f0 46
Gurvan 0:9cb9445a11f0 47 //instead of using pgmspace.h
Gurvan 0:9cb9445a11f0 48 typedef const unsigned char prog_uchar;
Gurvan 0:9cb9445a11f0 49 #define pgm_read_byte_near(x) (*(prog_uchar*)x)
Gurvan 0:9cb9445a11f0 50 #define pgm_read_byte(x) (*(prog_uchar*)x)
Gurvan 0:9cb9445a11f0 51
Gurvan 0:9cb9445a11f0 52 /** Default constructor, uses default I2C address.
Gurvan 0:9cb9445a11f0 53 * @see MPU6050_DEFAULT_ADDRESS
Gurvan 0:9cb9445a11f0 54 */
Gurvan 0:9cb9445a11f0 55 MPU6050::MPU6050() : debugSerial(USBTX, USBRX)
Gurvan 0:9cb9445a11f0 56 {
Gurvan 0:9cb9445a11f0 57 devAddr = MPU6050_DEFAULT_ADDRESS;
Gurvan 0:9cb9445a11f0 58 }
Gurvan 0:9cb9445a11f0 59
Gurvan 0:9cb9445a11f0 60 /** Specific address constructor.
Gurvan 0:9cb9445a11f0 61 * @param address I2C address
Gurvan 0:9cb9445a11f0 62 * @see MPU6050_DEFAULT_ADDRESS
Gurvan 0:9cb9445a11f0 63 * @see MPU6050_ADDRESS_AD0_LOW
Gurvan 0:9cb9445a11f0 64 * @see MPU6050_ADDRESS_AD0_HIGH
Gurvan 0:9cb9445a11f0 65 */
Gurvan 0:9cb9445a11f0 66 MPU6050::MPU6050(uint8_t address) : debugSerial(USBTX, USBRX)
Gurvan 0:9cb9445a11f0 67 {
Gurvan 0:9cb9445a11f0 68 devAddr = address;
Gurvan 0:9cb9445a11f0 69 }
Gurvan 0:9cb9445a11f0 70
Gurvan 0:9cb9445a11f0 71 /** Power on and prepare for general usage.
Gurvan 0:9cb9445a11f0 72 * This will activate the device and take it out of sleep mode (which must be done
Gurvan 0:9cb9445a11f0 73 * after start-up). This function also sets both the accelerometer and the gyroscope
Gurvan 0:9cb9445a11f0 74 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
Gurvan 0:9cb9445a11f0 75 * the clock source to use the X Gyro for reference, which is slightly better than
Gurvan 0:9cb9445a11f0 76 * the default internal clock source.
Gurvan 0:9cb9445a11f0 77 */
Gurvan 0:9cb9445a11f0 78 void MPU6050::initialize()
Gurvan 0:9cb9445a11f0 79 {
Gurvan 0:9cb9445a11f0 80
Gurvan 0:9cb9445a11f0 81 debugSerial.baud(921600); //uses max serial speed
Gurvan 0:9cb9445a11f0 82 #ifdef useDebugSerial
Gurvan 0:9cb9445a11f0 83 debugSerial.printf("MPU6050::initialize start\n");
Gurvan 0:9cb9445a11f0 84 #endif
Gurvan 0:9cb9445a11f0 85 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
Gurvan 0:9cb9445a11f0 86 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
Gurvan 0:9cb9445a11f0 87 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
Gurvan 0:9cb9445a11f0 88 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
Gurvan 0:9cb9445a11f0 89
Gurvan 0:9cb9445a11f0 90 #ifdef useDebugSerial
Gurvan 0:9cb9445a11f0 91 debugSerial.printf("MPU6050::initialize end\n");
Gurvan 0:9cb9445a11f0 92 #endif
Gurvan 0:9cb9445a11f0 93 }
Gurvan 0:9cb9445a11f0 94
Gurvan 0:9cb9445a11f0 95 /** Verify the I2C connection.
Gurvan 0:9cb9445a11f0 96 * Make sure the device is connected and responds as expected.
Gurvan 0:9cb9445a11f0 97 * @return True if connection is valid, false otherwise
Gurvan 0:9cb9445a11f0 98 */
Gurvan 0:9cb9445a11f0 99 bool MPU6050::testConnection()
Gurvan 0:9cb9445a11f0 100 {
Gurvan 0:9cb9445a11f0 101 #ifdef useDebugSerial
Gurvan 0:9cb9445a11f0 102 debugSerial.printf("MPU6050::testConnection start\n");
Gurvan 0:9cb9445a11f0 103 #endif
Gurvan 0:9cb9445a11f0 104 uint8_t deviceId = getDeviceID();
Gurvan 0:9cb9445a11f0 105 #ifdef useDebugSerial
Gurvan 0:9cb9445a11f0 106 debugSerial.printf("DeviceId = %d\n",deviceId);
Gurvan 0:9cb9445a11f0 107 #endif
Gurvan 0:9cb9445a11f0 108 return deviceId == 0x34;
Gurvan 0:9cb9445a11f0 109 }
Gurvan 0:9cb9445a11f0 110
Gurvan 0:9cb9445a11f0 111 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
Gurvan 0:9cb9445a11f0 112
Gurvan 0:9cb9445a11f0 113 /** Get the auxiliary I2C supply voltage level.
Gurvan 0:9cb9445a11f0 114 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
Gurvan 0:9cb9445a11f0 115 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
Gurvan 0:9cb9445a11f0 116 * the MPU-6000, which does not have a VLOGIC pin.
Gurvan 0:9cb9445a11f0 117 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
Gurvan 0:9cb9445a11f0 118 */
Gurvan 0:9cb9445a11f0 119 uint8_t MPU6050::getAuxVDDIOLevel()
Gurvan 0:9cb9445a11f0 120 {
Gurvan 0:9cb9445a11f0 121 i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
Gurvan 0:9cb9445a11f0 122 return buffer[0];
Gurvan 0:9cb9445a11f0 123 }
Gurvan 0:9cb9445a11f0 124 /** Set the auxiliary I2C supply voltage level.
Gurvan 0:9cb9445a11f0 125 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
Gurvan 0:9cb9445a11f0 126 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
Gurvan 0:9cb9445a11f0 127 * the MPU-6000, which does not have a VLOGIC pin.
Gurvan 0:9cb9445a11f0 128 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
Gurvan 0:9cb9445a11f0 129 */
Gurvan 0:9cb9445a11f0 130 void MPU6050::setAuxVDDIOLevel(uint8_t level)
Gurvan 0:9cb9445a11f0 131 {
Gurvan 0:9cb9445a11f0 132 i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
Gurvan 0:9cb9445a11f0 133 }
Gurvan 0:9cb9445a11f0 134
Gurvan 0:9cb9445a11f0 135 // SMPLRT_DIV register
Gurvan 0:9cb9445a11f0 136
Gurvan 0:9cb9445a11f0 137 /** Get gyroscope output rate divider.
Gurvan 0:9cb9445a11f0 138 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
Gurvan 0:9cb9445a11f0 139 * Motion detection, and Free Fall detection are all based on the Sample Rate.
Gurvan 0:9cb9445a11f0 140 * The Sample Rate is generated by dividing the gyroscope output rate by
Gurvan 0:9cb9445a11f0 141 * SMPLRT_DIV:
Gurvan 0:9cb9445a11f0 142 *
Gurvan 0:9cb9445a11f0 143 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
Gurvan 0:9cb9445a11f0 144 *
Gurvan 0:9cb9445a11f0 145 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
Gurvan 0:9cb9445a11f0 146 * 7), and 1kHz when the DLPF is enabled (see Register 26).
Gurvan 0:9cb9445a11f0 147 *
Gurvan 0:9cb9445a11f0 148 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
Gurvan 0:9cb9445a11f0 149 * Rate greater than 1kHz, the same accelerometer sample may be output to the
Gurvan 0:9cb9445a11f0 150 * FIFO, DMP, and sensor registers more than once.
Gurvan 0:9cb9445a11f0 151 *
Gurvan 0:9cb9445a11f0 152 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
Gurvan 0:9cb9445a11f0 153 * of the MPU-6000/MPU-6050 Product Specification document.
Gurvan 0:9cb9445a11f0 154 *
Gurvan 0:9cb9445a11f0 155 * @return Current sample rate
Gurvan 0:9cb9445a11f0 156 * @see MPU6050_RA_SMPLRT_DIV
Gurvan 0:9cb9445a11f0 157 */
Gurvan 0:9cb9445a11f0 158 uint8_t MPU6050::getRate()
Gurvan 0:9cb9445a11f0 159 {
Gurvan 0:9cb9445a11f0 160 i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
Gurvan 0:9cb9445a11f0 161 return buffer[0];
Gurvan 0:9cb9445a11f0 162 }
Gurvan 0:9cb9445a11f0 163 /** Set gyroscope sample rate divider.
Gurvan 0:9cb9445a11f0 164 * @param rate New sample rate divider
Gurvan 0:9cb9445a11f0 165 * @see getRate()
Gurvan 0:9cb9445a11f0 166 * @see MPU6050_RA_SMPLRT_DIV
Gurvan 0:9cb9445a11f0 167 */
Gurvan 0:9cb9445a11f0 168 void MPU6050::setRate(uint8_t rate)
Gurvan 0:9cb9445a11f0 169 {
Gurvan 0:9cb9445a11f0 170 i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
Gurvan 0:9cb9445a11f0 171 }
Gurvan 0:9cb9445a11f0 172
Gurvan 0:9cb9445a11f0 173
Gurvan 0:9cb9445a11f0 174 // CONFIG register
Gurvan 0:9cb9445a11f0 175
Gurvan 0:9cb9445a11f0 176 /** Get external FSYNC configuration.
Gurvan 0:9cb9445a11f0 177 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
Gurvan 0:9cb9445a11f0 178 * external signal connected to the FSYNC pin can be sampled by configuring
Gurvan 0:9cb9445a11f0 179 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
Gurvan 0:9cb9445a11f0 180 * strobes may be captured. The latched FSYNC signal will be sampled at the
Gurvan 0:9cb9445a11f0 181 * Sampling Rate, as defined in register 25. After sampling, the latch will
Gurvan 0:9cb9445a11f0 182 * reset to the current FSYNC signal state.
Gurvan 0:9cb9445a11f0 183 *
Gurvan 0:9cb9445a11f0 184 * The sampled value will be reported in place of the least significant bit in
Gurvan 0:9cb9445a11f0 185 * a sensor data register determined by the value of EXT_SYNC_SET according to
Gurvan 0:9cb9445a11f0 186 * the following table.
Gurvan 0:9cb9445a11f0 187 *
Gurvan 0:9cb9445a11f0 188 * <pre>
Gurvan 0:9cb9445a11f0 189 * EXT_SYNC_SET | FSYNC Bit Location
Gurvan 0:9cb9445a11f0 190 * -------------+-------------------
Gurvan 0:9cb9445a11f0 191 * 0 | Input disabled
Gurvan 0:9cb9445a11f0 192 * 1 | TEMP_OUT_L[0]
Gurvan 0:9cb9445a11f0 193 * 2 | GYRO_XOUT_L[0]
Gurvan 0:9cb9445a11f0 194 * 3 | GYRO_YOUT_L[0]
Gurvan 0:9cb9445a11f0 195 * 4 | GYRO_ZOUT_L[0]
Gurvan 0:9cb9445a11f0 196 * 5 | ACCEL_XOUT_L[0]
Gurvan 0:9cb9445a11f0 197 * 6 | ACCEL_YOUT_L[0]
Gurvan 0:9cb9445a11f0 198 * 7 | ACCEL_ZOUT_L[0]
Gurvan 0:9cb9445a11f0 199 * </pre>
Gurvan 0:9cb9445a11f0 200 *
Gurvan 0:9cb9445a11f0 201 * @return FSYNC configuration value
Gurvan 0:9cb9445a11f0 202 */
Gurvan 0:9cb9445a11f0 203 uint8_t MPU6050::getExternalFrameSync()
Gurvan 0:9cb9445a11f0 204 {
Gurvan 0:9cb9445a11f0 205 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 206 return buffer[0];
Gurvan 0:9cb9445a11f0 207 }
Gurvan 0:9cb9445a11f0 208 /** Set external FSYNC configuration.
Gurvan 0:9cb9445a11f0 209 * @see getExternalFrameSync()
Gurvan 0:9cb9445a11f0 210 * @see MPU6050_RA_CONFIG
Gurvan 0:9cb9445a11f0 211 * @param sync New FSYNC configuration value
Gurvan 0:9cb9445a11f0 212 */
Gurvan 0:9cb9445a11f0 213 void MPU6050::setExternalFrameSync(uint8_t sync)
Gurvan 0:9cb9445a11f0 214 {
Gurvan 0:9cb9445a11f0 215 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
Gurvan 0:9cb9445a11f0 216 }
Gurvan 0:9cb9445a11f0 217 /** Get digital low-pass filter configuration.
Gurvan 0:9cb9445a11f0 218 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
Gurvan 0:9cb9445a11f0 219 * also determines the internal sampling rate used by the device as shown in
Gurvan 0:9cb9445a11f0 220 * the table below.
Gurvan 0:9cb9445a11f0 221 *
Gurvan 0:9cb9445a11f0 222 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
Gurvan 0:9cb9445a11f0 223 * Rate greater than 1kHz, the same accelerometer sample may be output to the
Gurvan 0:9cb9445a11f0 224 * FIFO, DMP, and sensor registers more than once.
Gurvan 0:9cb9445a11f0 225 *
Gurvan 0:9cb9445a11f0 226 * <pre>
Gurvan 0:9cb9445a11f0 227 * | ACCELEROMETER | GYROSCOPE
Gurvan 0:9cb9445a11f0 228 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
Gurvan 0:9cb9445a11f0 229 * ---------+-----------+--------+-----------+--------+-------------
Gurvan 0:9cb9445a11f0 230 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
Gurvan 0:9cb9445a11f0 231 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
Gurvan 0:9cb9445a11f0 232 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
Gurvan 0:9cb9445a11f0 233 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
Gurvan 0:9cb9445a11f0 234 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
Gurvan 0:9cb9445a11f0 235 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
Gurvan 0:9cb9445a11f0 236 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
Gurvan 0:9cb9445a11f0 237 * 7 | -- Reserved -- | -- Reserved -- | Reserved
Gurvan 0:9cb9445a11f0 238 * </pre>
Gurvan 0:9cb9445a11f0 239 *
Gurvan 0:9cb9445a11f0 240 * @return DLFP configuration
Gurvan 0:9cb9445a11f0 241 * @see MPU6050_RA_CONFIG
Gurvan 0:9cb9445a11f0 242 * @see MPU6050_CFG_DLPF_CFG_BIT
Gurvan 0:9cb9445a11f0 243 * @see MPU6050_CFG_DLPF_CFG_LENGTH
Gurvan 0:9cb9445a11f0 244 */
Gurvan 0:9cb9445a11f0 245 uint8_t MPU6050::getDLPFMode()
Gurvan 0:9cb9445a11f0 246 {
Gurvan 0:9cb9445a11f0 247 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 248 return buffer[0];
Gurvan 0:9cb9445a11f0 249 }
Gurvan 0:9cb9445a11f0 250 /** Set digital low-pass filter configuration.
Gurvan 0:9cb9445a11f0 251 * @param mode New DLFP configuration setting
Gurvan 0:9cb9445a11f0 252 * @see getDLPFBandwidth()
Gurvan 0:9cb9445a11f0 253 * @see MPU6050_DLPF_BW_256
Gurvan 0:9cb9445a11f0 254 * @see MPU6050_RA_CONFIG
Gurvan 0:9cb9445a11f0 255 * @see MPU6050_CFG_DLPF_CFG_BIT
Gurvan 0:9cb9445a11f0 256 * @see MPU6050_CFG_DLPF_CFG_LENGTH
Gurvan 0:9cb9445a11f0 257 */
Gurvan 0:9cb9445a11f0 258 void MPU6050::setDLPFMode(uint8_t mode)
Gurvan 0:9cb9445a11f0 259 {
Gurvan 0:9cb9445a11f0 260 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
Gurvan 0:9cb9445a11f0 261 }
Gurvan 0:9cb9445a11f0 262
Gurvan 0:9cb9445a11f0 263 // GYRO_CONFIG register
Gurvan 0:9cb9445a11f0 264
Gurvan 0:9cb9445a11f0 265 /** Get full-scale gyroscope range.
Gurvan 0:9cb9445a11f0 266 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
Gurvan 0:9cb9445a11f0 267 * as described in the table below.
Gurvan 0:9cb9445a11f0 268 *
Gurvan 0:9cb9445a11f0 269 * <pre>
Gurvan 0:9cb9445a11f0 270 * 0 = +/- 250 degrees/sec
Gurvan 0:9cb9445a11f0 271 * 1 = +/- 500 degrees/sec
Gurvan 0:9cb9445a11f0 272 * 2 = +/- 1000 degrees/sec
Gurvan 0:9cb9445a11f0 273 * 3 = +/- 2000 degrees/sec
Gurvan 0:9cb9445a11f0 274 * </pre>
Gurvan 0:9cb9445a11f0 275 *
Gurvan 0:9cb9445a11f0 276 * @return Current full-scale gyroscope range setting
Gurvan 0:9cb9445a11f0 277 * @see MPU6050_GYRO_FS_250
Gurvan 0:9cb9445a11f0 278 * @see MPU6050_RA_GYRO_CONFIG
Gurvan 0:9cb9445a11f0 279 * @see MPU6050_GCONFIG_FS_SEL_BIT
Gurvan 0:9cb9445a11f0 280 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
Gurvan 0:9cb9445a11f0 281 */
Gurvan 0:9cb9445a11f0 282 uint8_t MPU6050::getFullScaleGyroRange()
Gurvan 0:9cb9445a11f0 283 {
Gurvan 0:9cb9445a11f0 284 i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 285 return buffer[0];
Gurvan 0:9cb9445a11f0 286 }
Gurvan 0:9cb9445a11f0 287 /** Set full-scale gyroscope range.
Gurvan 0:9cb9445a11f0 288 * @param range New full-scale gyroscope range value
Gurvan 0:9cb9445a11f0 289 * @see getFullScaleRange()
Gurvan 0:9cb9445a11f0 290 * @see MPU6050_GYRO_FS_250
Gurvan 0:9cb9445a11f0 291 * @see MPU6050_RA_GYRO_CONFIG
Gurvan 0:9cb9445a11f0 292 * @see MPU6050_GCONFIG_FS_SEL_BIT
Gurvan 0:9cb9445a11f0 293 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
Gurvan 0:9cb9445a11f0 294 */
Gurvan 0:9cb9445a11f0 295 void MPU6050::setFullScaleGyroRange(uint8_t range)
Gurvan 0:9cb9445a11f0 296 {
Gurvan 0:9cb9445a11f0 297 i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
Gurvan 0:9cb9445a11f0 298 }
Gurvan 0:9cb9445a11f0 299
Gurvan 0:9cb9445a11f0 300 // ACCEL_CONFIG register
Gurvan 0:9cb9445a11f0 301
Gurvan 0:9cb9445a11f0 302 /** Get self-test enabled setting for accelerometer X axis.
Gurvan 0:9cb9445a11f0 303 * @return Self-test enabled value
Gurvan 0:9cb9445a11f0 304 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 305 */
Gurvan 0:9cb9445a11f0 306 bool MPU6050::getAccelXSelfTest()
Gurvan 0:9cb9445a11f0 307 {
Gurvan 0:9cb9445a11f0 308 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
Gurvan 0:9cb9445a11f0 309 return buffer[0];
Gurvan 0:9cb9445a11f0 310 }
Gurvan 0:9cb9445a11f0 311 /** Get self-test enabled setting for accelerometer X axis.
Gurvan 0:9cb9445a11f0 312 * @param enabled Self-test enabled value
Gurvan 0:9cb9445a11f0 313 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 314 */
Gurvan 0:9cb9445a11f0 315 void MPU6050::setAccelXSelfTest(bool enabled)
Gurvan 0:9cb9445a11f0 316 {
Gurvan 0:9cb9445a11f0 317 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
Gurvan 0:9cb9445a11f0 318 }
Gurvan 0:9cb9445a11f0 319 /** Get self-test enabled value for accelerometer Y axis.
Gurvan 0:9cb9445a11f0 320 * @return Self-test enabled value
Gurvan 0:9cb9445a11f0 321 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 322 */
Gurvan 0:9cb9445a11f0 323 bool MPU6050::getAccelYSelfTest()
Gurvan 0:9cb9445a11f0 324 {
Gurvan 0:9cb9445a11f0 325 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
Gurvan 0:9cb9445a11f0 326 return buffer[0];
Gurvan 0:9cb9445a11f0 327 }
Gurvan 0:9cb9445a11f0 328 /** Get self-test enabled value for accelerometer Y axis.
Gurvan 0:9cb9445a11f0 329 * @param enabled Self-test enabled value
Gurvan 0:9cb9445a11f0 330 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 331 */
Gurvan 0:9cb9445a11f0 332 void MPU6050::setAccelYSelfTest(bool enabled)
Gurvan 0:9cb9445a11f0 333 {
Gurvan 0:9cb9445a11f0 334 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
Gurvan 0:9cb9445a11f0 335 }
Gurvan 0:9cb9445a11f0 336 /** Get self-test enabled value for accelerometer Z axis.
Gurvan 0:9cb9445a11f0 337 * @return Self-test enabled value
Gurvan 0:9cb9445a11f0 338 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 339 */
Gurvan 0:9cb9445a11f0 340 bool MPU6050::getAccelZSelfTest()
Gurvan 0:9cb9445a11f0 341 {
Gurvan 0:9cb9445a11f0 342 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
Gurvan 0:9cb9445a11f0 343 return buffer[0];
Gurvan 0:9cb9445a11f0 344 }
Gurvan 0:9cb9445a11f0 345 /** Set self-test enabled value for accelerometer Z axis.
Gurvan 0:9cb9445a11f0 346 * @param enabled Self-test enabled value
Gurvan 0:9cb9445a11f0 347 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 348 */
Gurvan 0:9cb9445a11f0 349 void MPU6050::setAccelZSelfTest(bool enabled)
Gurvan 0:9cb9445a11f0 350 {
Gurvan 0:9cb9445a11f0 351 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
Gurvan 0:9cb9445a11f0 352 }
Gurvan 0:9cb9445a11f0 353 /** Get full-scale accelerometer range.
Gurvan 0:9cb9445a11f0 354 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
Gurvan 0:9cb9445a11f0 355 * sensors, as described in the table below.
Gurvan 0:9cb9445a11f0 356 *
Gurvan 0:9cb9445a11f0 357 * <pre>
Gurvan 0:9cb9445a11f0 358 * 0 = +/- 2g
Gurvan 0:9cb9445a11f0 359 * 1 = +/- 4g
Gurvan 0:9cb9445a11f0 360 * 2 = +/- 8g
Gurvan 0:9cb9445a11f0 361 * 3 = +/- 16g
Gurvan 0:9cb9445a11f0 362 * </pre>
Gurvan 0:9cb9445a11f0 363 *
Gurvan 0:9cb9445a11f0 364 * @return Current full-scale accelerometer range setting
Gurvan 0:9cb9445a11f0 365 * @see MPU6050_ACCEL_FS_2
Gurvan 0:9cb9445a11f0 366 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 367 * @see MPU6050_ACONFIG_AFS_SEL_BIT
Gurvan 0:9cb9445a11f0 368 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
Gurvan 0:9cb9445a11f0 369 */
Gurvan 0:9cb9445a11f0 370 uint8_t MPU6050::getFullScaleAccelRange()
Gurvan 0:9cb9445a11f0 371 {
Gurvan 0:9cb9445a11f0 372 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 373 return buffer[0];
Gurvan 0:9cb9445a11f0 374 }
Gurvan 0:9cb9445a11f0 375 /** Set full-scale accelerometer range.
Gurvan 0:9cb9445a11f0 376 * @param range New full-scale accelerometer range setting
Gurvan 0:9cb9445a11f0 377 * @see getFullScaleAccelRange()
Gurvan 0:9cb9445a11f0 378 */
Gurvan 0:9cb9445a11f0 379 void MPU6050::setFullScaleAccelRange(uint8_t range)
Gurvan 0:9cb9445a11f0 380 {
Gurvan 0:9cb9445a11f0 381 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
Gurvan 0:9cb9445a11f0 382 }
Gurvan 0:9cb9445a11f0 383 /** Get the high-pass filter configuration.
Gurvan 0:9cb9445a11f0 384 * The DHPF is a filter module in the path leading to motion detectors (Free
Gurvan 0:9cb9445a11f0 385 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
Gurvan 0:9cb9445a11f0 386 * available to the data registers (see Figure in Section 8 of the MPU-6000/
Gurvan 0:9cb9445a11f0 387 * MPU-6050 Product Specification document).
Gurvan 0:9cb9445a11f0 388 *
Gurvan 0:9cb9445a11f0 389 * The high pass filter has three modes:
Gurvan 0:9cb9445a11f0 390 *
Gurvan 0:9cb9445a11f0 391 * <pre>
Gurvan 0:9cb9445a11f0 392 * Reset: The filter output settles to zero within one sample. This
Gurvan 0:9cb9445a11f0 393 * effectively disables the high pass filter. This mode may be toggled
Gurvan 0:9cb9445a11f0 394 * to quickly settle the filter.
Gurvan 0:9cb9445a11f0 395 *
Gurvan 0:9cb9445a11f0 396 * On: The high pass filter will pass signals above the cut off frequency.
Gurvan 0:9cb9445a11f0 397 *
Gurvan 0:9cb9445a11f0 398 * Hold: When triggered, the filter holds the present sample. The filter
Gurvan 0:9cb9445a11f0 399 * output will be the difference between the input sample and the held
Gurvan 0:9cb9445a11f0 400 * sample.
Gurvan 0:9cb9445a11f0 401 * </pre>
Gurvan 0:9cb9445a11f0 402 *
Gurvan 0:9cb9445a11f0 403 * <pre>
Gurvan 0:9cb9445a11f0 404 * ACCEL_HPF | Filter Mode | Cut-off Frequency
Gurvan 0:9cb9445a11f0 405 * ----------+-------------+------------------
Gurvan 0:9cb9445a11f0 406 * 0 | Reset | None
Gurvan 0:9cb9445a11f0 407 * 1 | On | 5Hz
Gurvan 0:9cb9445a11f0 408 * 2 | On | 2.5Hz
Gurvan 0:9cb9445a11f0 409 * 3 | On | 1.25Hz
Gurvan 0:9cb9445a11f0 410 * 4 | On | 0.63Hz
Gurvan 0:9cb9445a11f0 411 * 7 | Hold | None
Gurvan 0:9cb9445a11f0 412 * </pre>
Gurvan 0:9cb9445a11f0 413 *
Gurvan 0:9cb9445a11f0 414 * @return Current high-pass filter configuration
Gurvan 0:9cb9445a11f0 415 * @see MPU6050_DHPF_RESET
Gurvan 0:9cb9445a11f0 416 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 417 */
Gurvan 0:9cb9445a11f0 418 uint8_t MPU6050::getDHPFMode()
Gurvan 0:9cb9445a11f0 419 {
Gurvan 0:9cb9445a11f0 420 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 421 return buffer[0];
Gurvan 0:9cb9445a11f0 422 }
Gurvan 0:9cb9445a11f0 423 /** Set the high-pass filter configuration.
Gurvan 0:9cb9445a11f0 424 * @param bandwidth New high-pass filter configuration
Gurvan 0:9cb9445a11f0 425 * @see setDHPFMode()
Gurvan 0:9cb9445a11f0 426 * @see MPU6050_DHPF_RESET
Gurvan 0:9cb9445a11f0 427 * @see MPU6050_RA_ACCEL_CONFIG
Gurvan 0:9cb9445a11f0 428 */
Gurvan 0:9cb9445a11f0 429 void MPU6050::setDHPFMode(uint8_t bandwidth)
Gurvan 0:9cb9445a11f0 430 {
Gurvan 0:9cb9445a11f0 431 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
Gurvan 0:9cb9445a11f0 432 }
Gurvan 0:9cb9445a11f0 433
Gurvan 0:9cb9445a11f0 434 // FF_THR register
Gurvan 0:9cb9445a11f0 435
Gurvan 0:9cb9445a11f0 436 /** Get free-fall event acceleration threshold.
Gurvan 0:9cb9445a11f0 437 * This register configures the detection threshold for Free Fall event
Gurvan 0:9cb9445a11f0 438 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
Gurvan 0:9cb9445a11f0 439 * absolute value of the accelerometer measurements for the three axes are each
Gurvan 0:9cb9445a11f0 440 * less than the detection threshold. This condition increments the Free Fall
Gurvan 0:9cb9445a11f0 441 * duration counter (Register 30). The Free Fall interrupt is triggered when the
Gurvan 0:9cb9445a11f0 442 * Free Fall duration counter reaches the time specified in FF_DUR.
Gurvan 0:9cb9445a11f0 443 *
Gurvan 0:9cb9445a11f0 444 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
Gurvan 0:9cb9445a11f0 445 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
Gurvan 0:9cb9445a11f0 446 * 58 of this document.
Gurvan 0:9cb9445a11f0 447 *
Gurvan 0:9cb9445a11f0 448 * @return Current free-fall acceleration threshold value (LSB = 2mg)
Gurvan 0:9cb9445a11f0 449 * @see MPU6050_RA_FF_THR
Gurvan 0:9cb9445a11f0 450 */
Gurvan 0:9cb9445a11f0 451 uint8_t MPU6050::getFreefallDetectionThreshold()
Gurvan 0:9cb9445a11f0 452 {
Gurvan 0:9cb9445a11f0 453 i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
Gurvan 0:9cb9445a11f0 454 return buffer[0];
Gurvan 0:9cb9445a11f0 455 }
Gurvan 0:9cb9445a11f0 456 /** Get free-fall event acceleration threshold.
Gurvan 0:9cb9445a11f0 457 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
Gurvan 0:9cb9445a11f0 458 * @see getFreefallDetectionThreshold()
Gurvan 0:9cb9445a11f0 459 * @see MPU6050_RA_FF_THR
Gurvan 0:9cb9445a11f0 460 */
Gurvan 0:9cb9445a11f0 461 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
Gurvan 0:9cb9445a11f0 462 {
Gurvan 0:9cb9445a11f0 463 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
Gurvan 0:9cb9445a11f0 464 }
Gurvan 0:9cb9445a11f0 465
Gurvan 0:9cb9445a11f0 466 // FF_DUR register
Gurvan 0:9cb9445a11f0 467
Gurvan 0:9cb9445a11f0 468 /** Get free-fall event duration threshold.
Gurvan 0:9cb9445a11f0 469 * This register configures the duration counter threshold for Free Fall event
Gurvan 0:9cb9445a11f0 470 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
Gurvan 0:9cb9445a11f0 471 * of 1 LSB = 1 ms.
Gurvan 0:9cb9445a11f0 472 *
Gurvan 0:9cb9445a11f0 473 * The Free Fall duration counter increments while the absolute value of the
Gurvan 0:9cb9445a11f0 474 * accelerometer measurements are each less than the detection threshold
Gurvan 0:9cb9445a11f0 475 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
Gurvan 0:9cb9445a11f0 476 * duration counter reaches the time specified in this register.
Gurvan 0:9cb9445a11f0 477 *
Gurvan 0:9cb9445a11f0 478 * For more details on the Free Fall detection interrupt, see Section 8.2 of
Gurvan 0:9cb9445a11f0 479 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
Gurvan 0:9cb9445a11f0 480 * and 58 of this document.
Gurvan 0:9cb9445a11f0 481 *
Gurvan 0:9cb9445a11f0 482 * @return Current free-fall duration threshold value (LSB = 1ms)
Gurvan 0:9cb9445a11f0 483 * @see MPU6050_RA_FF_DUR
Gurvan 0:9cb9445a11f0 484 */
Gurvan 0:9cb9445a11f0 485 uint8_t MPU6050::getFreefallDetectionDuration()
Gurvan 0:9cb9445a11f0 486 {
Gurvan 0:9cb9445a11f0 487 i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
Gurvan 0:9cb9445a11f0 488 return buffer[0];
Gurvan 0:9cb9445a11f0 489 }
Gurvan 0:9cb9445a11f0 490 /** Get free-fall event duration threshold.
Gurvan 0:9cb9445a11f0 491 * @param duration New free-fall duration threshold value (LSB = 1ms)
Gurvan 0:9cb9445a11f0 492 * @see getFreefallDetectionDuration()
Gurvan 0:9cb9445a11f0 493 * @see MPU6050_RA_FF_DUR
Gurvan 0:9cb9445a11f0 494 */
Gurvan 0:9cb9445a11f0 495 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
Gurvan 0:9cb9445a11f0 496 {
Gurvan 0:9cb9445a11f0 497 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
Gurvan 0:9cb9445a11f0 498 }
Gurvan 0:9cb9445a11f0 499
Gurvan 0:9cb9445a11f0 500 // MOT_THR register
Gurvan 0:9cb9445a11f0 501
Gurvan 0:9cb9445a11f0 502 /** Get motion detection event acceleration threshold.
Gurvan 0:9cb9445a11f0 503 * This register configures the detection threshold for Motion interrupt
Gurvan 0:9cb9445a11f0 504 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
Gurvan 0:9cb9445a11f0 505 * absolute value of any of the accelerometer measurements exceeds this Motion
Gurvan 0:9cb9445a11f0 506 * detection threshold. This condition increments the Motion detection duration
Gurvan 0:9cb9445a11f0 507 * counter (Register 32). The Motion detection interrupt is triggered when the
Gurvan 0:9cb9445a11f0 508 * Motion Detection counter reaches the time count specified in MOT_DUR
Gurvan 0:9cb9445a11f0 509 * (Register 32).
Gurvan 0:9cb9445a11f0 510 *
Gurvan 0:9cb9445a11f0 511 * The Motion interrupt will indicate the axis and polarity of detected motion
Gurvan 0:9cb9445a11f0 512 * in MOT_DETECT_STATUS (Register 97).
Gurvan 0:9cb9445a11f0 513 *
Gurvan 0:9cb9445a11f0 514 * For more details on the Motion detection interrupt, see Section 8.3 of the
Gurvan 0:9cb9445a11f0 515 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
Gurvan 0:9cb9445a11f0 516 * 58 of this document.
Gurvan 0:9cb9445a11f0 517 *
Gurvan 0:9cb9445a11f0 518 * @return Current motion detection acceleration threshold value (LSB = 2mg)
Gurvan 0:9cb9445a11f0 519 * @see MPU6050_RA_MOT_THR
Gurvan 0:9cb9445a11f0 520 */
Gurvan 0:9cb9445a11f0 521 uint8_t MPU6050::getMotionDetectionThreshold()
Gurvan 0:9cb9445a11f0 522 {
Gurvan 0:9cb9445a11f0 523 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
Gurvan 0:9cb9445a11f0 524 return buffer[0];
Gurvan 0:9cb9445a11f0 525 }
Gurvan 0:9cb9445a11f0 526 /** Set free-fall event acceleration threshold.
Gurvan 0:9cb9445a11f0 527 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
Gurvan 0:9cb9445a11f0 528 * @see getMotionDetectionThreshold()
Gurvan 0:9cb9445a11f0 529 * @see MPU6050_RA_MOT_THR
Gurvan 0:9cb9445a11f0 530 */
Gurvan 0:9cb9445a11f0 531 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
Gurvan 0:9cb9445a11f0 532 {
Gurvan 0:9cb9445a11f0 533 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
Gurvan 0:9cb9445a11f0 534 }
Gurvan 0:9cb9445a11f0 535
Gurvan 0:9cb9445a11f0 536 // MOT_DUR register
Gurvan 0:9cb9445a11f0 537
Gurvan 0:9cb9445a11f0 538 /** Get motion detection event duration threshold.
Gurvan 0:9cb9445a11f0 539 * This register configures the duration counter threshold for Motion interrupt
Gurvan 0:9cb9445a11f0 540 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
Gurvan 0:9cb9445a11f0 541 * of 1LSB = 1ms. The Motion detection duration counter increments when the
Gurvan 0:9cb9445a11f0 542 * absolute value of any of the accelerometer measurements exceeds the Motion
Gurvan 0:9cb9445a11f0 543 * detection threshold (Register 31). The Motion detection interrupt is
Gurvan 0:9cb9445a11f0 544 * triggered when the Motion detection counter reaches the time count specified
Gurvan 0:9cb9445a11f0 545 * in this register.
Gurvan 0:9cb9445a11f0 546 *
Gurvan 0:9cb9445a11f0 547 * For more details on the Motion detection interrupt, see Section 8.3 of the
Gurvan 0:9cb9445a11f0 548 * MPU-6000/MPU-6050 Product Specification document.
Gurvan 0:9cb9445a11f0 549 *
Gurvan 0:9cb9445a11f0 550 * @return Current motion detection duration threshold value (LSB = 1ms)
Gurvan 0:9cb9445a11f0 551 * @see MPU6050_RA_MOT_DUR
Gurvan 0:9cb9445a11f0 552 */
Gurvan 0:9cb9445a11f0 553 uint8_t MPU6050::getMotionDetectionDuration()
Gurvan 0:9cb9445a11f0 554 {
Gurvan 0:9cb9445a11f0 555 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
Gurvan 0:9cb9445a11f0 556 return buffer[0];
Gurvan 0:9cb9445a11f0 557 }
Gurvan 0:9cb9445a11f0 558 /** Set motion detection event duration threshold.
Gurvan 0:9cb9445a11f0 559 * @param duration New motion detection duration threshold value (LSB = 1ms)
Gurvan 0:9cb9445a11f0 560 * @see getMotionDetectionDuration()
Gurvan 0:9cb9445a11f0 561 * @see MPU6050_RA_MOT_DUR
Gurvan 0:9cb9445a11f0 562 */
Gurvan 0:9cb9445a11f0 563 void MPU6050::setMotionDetectionDuration(uint8_t duration)
Gurvan 0:9cb9445a11f0 564 {
Gurvan 0:9cb9445a11f0 565 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
Gurvan 0:9cb9445a11f0 566 }
Gurvan 0:9cb9445a11f0 567
Gurvan 0:9cb9445a11f0 568 // ZRMOT_THR register
Gurvan 0:9cb9445a11f0 569
Gurvan 0:9cb9445a11f0 570 /** Get zero motion detection event acceleration threshold.
Gurvan 0:9cb9445a11f0 571 * This register configures the detection threshold for Zero Motion interrupt
Gurvan 0:9cb9445a11f0 572 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
Gurvan 0:9cb9445a11f0 573 * the absolute value of the accelerometer measurements for the 3 axes are each
Gurvan 0:9cb9445a11f0 574 * less than the detection threshold. This condition increments the Zero Motion
Gurvan 0:9cb9445a11f0 575 * duration counter (Register 34). The Zero Motion interrupt is triggered when
Gurvan 0:9cb9445a11f0 576 * the Zero Motion duration counter reaches the time count specified in
Gurvan 0:9cb9445a11f0 577 * ZRMOT_DUR (Register 34).
Gurvan 0:9cb9445a11f0 578 *
Gurvan 0:9cb9445a11f0 579 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
Gurvan 0:9cb9445a11f0 580 * interrupt both when Zero Motion is first detected and when Zero Motion is no
Gurvan 0:9cb9445a11f0 581 * longer detected.
Gurvan 0:9cb9445a11f0 582 *
Gurvan 0:9cb9445a11f0 583 * When a zero motion event is detected, a Zero Motion Status will be indicated
Gurvan 0:9cb9445a11f0 584 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
Gurvan 0:9cb9445a11f0 585 * condition is detected, the status bit is set to 1. When a zero-motion-to-
Gurvan 0:9cb9445a11f0 586 * motion condition is detected, the status bit is set to 0.
Gurvan 0:9cb9445a11f0 587 *
Gurvan 0:9cb9445a11f0 588 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
Gurvan 0:9cb9445a11f0 589 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
Gurvan 0:9cb9445a11f0 590 * and 58 of this document.
Gurvan 0:9cb9445a11f0 591 *
Gurvan 0:9cb9445a11f0 592 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
Gurvan 0:9cb9445a11f0 593 * @see MPU6050_RA_ZRMOT_THR
Gurvan 0:9cb9445a11f0 594 */
Gurvan 0:9cb9445a11f0 595 uint8_t MPU6050::getZeroMotionDetectionThreshold()
Gurvan 0:9cb9445a11f0 596 {
Gurvan 0:9cb9445a11f0 597 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
Gurvan 0:9cb9445a11f0 598 return buffer[0];
Gurvan 0:9cb9445a11f0 599 }
Gurvan 0:9cb9445a11f0 600 /** Set zero motion detection event acceleration threshold.
Gurvan 0:9cb9445a11f0 601 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
Gurvan 0:9cb9445a11f0 602 * @see getZeroMotionDetectionThreshold()
Gurvan 0:9cb9445a11f0 603 * @see MPU6050_RA_ZRMOT_THR
Gurvan 0:9cb9445a11f0 604 */
Gurvan 0:9cb9445a11f0 605 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
Gurvan 0:9cb9445a11f0 606 {
Gurvan 0:9cb9445a11f0 607 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
Gurvan 0:9cb9445a11f0 608 }
Gurvan 0:9cb9445a11f0 609
Gurvan 0:9cb9445a11f0 610 // ZRMOT_DUR register
Gurvan 0:9cb9445a11f0 611
Gurvan 0:9cb9445a11f0 612 /** Get zero motion detection event duration threshold.
Gurvan 0:9cb9445a11f0 613 * This register configures the duration counter threshold for Zero Motion
Gurvan 0:9cb9445a11f0 614 * interrupt generation. The duration counter ticks at 16 Hz, therefore
Gurvan 0:9cb9445a11f0 615 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
Gurvan 0:9cb9445a11f0 616 * increments while the absolute value of the accelerometer measurements are
Gurvan 0:9cb9445a11f0 617 * each less than the detection threshold (Register 33). The Zero Motion
Gurvan 0:9cb9445a11f0 618 * interrupt is triggered when the Zero Motion duration counter reaches the time
Gurvan 0:9cb9445a11f0 619 * count specified in this register.
Gurvan 0:9cb9445a11f0 620 *
Gurvan 0:9cb9445a11f0 621 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
Gurvan 0:9cb9445a11f0 622 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
Gurvan 0:9cb9445a11f0 623 * and 58 of this document.
Gurvan 0:9cb9445a11f0 624 *
Gurvan 0:9cb9445a11f0 625 * @return Current zero motion detection duration threshold value (LSB = 64ms)
Gurvan 0:9cb9445a11f0 626 * @see MPU6050_RA_ZRMOT_DUR
Gurvan 0:9cb9445a11f0 627 */
Gurvan 0:9cb9445a11f0 628 uint8_t MPU6050::getZeroMotionDetectionDuration()
Gurvan 0:9cb9445a11f0 629 {
Gurvan 0:9cb9445a11f0 630 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
Gurvan 0:9cb9445a11f0 631 return buffer[0];
Gurvan 0:9cb9445a11f0 632 }
Gurvan 0:9cb9445a11f0 633 /** Set zero motion detection event duration threshold.
Gurvan 0:9cb9445a11f0 634 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
Gurvan 0:9cb9445a11f0 635 * @see getZeroMotionDetectionDuration()
Gurvan 0:9cb9445a11f0 636 * @see MPU6050_RA_ZRMOT_DUR
Gurvan 0:9cb9445a11f0 637 */
Gurvan 0:9cb9445a11f0 638 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
Gurvan 0:9cb9445a11f0 639 {
Gurvan 0:9cb9445a11f0 640 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
Gurvan 0:9cb9445a11f0 641 }
Gurvan 0:9cb9445a11f0 642
Gurvan 0:9cb9445a11f0 643 // FIFO_EN register
Gurvan 0:9cb9445a11f0 644
Gurvan 0:9cb9445a11f0 645 /** Get temperature FIFO enabled value.
Gurvan 0:9cb9445a11f0 646 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
Gurvan 0:9cb9445a11f0 647 * 66) to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 648 * @return Current temperature FIFO enabled value
Gurvan 0:9cb9445a11f0 649 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 650 */
Gurvan 0:9cb9445a11f0 651 bool MPU6050::getTempFIFOEnabled()
Gurvan 0:9cb9445a11f0 652 {
Gurvan 0:9cb9445a11f0 653 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 654 return buffer[0];
Gurvan 0:9cb9445a11f0 655 }
Gurvan 0:9cb9445a11f0 656 /** Set temperature FIFO enabled value.
Gurvan 0:9cb9445a11f0 657 * @param enabled New temperature FIFO enabled value
Gurvan 0:9cb9445a11f0 658 * @see getTempFIFOEnabled()
Gurvan 0:9cb9445a11f0 659 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 660 */
Gurvan 0:9cb9445a11f0 661 void MPU6050::setTempFIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 662 {
Gurvan 0:9cb9445a11f0 663 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 664 }
Gurvan 0:9cb9445a11f0 665 /** Get gyroscope X-axis FIFO enabled value.
Gurvan 0:9cb9445a11f0 666 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
Gurvan 0:9cb9445a11f0 667 * 68) to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 668 * @return Current gyroscope X-axis FIFO enabled value
Gurvan 0:9cb9445a11f0 669 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 670 */
Gurvan 0:9cb9445a11f0 671 bool MPU6050::getXGyroFIFOEnabled()
Gurvan 0:9cb9445a11f0 672 {
Gurvan 0:9cb9445a11f0 673 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 674 return buffer[0];
Gurvan 0:9cb9445a11f0 675 }
Gurvan 0:9cb9445a11f0 676 /** Set gyroscope X-axis FIFO enabled value.
Gurvan 0:9cb9445a11f0 677 * @param enabled New gyroscope X-axis FIFO enabled value
Gurvan 0:9cb9445a11f0 678 * @see getXGyroFIFOEnabled()
Gurvan 0:9cb9445a11f0 679 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 680 */
Gurvan 0:9cb9445a11f0 681 void MPU6050::setXGyroFIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 682 {
Gurvan 0:9cb9445a11f0 683 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 684 }
Gurvan 0:9cb9445a11f0 685 /** Get gyroscope Y-axis FIFO enabled value.
Gurvan 0:9cb9445a11f0 686 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
Gurvan 0:9cb9445a11f0 687 * 70) to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 688 * @return Current gyroscope Y-axis FIFO enabled value
Gurvan 0:9cb9445a11f0 689 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 690 */
Gurvan 0:9cb9445a11f0 691 bool MPU6050::getYGyroFIFOEnabled()
Gurvan 0:9cb9445a11f0 692 {
Gurvan 0:9cb9445a11f0 693 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 694 return buffer[0];
Gurvan 0:9cb9445a11f0 695 }
Gurvan 0:9cb9445a11f0 696 /** Set gyroscope Y-axis FIFO enabled value.
Gurvan 0:9cb9445a11f0 697 * @param enabled New gyroscope Y-axis FIFO enabled value
Gurvan 0:9cb9445a11f0 698 * @see getYGyroFIFOEnabled()
Gurvan 0:9cb9445a11f0 699 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 700 */
Gurvan 0:9cb9445a11f0 701 void MPU6050::setYGyroFIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 702 {
Gurvan 0:9cb9445a11f0 703 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 704 }
Gurvan 0:9cb9445a11f0 705 /** Get gyroscope Z-axis FIFO enabled value.
Gurvan 0:9cb9445a11f0 706 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
Gurvan 0:9cb9445a11f0 707 * 72) to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 708 * @return Current gyroscope Z-axis FIFO enabled value
Gurvan 0:9cb9445a11f0 709 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 710 */
Gurvan 0:9cb9445a11f0 711 bool MPU6050::getZGyroFIFOEnabled()
Gurvan 0:9cb9445a11f0 712 {
Gurvan 0:9cb9445a11f0 713 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 714 return buffer[0];
Gurvan 0:9cb9445a11f0 715 }
Gurvan 0:9cb9445a11f0 716 /** Set gyroscope Z-axis FIFO enabled value.
Gurvan 0:9cb9445a11f0 717 * @param enabled New gyroscope Z-axis FIFO enabled value
Gurvan 0:9cb9445a11f0 718 * @see getZGyroFIFOEnabled()
Gurvan 0:9cb9445a11f0 719 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 720 */
Gurvan 0:9cb9445a11f0 721 void MPU6050::setZGyroFIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 722 {
Gurvan 0:9cb9445a11f0 723 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 724 }
Gurvan 0:9cb9445a11f0 725 /** Get accelerometer FIFO enabled value.
Gurvan 0:9cb9445a11f0 726 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
Gurvan 0:9cb9445a11f0 727 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
Gurvan 0:9cb9445a11f0 728 * written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 729 * @return Current accelerometer FIFO enabled value
Gurvan 0:9cb9445a11f0 730 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 731 */
Gurvan 0:9cb9445a11f0 732 bool MPU6050::getAccelFIFOEnabled()
Gurvan 0:9cb9445a11f0 733 {
Gurvan 0:9cb9445a11f0 734 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 735 return buffer[0];
Gurvan 0:9cb9445a11f0 736 }
Gurvan 0:9cb9445a11f0 737 /** Set accelerometer FIFO enabled value.
Gurvan 0:9cb9445a11f0 738 * @param enabled New accelerometer FIFO enabled value
Gurvan 0:9cb9445a11f0 739 * @see getAccelFIFOEnabled()
Gurvan 0:9cb9445a11f0 740 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 741 */
Gurvan 0:9cb9445a11f0 742 void MPU6050::setAccelFIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 743 {
Gurvan 0:9cb9445a11f0 744 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 745 }
Gurvan 0:9cb9445a11f0 746 /** Get Slave 2 FIFO enabled value.
Gurvan 0:9cb9445a11f0 747 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gurvan 0:9cb9445a11f0 748 * associated with Slave 2 to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 749 * @return Current Slave 2 FIFO enabled value
Gurvan 0:9cb9445a11f0 750 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 751 */
Gurvan 0:9cb9445a11f0 752 bool MPU6050::getSlave2FIFOEnabled()
Gurvan 0:9cb9445a11f0 753 {
Gurvan 0:9cb9445a11f0 754 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 755 return buffer[0];
Gurvan 0:9cb9445a11f0 756 }
Gurvan 0:9cb9445a11f0 757 /** Set Slave 2 FIFO enabled value.
Gurvan 0:9cb9445a11f0 758 * @param enabled New Slave 2 FIFO enabled value
Gurvan 0:9cb9445a11f0 759 * @see getSlave2FIFOEnabled()
Gurvan 0:9cb9445a11f0 760 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 761 */
Gurvan 0:9cb9445a11f0 762 void MPU6050::setSlave2FIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 763 {
Gurvan 0:9cb9445a11f0 764 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 765 }
Gurvan 0:9cb9445a11f0 766 /** Get Slave 1 FIFO enabled value.
Gurvan 0:9cb9445a11f0 767 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gurvan 0:9cb9445a11f0 768 * associated with Slave 1 to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 769 * @return Current Slave 1 FIFO enabled value
Gurvan 0:9cb9445a11f0 770 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 771 */
Gurvan 0:9cb9445a11f0 772 bool MPU6050::getSlave1FIFOEnabled()
Gurvan 0:9cb9445a11f0 773 {
Gurvan 0:9cb9445a11f0 774 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 775 return buffer[0];
Gurvan 0:9cb9445a11f0 776 }
Gurvan 0:9cb9445a11f0 777 /** Set Slave 1 FIFO enabled value.
Gurvan 0:9cb9445a11f0 778 * @param enabled New Slave 1 FIFO enabled value
Gurvan 0:9cb9445a11f0 779 * @see getSlave1FIFOEnabled()
Gurvan 0:9cb9445a11f0 780 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 781 */
Gurvan 0:9cb9445a11f0 782 void MPU6050::setSlave1FIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 783 {
Gurvan 0:9cb9445a11f0 784 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 785 }
Gurvan 0:9cb9445a11f0 786 /** Get Slave 0 FIFO enabled value.
Gurvan 0:9cb9445a11f0 787 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gurvan 0:9cb9445a11f0 788 * associated with Slave 0 to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 789 * @return Current Slave 0 FIFO enabled value
Gurvan 0:9cb9445a11f0 790 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 791 */
Gurvan 0:9cb9445a11f0 792 bool MPU6050::getSlave0FIFOEnabled()
Gurvan 0:9cb9445a11f0 793 {
Gurvan 0:9cb9445a11f0 794 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 795 return buffer[0];
Gurvan 0:9cb9445a11f0 796 }
Gurvan 0:9cb9445a11f0 797 /** Set Slave 0 FIFO enabled value.
Gurvan 0:9cb9445a11f0 798 * @param enabled New Slave 0 FIFO enabled value
Gurvan 0:9cb9445a11f0 799 * @see getSlave0FIFOEnabled()
Gurvan 0:9cb9445a11f0 800 * @see MPU6050_RA_FIFO_EN
Gurvan 0:9cb9445a11f0 801 */
Gurvan 0:9cb9445a11f0 802 void MPU6050::setSlave0FIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 803 {
Gurvan 0:9cb9445a11f0 804 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 805 }
Gurvan 0:9cb9445a11f0 806
Gurvan 0:9cb9445a11f0 807 // I2C_MST_CTRL register
Gurvan 0:9cb9445a11f0 808
Gurvan 0:9cb9445a11f0 809 /** Get multi-master enabled value.
Gurvan 0:9cb9445a11f0 810 * Multi-master capability allows multiple I2C masters to operate on the same
Gurvan 0:9cb9445a11f0 811 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
Gurvan 0:9cb9445a11f0 812 * to 1. This will increase current drawn by approximately 30uA.
Gurvan 0:9cb9445a11f0 813 *
Gurvan 0:9cb9445a11f0 814 * In circuits where multi-master capability is required, the state of the I2C
Gurvan 0:9cb9445a11f0 815 * bus must always be monitored by each separate I2C Master. Before an I2C
Gurvan 0:9cb9445a11f0 816 * Master can assume arbitration of the bus, it must first confirm that no other
Gurvan 0:9cb9445a11f0 817 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
Gurvan 0:9cb9445a11f0 818 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
Gurvan 0:9cb9445a11f0 819 * detect when the bus is available.
Gurvan 0:9cb9445a11f0 820 *
Gurvan 0:9cb9445a11f0 821 * @return Current multi-master enabled value
Gurvan 0:9cb9445a11f0 822 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 823 */
Gurvan 0:9cb9445a11f0 824 bool MPU6050::getMultiMasterEnabled()
Gurvan 0:9cb9445a11f0 825 {
Gurvan 0:9cb9445a11f0 826 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 827 return buffer[0];
Gurvan 0:9cb9445a11f0 828 }
Gurvan 0:9cb9445a11f0 829 /** Set multi-master enabled value.
Gurvan 0:9cb9445a11f0 830 * @param enabled New multi-master enabled value
Gurvan 0:9cb9445a11f0 831 * @see getMultiMasterEnabled()
Gurvan 0:9cb9445a11f0 832 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 833 */
Gurvan 0:9cb9445a11f0 834 void MPU6050::setMultiMasterEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 835 {
Gurvan 0:9cb9445a11f0 836 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 837 }
Gurvan 0:9cb9445a11f0 838 /** Get wait-for-external-sensor-data enabled value.
Gurvan 0:9cb9445a11f0 839 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
Gurvan 0:9cb9445a11f0 840 * delayed until External Sensor data from the Slave Devices are loaded into the
Gurvan 0:9cb9445a11f0 841 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
Gurvan 0:9cb9445a11f0 842 * data (i.e. from gyro and accel) and external sensor data have been loaded to
Gurvan 0:9cb9445a11f0 843 * their respective data registers (i.e. the data is synced) when the Data Ready
Gurvan 0:9cb9445a11f0 844 * interrupt is triggered.
Gurvan 0:9cb9445a11f0 845 *
Gurvan 0:9cb9445a11f0 846 * @return Current wait-for-external-sensor-data enabled value
Gurvan 0:9cb9445a11f0 847 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 848 */
Gurvan 0:9cb9445a11f0 849 bool MPU6050::getWaitForExternalSensorEnabled()
Gurvan 0:9cb9445a11f0 850 {
Gurvan 0:9cb9445a11f0 851 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
Gurvan 0:9cb9445a11f0 852 return buffer[0];
Gurvan 0:9cb9445a11f0 853 }
Gurvan 0:9cb9445a11f0 854 /** Set wait-for-external-sensor-data enabled value.
Gurvan 0:9cb9445a11f0 855 * @param enabled New wait-for-external-sensor-data enabled value
Gurvan 0:9cb9445a11f0 856 * @see getWaitForExternalSensorEnabled()
Gurvan 0:9cb9445a11f0 857 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 858 */
Gurvan 0:9cb9445a11f0 859 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 860 {
Gurvan 0:9cb9445a11f0 861 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
Gurvan 0:9cb9445a11f0 862 }
Gurvan 0:9cb9445a11f0 863 /** Get Slave 3 FIFO enabled value.
Gurvan 0:9cb9445a11f0 864 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gurvan 0:9cb9445a11f0 865 * associated with Slave 3 to be written into the FIFO buffer.
Gurvan 0:9cb9445a11f0 866 * @return Current Slave 3 FIFO enabled value
Gurvan 0:9cb9445a11f0 867 * @see MPU6050_RA_MST_CTRL
Gurvan 0:9cb9445a11f0 868 */
Gurvan 0:9cb9445a11f0 869 bool MPU6050::getSlave3FIFOEnabled()
Gurvan 0:9cb9445a11f0 870 {
Gurvan 0:9cb9445a11f0 871 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 872 return buffer[0];
Gurvan 0:9cb9445a11f0 873 }
Gurvan 0:9cb9445a11f0 874 /** Set Slave 3 FIFO enabled value.
Gurvan 0:9cb9445a11f0 875 * @param enabled New Slave 3 FIFO enabled value
Gurvan 0:9cb9445a11f0 876 * @see getSlave3FIFOEnabled()
Gurvan 0:9cb9445a11f0 877 * @see MPU6050_RA_MST_CTRL
Gurvan 0:9cb9445a11f0 878 */
Gurvan 0:9cb9445a11f0 879 void MPU6050::setSlave3FIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 880 {
Gurvan 0:9cb9445a11f0 881 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 882 }
Gurvan 0:9cb9445a11f0 883 /** Get slave read/write transition enabled value.
Gurvan 0:9cb9445a11f0 884 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
Gurvan 0:9cb9445a11f0 885 * read to the next slave read. If the bit equals 0, there will be a restart
Gurvan 0:9cb9445a11f0 886 * between reads. If the bit equals 1, there will be a stop followed by a start
Gurvan 0:9cb9445a11f0 887 * of the following read. When a write transaction follows a read transaction,
Gurvan 0:9cb9445a11f0 888 * the stop followed by a start of the successive write will be always used.
Gurvan 0:9cb9445a11f0 889 *
Gurvan 0:9cb9445a11f0 890 * @return Current slave read/write transition enabled value
Gurvan 0:9cb9445a11f0 891 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 892 */
Gurvan 0:9cb9445a11f0 893 bool MPU6050::getSlaveReadWriteTransitionEnabled()
Gurvan 0:9cb9445a11f0 894 {
Gurvan 0:9cb9445a11f0 895 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
Gurvan 0:9cb9445a11f0 896 return buffer[0];
Gurvan 0:9cb9445a11f0 897 }
Gurvan 0:9cb9445a11f0 898 /** Set slave read/write transition enabled value.
Gurvan 0:9cb9445a11f0 899 * @param enabled New slave read/write transition enabled value
Gurvan 0:9cb9445a11f0 900 * @see getSlaveReadWriteTransitionEnabled()
Gurvan 0:9cb9445a11f0 901 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 902 */
Gurvan 0:9cb9445a11f0 903 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 904 {
Gurvan 0:9cb9445a11f0 905 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
Gurvan 0:9cb9445a11f0 906 }
Gurvan 0:9cb9445a11f0 907 /** Get I2C master clock speed.
Gurvan 0:9cb9445a11f0 908 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
Gurvan 0:9cb9445a11f0 909 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
Gurvan 0:9cb9445a11f0 910 * the following table:
Gurvan 0:9cb9445a11f0 911 *
Gurvan 0:9cb9445a11f0 912 * <pre>
Gurvan 0:9cb9445a11f0 913 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
Gurvan 0:9cb9445a11f0 914 * ------------+------------------------+-------------------
Gurvan 0:9cb9445a11f0 915 * 0 | 348kHz | 23
Gurvan 0:9cb9445a11f0 916 * 1 | 333kHz | 24
Gurvan 0:9cb9445a11f0 917 * 2 | 320kHz | 25
Gurvan 0:9cb9445a11f0 918 * 3 | 308kHz | 26
Gurvan 0:9cb9445a11f0 919 * 4 | 296kHz | 27
Gurvan 0:9cb9445a11f0 920 * 5 | 286kHz | 28
Gurvan 0:9cb9445a11f0 921 * 6 | 276kHz | 29
Gurvan 0:9cb9445a11f0 922 * 7 | 267kHz | 30
Gurvan 0:9cb9445a11f0 923 * 8 | 258kHz | 31
Gurvan 0:9cb9445a11f0 924 * 9 | 500kHz | 16
Gurvan 0:9cb9445a11f0 925 * 10 | 471kHz | 17
Gurvan 0:9cb9445a11f0 926 * 11 | 444kHz | 18
Gurvan 0:9cb9445a11f0 927 * 12 | 421kHz | 19
Gurvan 0:9cb9445a11f0 928 * 13 | 400kHz | 20
Gurvan 0:9cb9445a11f0 929 * 14 | 381kHz | 21
Gurvan 0:9cb9445a11f0 930 * 15 | 364kHz | 22
Gurvan 0:9cb9445a11f0 931 * </pre>
Gurvan 0:9cb9445a11f0 932 *
Gurvan 0:9cb9445a11f0 933 * @return Current I2C master clock speed
Gurvan 0:9cb9445a11f0 934 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 935 */
Gurvan 0:9cb9445a11f0 936 uint8_t MPU6050::getMasterClockSpeed()
Gurvan 0:9cb9445a11f0 937 {
Gurvan 0:9cb9445a11f0 938 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 939 return buffer[0];
Gurvan 0:9cb9445a11f0 940 }
Gurvan 0:9cb9445a11f0 941 /** Set I2C master clock speed.
Gurvan 0:9cb9445a11f0 942 * @reparam speed Current I2C master clock speed
Gurvan 0:9cb9445a11f0 943 * @see MPU6050_RA_I2C_MST_CTRL
Gurvan 0:9cb9445a11f0 944 */
Gurvan 0:9cb9445a11f0 945 void MPU6050::setMasterClockSpeed(uint8_t speed)
Gurvan 0:9cb9445a11f0 946 {
Gurvan 0:9cb9445a11f0 947 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
Gurvan 0:9cb9445a11f0 948 }
Gurvan 0:9cb9445a11f0 949
Gurvan 0:9cb9445a11f0 950 // I2C_SLV* registers (Slave 0-3)
Gurvan 0:9cb9445a11f0 951
Gurvan 0:9cb9445a11f0 952 /** Get the I2C address of the specified slave (0-3).
Gurvan 0:9cb9445a11f0 953 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
Gurvan 0:9cb9445a11f0 954 * operation, and if it is cleared, then it's a write operation. The remaining
Gurvan 0:9cb9445a11f0 955 * bits (6-0) are the 7-bit device address of the slave device.
Gurvan 0:9cb9445a11f0 956 *
Gurvan 0:9cb9445a11f0 957 * In read mode, the result of the read is placed in the lowest available
Gurvan 0:9cb9445a11f0 958 * EXT_SENS_DATA register. For further information regarding the allocation of
Gurvan 0:9cb9445a11f0 959 * read results, please refer to the EXT_SENS_DATA register description
Gurvan 0:9cb9445a11f0 960 * (Registers 73 - 96).
Gurvan 0:9cb9445a11f0 961 *
Gurvan 0:9cb9445a11f0 962 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
Gurvan 0:9cb9445a11f0 963 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
Gurvan 0:9cb9445a11f0 964 *
Gurvan 0:9cb9445a11f0 965 * I2C data transactions are performed at the Sample Rate, as defined in
Gurvan 0:9cb9445a11f0 966 * Register 25. The user is responsible for ensuring that I2C data transactions
Gurvan 0:9cb9445a11f0 967 * to and from each enabled Slave can be completed within a single period of the
Gurvan 0:9cb9445a11f0 968 * Sample Rate.
Gurvan 0:9cb9445a11f0 969 *
Gurvan 0:9cb9445a11f0 970 * The I2C slave access rate can be reduced relative to the Sample Rate. This
Gurvan 0:9cb9445a11f0 971 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
Gurvan 0:9cb9445a11f0 972 * slave's access rate is reduced relative to the Sample Rate is determined by
Gurvan 0:9cb9445a11f0 973 * I2C_MST_DELAY_CTRL (Register 103).
Gurvan 0:9cb9445a11f0 974 *
Gurvan 0:9cb9445a11f0 975 * The processing order for the slaves is fixed. The sequence followed for
Gurvan 0:9cb9445a11f0 976 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
Gurvan 0:9cb9445a11f0 977 * particular Slave is disabled it will be skipped.
Gurvan 0:9cb9445a11f0 978 *
Gurvan 0:9cb9445a11f0 979 * Each slave can either be accessed at the sample rate or at a reduced sample
Gurvan 0:9cb9445a11f0 980 * rate. In a case where some slaves are accessed at the Sample Rate and some
Gurvan 0:9cb9445a11f0 981 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
Gurvan 0:9cb9445a11f0 982 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
Gurvan 0:9cb9445a11f0 983 * be skipped if their access rate dictates that they should not be accessed
Gurvan 0:9cb9445a11f0 984 * during that particular cycle. For further information regarding the reduced
Gurvan 0:9cb9445a11f0 985 * access rate, please refer to Register 52. Whether a slave is accessed at the
Gurvan 0:9cb9445a11f0 986 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
Gurvan 0:9cb9445a11f0 987 * Register 103.
Gurvan 0:9cb9445a11f0 988 *
Gurvan 0:9cb9445a11f0 989 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 990 * @return Current address for specified slave
Gurvan 0:9cb9445a11f0 991 * @see MPU6050_RA_I2C_SLV0_ADDR
Gurvan 0:9cb9445a11f0 992 */
Gurvan 0:9cb9445a11f0 993 uint8_t MPU6050::getSlaveAddress(uint8_t num)
Gurvan 0:9cb9445a11f0 994 {
Gurvan 0:9cb9445a11f0 995 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 996 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
Gurvan 0:9cb9445a11f0 997 return buffer[0];
Gurvan 0:9cb9445a11f0 998 }
Gurvan 0:9cb9445a11f0 999 /** Set the I2C address of the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1000 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1001 * @param address New address for specified slave
Gurvan 0:9cb9445a11f0 1002 * @see getSlaveAddress()
Gurvan 0:9cb9445a11f0 1003 * @see MPU6050_RA_I2C_SLV0_ADDR
Gurvan 0:9cb9445a11f0 1004 */
Gurvan 0:9cb9445a11f0 1005 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
Gurvan 0:9cb9445a11f0 1006 {
Gurvan 0:9cb9445a11f0 1007 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1008 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
Gurvan 0:9cb9445a11f0 1009 }
Gurvan 0:9cb9445a11f0 1010 /** Get the active internal register for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1011 * Read/write operations for this slave will be done to whatever internal
Gurvan 0:9cb9445a11f0 1012 * register address is stored in this MPU register.
Gurvan 0:9cb9445a11f0 1013 *
Gurvan 0:9cb9445a11f0 1014 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
Gurvan 0:9cb9445a11f0 1015 * characteristics, and so it has its own functions.
Gurvan 0:9cb9445a11f0 1016 *
Gurvan 0:9cb9445a11f0 1017 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1018 * @return Current active register for specified slave
Gurvan 0:9cb9445a11f0 1019 * @see MPU6050_RA_I2C_SLV0_REG
Gurvan 0:9cb9445a11f0 1020 */
Gurvan 0:9cb9445a11f0 1021 uint8_t MPU6050::getSlaveRegister(uint8_t num)
Gurvan 0:9cb9445a11f0 1022 {
Gurvan 0:9cb9445a11f0 1023 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 1024 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
Gurvan 0:9cb9445a11f0 1025 return buffer[0];
Gurvan 0:9cb9445a11f0 1026 }
Gurvan 0:9cb9445a11f0 1027 /** Set the active internal register for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1028 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1029 * @param reg New active register for specified slave
Gurvan 0:9cb9445a11f0 1030 * @see getSlaveRegister()
Gurvan 0:9cb9445a11f0 1031 * @see MPU6050_RA_I2C_SLV0_REG
Gurvan 0:9cb9445a11f0 1032 */
Gurvan 0:9cb9445a11f0 1033 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
Gurvan 0:9cb9445a11f0 1034 {
Gurvan 0:9cb9445a11f0 1035 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1036 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
Gurvan 0:9cb9445a11f0 1037 }
Gurvan 0:9cb9445a11f0 1038 /** Get the enabled value for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1039 * When set to 1, this bit enables Slave 0 for data transfer operations. When
Gurvan 0:9cb9445a11f0 1040 * cleared to 0, this bit disables Slave 0 from data transfer operations.
Gurvan 0:9cb9445a11f0 1041 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1042 * @return Current enabled value for specified slave
Gurvan 0:9cb9445a11f0 1043 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1044 */
Gurvan 0:9cb9445a11f0 1045 bool MPU6050::getSlaveEnabled(uint8_t num)
Gurvan 0:9cb9445a11f0 1046 {
Gurvan 0:9cb9445a11f0 1047 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 1048 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1049 return buffer[0];
Gurvan 0:9cb9445a11f0 1050 }
Gurvan 0:9cb9445a11f0 1051 /** Set the enabled value for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1052 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1053 * @param enabled New enabled value for specified slave
Gurvan 0:9cb9445a11f0 1054 * @see getSlaveEnabled()
Gurvan 0:9cb9445a11f0 1055 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1056 */
Gurvan 0:9cb9445a11f0 1057 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
Gurvan 0:9cb9445a11f0 1058 {
Gurvan 0:9cb9445a11f0 1059 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1060 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 1061 }
Gurvan 0:9cb9445a11f0 1062 /** Get word pair byte-swapping enabled for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1063 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
Gurvan 0:9cb9445a11f0 1064 * the high and low bytes of a word pair are swapped. Please refer to
Gurvan 0:9cb9445a11f0 1065 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
Gurvan 0:9cb9445a11f0 1066 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
Gurvan 0:9cb9445a11f0 1067 * registers in the order they were transferred.
Gurvan 0:9cb9445a11f0 1068 *
Gurvan 0:9cb9445a11f0 1069 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1070 * @return Current word pair byte-swapping enabled value for specified slave
Gurvan 0:9cb9445a11f0 1071 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1072 */
Gurvan 0:9cb9445a11f0 1073 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
Gurvan 0:9cb9445a11f0 1074 {
Gurvan 0:9cb9445a11f0 1075 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 1076 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
Gurvan 0:9cb9445a11f0 1077 return buffer[0];
Gurvan 0:9cb9445a11f0 1078 }
Gurvan 0:9cb9445a11f0 1079 /** Set word pair byte-swapping enabled for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1080 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1081 * @param enabled New word pair byte-swapping enabled value for specified slave
Gurvan 0:9cb9445a11f0 1082 * @see getSlaveWordByteSwap()
Gurvan 0:9cb9445a11f0 1083 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1084 */
Gurvan 0:9cb9445a11f0 1085 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
Gurvan 0:9cb9445a11f0 1086 {
Gurvan 0:9cb9445a11f0 1087 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1088 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
Gurvan 0:9cb9445a11f0 1089 }
Gurvan 0:9cb9445a11f0 1090 /** Get write mode for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1091 * When set to 1, the transaction will read or write data only. When cleared to
Gurvan 0:9cb9445a11f0 1092 * 0, the transaction will write a register address prior to reading or writing
Gurvan 0:9cb9445a11f0 1093 * data. This should equal 0 when specifying the register address within the
Gurvan 0:9cb9445a11f0 1094 * Slave device to/from which the ensuing data transaction will take place.
Gurvan 0:9cb9445a11f0 1095 *
Gurvan 0:9cb9445a11f0 1096 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1097 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
Gurvan 0:9cb9445a11f0 1098 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1099 */
Gurvan 0:9cb9445a11f0 1100 bool MPU6050::getSlaveWriteMode(uint8_t num)
Gurvan 0:9cb9445a11f0 1101 {
Gurvan 0:9cb9445a11f0 1102 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 1103 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
Gurvan 0:9cb9445a11f0 1104 return buffer[0];
Gurvan 0:9cb9445a11f0 1105 }
Gurvan 0:9cb9445a11f0 1106 /** Set write mode for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1107 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1108 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
Gurvan 0:9cb9445a11f0 1109 * @see getSlaveWriteMode()
Gurvan 0:9cb9445a11f0 1110 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1111 */
Gurvan 0:9cb9445a11f0 1112 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
Gurvan 0:9cb9445a11f0 1113 {
Gurvan 0:9cb9445a11f0 1114 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1115 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
Gurvan 0:9cb9445a11f0 1116 }
Gurvan 0:9cb9445a11f0 1117 /** Get word pair grouping order offset for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1118 * This sets specifies the grouping order of word pairs received from registers.
Gurvan 0:9cb9445a11f0 1119 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
Gurvan 0:9cb9445a11f0 1120 * then odd register addresses) are paired to form a word. When set to 1, bytes
Gurvan 0:9cb9445a11f0 1121 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
Gurvan 0:9cb9445a11f0 1122 * register addresses) are paired to form a word.
Gurvan 0:9cb9445a11f0 1123 *
Gurvan 0:9cb9445a11f0 1124 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1125 * @return Current word pair grouping order offset for specified slave
Gurvan 0:9cb9445a11f0 1126 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1127 */
Gurvan 0:9cb9445a11f0 1128 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
Gurvan 0:9cb9445a11f0 1129 {
Gurvan 0:9cb9445a11f0 1130 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 1131 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
Gurvan 0:9cb9445a11f0 1132 return buffer[0];
Gurvan 0:9cb9445a11f0 1133 }
Gurvan 0:9cb9445a11f0 1134 /** Set word pair grouping order offset for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1135 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1136 * @param enabled New word pair grouping order offset for specified slave
Gurvan 0:9cb9445a11f0 1137 * @see getSlaveWordGroupOffset()
Gurvan 0:9cb9445a11f0 1138 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1139 */
Gurvan 0:9cb9445a11f0 1140 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
Gurvan 0:9cb9445a11f0 1141 {
Gurvan 0:9cb9445a11f0 1142 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1143 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
Gurvan 0:9cb9445a11f0 1144 }
Gurvan 0:9cb9445a11f0 1145 /** Get number of bytes to read for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1146 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
Gurvan 0:9cb9445a11f0 1147 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
Gurvan 0:9cb9445a11f0 1148 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1149 * @return Number of bytes to read for specified slave
Gurvan 0:9cb9445a11f0 1150 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1151 */
Gurvan 0:9cb9445a11f0 1152 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
Gurvan 0:9cb9445a11f0 1153 {
Gurvan 0:9cb9445a11f0 1154 if (num > 3) return 0;
Gurvan 0:9cb9445a11f0 1155 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 1156 return buffer[0];
Gurvan 0:9cb9445a11f0 1157 }
Gurvan 0:9cb9445a11f0 1158 /** Set number of bytes to read for the specified slave (0-3).
Gurvan 0:9cb9445a11f0 1159 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 1160 * @param length Number of bytes to read for specified slave
Gurvan 0:9cb9445a11f0 1161 * @see getSlaveDataLength()
Gurvan 0:9cb9445a11f0 1162 * @see MPU6050_RA_I2C_SLV0_CTRL
Gurvan 0:9cb9445a11f0 1163 */
Gurvan 0:9cb9445a11f0 1164 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
Gurvan 0:9cb9445a11f0 1165 {
Gurvan 0:9cb9445a11f0 1166 if (num > 3) return;
Gurvan 0:9cb9445a11f0 1167 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
Gurvan 0:9cb9445a11f0 1168 }
Gurvan 0:9cb9445a11f0 1169
Gurvan 0:9cb9445a11f0 1170 // I2C_SLV* registers (Slave 4)
Gurvan 0:9cb9445a11f0 1171
Gurvan 0:9cb9445a11f0 1172 /** Get the I2C address of Slave 4.
Gurvan 0:9cb9445a11f0 1173 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
Gurvan 0:9cb9445a11f0 1174 * operation, and if it is cleared, then it's a write operation. The remaining
Gurvan 0:9cb9445a11f0 1175 * bits (6-0) are the 7-bit device address of the slave device.
Gurvan 0:9cb9445a11f0 1176 *
Gurvan 0:9cb9445a11f0 1177 * @return Current address for Slave 4
Gurvan 0:9cb9445a11f0 1178 * @see getSlaveAddress()
Gurvan 0:9cb9445a11f0 1179 * @see MPU6050_RA_I2C_SLV4_ADDR
Gurvan 0:9cb9445a11f0 1180 */
Gurvan 0:9cb9445a11f0 1181 uint8_t MPU6050::getSlave4Address()
Gurvan 0:9cb9445a11f0 1182 {
Gurvan 0:9cb9445a11f0 1183 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
Gurvan 0:9cb9445a11f0 1184 return buffer[0];
Gurvan 0:9cb9445a11f0 1185 }
Gurvan 0:9cb9445a11f0 1186 /** Set the I2C address of Slave 4.
Gurvan 0:9cb9445a11f0 1187 * @param address New address for Slave 4
Gurvan 0:9cb9445a11f0 1188 * @see getSlave4Address()
Gurvan 0:9cb9445a11f0 1189 * @see MPU6050_RA_I2C_SLV4_ADDR
Gurvan 0:9cb9445a11f0 1190 */
Gurvan 0:9cb9445a11f0 1191 void MPU6050::setSlave4Address(uint8_t address)
Gurvan 0:9cb9445a11f0 1192 {
Gurvan 0:9cb9445a11f0 1193 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
Gurvan 0:9cb9445a11f0 1194 }
Gurvan 0:9cb9445a11f0 1195 /** Get the active internal register for the Slave 4.
Gurvan 0:9cb9445a11f0 1196 * Read/write operations for this slave will be done to whatever internal
Gurvan 0:9cb9445a11f0 1197 * register address is stored in this MPU register.
Gurvan 0:9cb9445a11f0 1198 *
Gurvan 0:9cb9445a11f0 1199 * @return Current active register for Slave 4
Gurvan 0:9cb9445a11f0 1200 * @see MPU6050_RA_I2C_SLV4_REG
Gurvan 0:9cb9445a11f0 1201 */
Gurvan 0:9cb9445a11f0 1202 uint8_t MPU6050::getSlave4Register()
Gurvan 0:9cb9445a11f0 1203 {
Gurvan 0:9cb9445a11f0 1204 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
Gurvan 0:9cb9445a11f0 1205 return buffer[0];
Gurvan 0:9cb9445a11f0 1206 }
Gurvan 0:9cb9445a11f0 1207 /** Set the active internal register for Slave 4.
Gurvan 0:9cb9445a11f0 1208 * @param reg New active register for Slave 4
Gurvan 0:9cb9445a11f0 1209 * @see getSlave4Register()
Gurvan 0:9cb9445a11f0 1210 * @see MPU6050_RA_I2C_SLV4_REG
Gurvan 0:9cb9445a11f0 1211 */
Gurvan 0:9cb9445a11f0 1212 void MPU6050::setSlave4Register(uint8_t reg)
Gurvan 0:9cb9445a11f0 1213 {
Gurvan 0:9cb9445a11f0 1214 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
Gurvan 0:9cb9445a11f0 1215 }
Gurvan 0:9cb9445a11f0 1216 /** Set new byte to write to Slave 4.
Gurvan 0:9cb9445a11f0 1217 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
Gurvan 0:9cb9445a11f0 1218 * is set 1 (set to read), this register has no effect.
Gurvan 0:9cb9445a11f0 1219 * @param data New byte to write to Slave 4
Gurvan 0:9cb9445a11f0 1220 * @see MPU6050_RA_I2C_SLV4_DO
Gurvan 0:9cb9445a11f0 1221 */
Gurvan 0:9cb9445a11f0 1222 void MPU6050::setSlave4OutputByte(uint8_t data)
Gurvan 0:9cb9445a11f0 1223 {
Gurvan 0:9cb9445a11f0 1224 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
Gurvan 0:9cb9445a11f0 1225 }
Gurvan 0:9cb9445a11f0 1226 /** Get the enabled value for the Slave 4.
Gurvan 0:9cb9445a11f0 1227 * When set to 1, this bit enables Slave 4 for data transfer operations. When
Gurvan 0:9cb9445a11f0 1228 * cleared to 0, this bit disables Slave 4 from data transfer operations.
Gurvan 0:9cb9445a11f0 1229 * @return Current enabled value for Slave 4
Gurvan 0:9cb9445a11f0 1230 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1231 */
Gurvan 0:9cb9445a11f0 1232 bool MPU6050::getSlave4Enabled()
Gurvan 0:9cb9445a11f0 1233 {
Gurvan 0:9cb9445a11f0 1234 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1235 return buffer[0];
Gurvan 0:9cb9445a11f0 1236 }
Gurvan 0:9cb9445a11f0 1237 /** Set the enabled value for Slave 4.
Gurvan 0:9cb9445a11f0 1238 * @param enabled New enabled value for Slave 4
Gurvan 0:9cb9445a11f0 1239 * @see getSlave4Enabled()
Gurvan 0:9cb9445a11f0 1240 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1241 */
Gurvan 0:9cb9445a11f0 1242 void MPU6050::setSlave4Enabled(bool enabled)
Gurvan 0:9cb9445a11f0 1243 {
Gurvan 0:9cb9445a11f0 1244 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 1245 }
Gurvan 0:9cb9445a11f0 1246 /** Get the enabled value for Slave 4 transaction interrupts.
Gurvan 0:9cb9445a11f0 1247 * When set to 1, this bit enables the generation of an interrupt signal upon
Gurvan 0:9cb9445a11f0 1248 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
Gurvan 0:9cb9445a11f0 1249 * generation of an interrupt signal upon completion of a Slave 4 transaction.
Gurvan 0:9cb9445a11f0 1250 * The interrupt status can be observed in Register 54.
Gurvan 0:9cb9445a11f0 1251 *
Gurvan 0:9cb9445a11f0 1252 * @return Current enabled value for Slave 4 transaction interrupts.
Gurvan 0:9cb9445a11f0 1253 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1254 */
Gurvan 0:9cb9445a11f0 1255 bool MPU6050::getSlave4InterruptEnabled()
Gurvan 0:9cb9445a11f0 1256 {
Gurvan 0:9cb9445a11f0 1257 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1258 return buffer[0];
Gurvan 0:9cb9445a11f0 1259 }
Gurvan 0:9cb9445a11f0 1260 /** Set the enabled value for Slave 4 transaction interrupts.
Gurvan 0:9cb9445a11f0 1261 * @param enabled New enabled value for Slave 4 transaction interrupts.
Gurvan 0:9cb9445a11f0 1262 * @see getSlave4InterruptEnabled()
Gurvan 0:9cb9445a11f0 1263 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1264 */
Gurvan 0:9cb9445a11f0 1265 void MPU6050::setSlave4InterruptEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1266 {
Gurvan 0:9cb9445a11f0 1267 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 1268 }
Gurvan 0:9cb9445a11f0 1269 /** Get write mode for Slave 4.
Gurvan 0:9cb9445a11f0 1270 * When set to 1, the transaction will read or write data only. When cleared to
Gurvan 0:9cb9445a11f0 1271 * 0, the transaction will write a register address prior to reading or writing
Gurvan 0:9cb9445a11f0 1272 * data. This should equal 0 when specifying the register address within the
Gurvan 0:9cb9445a11f0 1273 * Slave device to/from which the ensuing data transaction will take place.
Gurvan 0:9cb9445a11f0 1274 *
Gurvan 0:9cb9445a11f0 1275 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
Gurvan 0:9cb9445a11f0 1276 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1277 */
Gurvan 0:9cb9445a11f0 1278 bool MPU6050::getSlave4WriteMode()
Gurvan 0:9cb9445a11f0 1279 {
Gurvan 0:9cb9445a11f0 1280 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
Gurvan 0:9cb9445a11f0 1281 return buffer[0];
Gurvan 0:9cb9445a11f0 1282 }
Gurvan 0:9cb9445a11f0 1283 /** Set write mode for the Slave 4.
Gurvan 0:9cb9445a11f0 1284 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
Gurvan 0:9cb9445a11f0 1285 * @see getSlave4WriteMode()
Gurvan 0:9cb9445a11f0 1286 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1287 */
Gurvan 0:9cb9445a11f0 1288 void MPU6050::setSlave4WriteMode(bool mode)
Gurvan 0:9cb9445a11f0 1289 {
Gurvan 0:9cb9445a11f0 1290 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
Gurvan 0:9cb9445a11f0 1291 }
Gurvan 0:9cb9445a11f0 1292 /** Get Slave 4 master delay value.
Gurvan 0:9cb9445a11f0 1293 * This configures the reduced access rate of I2C slaves relative to the Sample
Gurvan 0:9cb9445a11f0 1294 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
Gurvan 0:9cb9445a11f0 1295 * the slave is accessed every:
Gurvan 0:9cb9445a11f0 1296 *
Gurvan 0:9cb9445a11f0 1297 * 1 / (1 + I2C_MST_DLY) samples
Gurvan 0:9cb9445a11f0 1298 *
Gurvan 0:9cb9445a11f0 1299 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
Gurvan 0:9cb9445a11f0 1300 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
Gurvan 0:9cb9445a11f0 1301 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
Gurvan 0:9cb9445a11f0 1302 * further information regarding the Sample Rate, please refer to register 25.
Gurvan 0:9cb9445a11f0 1303 *
Gurvan 0:9cb9445a11f0 1304 * @return Current Slave 4 master delay value
Gurvan 0:9cb9445a11f0 1305 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1306 */
Gurvan 0:9cb9445a11f0 1307 uint8_t MPU6050::getSlave4MasterDelay()
Gurvan 0:9cb9445a11f0 1308 {
Gurvan 0:9cb9445a11f0 1309 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 1310 return buffer[0];
Gurvan 0:9cb9445a11f0 1311 }
Gurvan 0:9cb9445a11f0 1312 /** Set Slave 4 master delay value.
Gurvan 0:9cb9445a11f0 1313 * @param delay New Slave 4 master delay value
Gurvan 0:9cb9445a11f0 1314 * @see getSlave4MasterDelay()
Gurvan 0:9cb9445a11f0 1315 * @see MPU6050_RA_I2C_SLV4_CTRL
Gurvan 0:9cb9445a11f0 1316 */
Gurvan 0:9cb9445a11f0 1317 void MPU6050::setSlave4MasterDelay(uint8_t delay)
Gurvan 0:9cb9445a11f0 1318 {
Gurvan 0:9cb9445a11f0 1319 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
Gurvan 0:9cb9445a11f0 1320 }
Gurvan 0:9cb9445a11f0 1321 /** Get last available byte read from Slave 4.
Gurvan 0:9cb9445a11f0 1322 * This register stores the data read from Slave 4. This field is populated
Gurvan 0:9cb9445a11f0 1323 * after a read transaction.
Gurvan 0:9cb9445a11f0 1324 * @return Last available byte read from to Slave 4
Gurvan 0:9cb9445a11f0 1325 * @see MPU6050_RA_I2C_SLV4_DI
Gurvan 0:9cb9445a11f0 1326 */
Gurvan 0:9cb9445a11f0 1327 uint8_t MPU6050::getSlate4InputByte()
Gurvan 0:9cb9445a11f0 1328 {
Gurvan 0:9cb9445a11f0 1329 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
Gurvan 0:9cb9445a11f0 1330 return buffer[0];
Gurvan 0:9cb9445a11f0 1331 }
Gurvan 0:9cb9445a11f0 1332
Gurvan 0:9cb9445a11f0 1333 // I2C_MST_STATUS register
Gurvan 0:9cb9445a11f0 1334
Gurvan 0:9cb9445a11f0 1335 /** Get FSYNC interrupt status.
Gurvan 0:9cb9445a11f0 1336 * This bit reflects the status of the FSYNC interrupt from an external device
Gurvan 0:9cb9445a11f0 1337 * into the MPU-60X0. This is used as a way to pass an external interrupt
Gurvan 0:9cb9445a11f0 1338 * through the MPU-60X0 to the host application processor. When set to 1, this
Gurvan 0:9cb9445a11f0 1339 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1340 * (Register 55).
Gurvan 0:9cb9445a11f0 1341 * @return FSYNC interrupt status
Gurvan 0:9cb9445a11f0 1342 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1343 */
Gurvan 0:9cb9445a11f0 1344 bool MPU6050::getPassthroughStatus()
Gurvan 0:9cb9445a11f0 1345 {
Gurvan 0:9cb9445a11f0 1346 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
Gurvan 0:9cb9445a11f0 1347 return buffer[0];
Gurvan 0:9cb9445a11f0 1348 }
Gurvan 0:9cb9445a11f0 1349 /** Get Slave 4 transaction done status.
Gurvan 0:9cb9445a11f0 1350 * Automatically sets to 1 when a Slave 4 transaction has completed. This
Gurvan 0:9cb9445a11f0 1351 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
Gurvan 0:9cb9445a11f0 1352 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
Gurvan 0:9cb9445a11f0 1353 * I2C_SLV4_CTRL register (Register 52).
Gurvan 0:9cb9445a11f0 1354 * @return Slave 4 transaction done status
Gurvan 0:9cb9445a11f0 1355 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1356 */
Gurvan 0:9cb9445a11f0 1357 bool MPU6050::getSlave4IsDone()
Gurvan 0:9cb9445a11f0 1358 {
Gurvan 0:9cb9445a11f0 1359 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
Gurvan 0:9cb9445a11f0 1360 return buffer[0];
Gurvan 0:9cb9445a11f0 1361 }
Gurvan 0:9cb9445a11f0 1362 /** Get master arbitration lost status.
Gurvan 0:9cb9445a11f0 1363 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
Gurvan 0:9cb9445a11f0 1364 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
Gurvan 0:9cb9445a11f0 1365 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
Gurvan 0:9cb9445a11f0 1366 * @return Master arbitration lost status
Gurvan 0:9cb9445a11f0 1367 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1368 */
Gurvan 0:9cb9445a11f0 1369 bool MPU6050::getLostArbitration()
Gurvan 0:9cb9445a11f0 1370 {
Gurvan 0:9cb9445a11f0 1371 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
Gurvan 0:9cb9445a11f0 1372 return buffer[0];
Gurvan 0:9cb9445a11f0 1373 }
Gurvan 0:9cb9445a11f0 1374 /** Get Slave 4 NACK status.
Gurvan 0:9cb9445a11f0 1375 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gurvan 0:9cb9445a11f0 1376 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
Gurvan 0:9cb9445a11f0 1377 * bit in the INT_ENABLE register (Register 56) is asserted.
Gurvan 0:9cb9445a11f0 1378 * @return Slave 4 NACK interrupt status
Gurvan 0:9cb9445a11f0 1379 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1380 */
Gurvan 0:9cb9445a11f0 1381 bool MPU6050::getSlave4Nack()
Gurvan 0:9cb9445a11f0 1382 {
Gurvan 0:9cb9445a11f0 1383 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
Gurvan 0:9cb9445a11f0 1384 return buffer[0];
Gurvan 0:9cb9445a11f0 1385 }
Gurvan 0:9cb9445a11f0 1386 /** Get Slave 3 NACK status.
Gurvan 0:9cb9445a11f0 1387 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gurvan 0:9cb9445a11f0 1388 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
Gurvan 0:9cb9445a11f0 1389 * bit in the INT_ENABLE register (Register 56) is asserted.
Gurvan 0:9cb9445a11f0 1390 * @return Slave 3 NACK interrupt status
Gurvan 0:9cb9445a11f0 1391 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1392 */
Gurvan 0:9cb9445a11f0 1393 bool MPU6050::getSlave3Nack()
Gurvan 0:9cb9445a11f0 1394 {
Gurvan 0:9cb9445a11f0 1395 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
Gurvan 0:9cb9445a11f0 1396 return buffer[0];
Gurvan 0:9cb9445a11f0 1397 }
Gurvan 0:9cb9445a11f0 1398 /** Get Slave 2 NACK status.
Gurvan 0:9cb9445a11f0 1399 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gurvan 0:9cb9445a11f0 1400 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
Gurvan 0:9cb9445a11f0 1401 * bit in the INT_ENABLE register (Register 56) is asserted.
Gurvan 0:9cb9445a11f0 1402 * @return Slave 2 NACK interrupt status
Gurvan 0:9cb9445a11f0 1403 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1404 */
Gurvan 0:9cb9445a11f0 1405 bool MPU6050::getSlave2Nack()
Gurvan 0:9cb9445a11f0 1406 {
Gurvan 0:9cb9445a11f0 1407 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
Gurvan 0:9cb9445a11f0 1408 return buffer[0];
Gurvan 0:9cb9445a11f0 1409 }
Gurvan 0:9cb9445a11f0 1410 /** Get Slave 1 NACK status.
Gurvan 0:9cb9445a11f0 1411 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gurvan 0:9cb9445a11f0 1412 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
Gurvan 0:9cb9445a11f0 1413 * bit in the INT_ENABLE register (Register 56) is asserted.
Gurvan 0:9cb9445a11f0 1414 * @return Slave 1 NACK interrupt status
Gurvan 0:9cb9445a11f0 1415 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1416 */
Gurvan 0:9cb9445a11f0 1417 bool MPU6050::getSlave1Nack()
Gurvan 0:9cb9445a11f0 1418 {
Gurvan 0:9cb9445a11f0 1419 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
Gurvan 0:9cb9445a11f0 1420 return buffer[0];
Gurvan 0:9cb9445a11f0 1421 }
Gurvan 0:9cb9445a11f0 1422 /** Get Slave 0 NACK status.
Gurvan 0:9cb9445a11f0 1423 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gurvan 0:9cb9445a11f0 1424 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
Gurvan 0:9cb9445a11f0 1425 * bit in the INT_ENABLE register (Register 56) is asserted.
Gurvan 0:9cb9445a11f0 1426 * @return Slave 0 NACK interrupt status
Gurvan 0:9cb9445a11f0 1427 * @see MPU6050_RA_I2C_MST_STATUS
Gurvan 0:9cb9445a11f0 1428 */
Gurvan 0:9cb9445a11f0 1429 bool MPU6050::getSlave0Nack()
Gurvan 0:9cb9445a11f0 1430 {
Gurvan 0:9cb9445a11f0 1431 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
Gurvan 0:9cb9445a11f0 1432 return buffer[0];
Gurvan 0:9cb9445a11f0 1433 }
Gurvan 0:9cb9445a11f0 1434
Gurvan 0:9cb9445a11f0 1435 // INT_PIN_CFG register
Gurvan 0:9cb9445a11f0 1436
Gurvan 0:9cb9445a11f0 1437 /** Get interrupt logic level mode.
Gurvan 0:9cb9445a11f0 1438 * Will be set 0 for active-high, 1 for active-low.
Gurvan 0:9cb9445a11f0 1439 * @return Current interrupt mode (0=active-high, 1=active-low)
Gurvan 0:9cb9445a11f0 1440 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1441 * @see MPU6050_INTCFG_INT_LEVEL_BIT
Gurvan 0:9cb9445a11f0 1442 */
Gurvan 0:9cb9445a11f0 1443 bool MPU6050::getInterruptMode()
Gurvan 0:9cb9445a11f0 1444 {
Gurvan 0:9cb9445a11f0 1445 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
Gurvan 0:9cb9445a11f0 1446 return buffer[0];
Gurvan 0:9cb9445a11f0 1447 }
Gurvan 0:9cb9445a11f0 1448 /** Set interrupt logic level mode.
Gurvan 0:9cb9445a11f0 1449 * @param mode New interrupt mode (0=active-high, 1=active-low)
Gurvan 0:9cb9445a11f0 1450 * @see getInterruptMode()
Gurvan 0:9cb9445a11f0 1451 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1452 * @see MPU6050_INTCFG_INT_LEVEL_BIT
Gurvan 0:9cb9445a11f0 1453 */
Gurvan 0:9cb9445a11f0 1454 void MPU6050::setInterruptMode(bool mode)
Gurvan 0:9cb9445a11f0 1455 {
Gurvan 0:9cb9445a11f0 1456 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
Gurvan 0:9cb9445a11f0 1457 }
Gurvan 0:9cb9445a11f0 1458 /** Get interrupt drive mode.
Gurvan 0:9cb9445a11f0 1459 * Will be set 0 for push-pull, 1 for open-drain.
Gurvan 0:9cb9445a11f0 1460 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
Gurvan 0:9cb9445a11f0 1461 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1462 * @see MPU6050_INTCFG_INT_OPEN_BIT
Gurvan 0:9cb9445a11f0 1463 */
Gurvan 0:9cb9445a11f0 1464 bool MPU6050::getInterruptDrive()
Gurvan 0:9cb9445a11f0 1465 {
Gurvan 0:9cb9445a11f0 1466 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1467 return buffer[0];
Gurvan 0:9cb9445a11f0 1468 }
Gurvan 0:9cb9445a11f0 1469 /** Set interrupt drive mode.
Gurvan 0:9cb9445a11f0 1470 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
Gurvan 0:9cb9445a11f0 1471 * @see getInterruptDrive()
Gurvan 0:9cb9445a11f0 1472 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1473 * @see MPU6050_INTCFG_INT_OPEN_BIT
Gurvan 0:9cb9445a11f0 1474 */
Gurvan 0:9cb9445a11f0 1475 void MPU6050::setInterruptDrive(bool drive)
Gurvan 0:9cb9445a11f0 1476 {
Gurvan 0:9cb9445a11f0 1477 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
Gurvan 0:9cb9445a11f0 1478 }
Gurvan 0:9cb9445a11f0 1479 /** Get interrupt latch mode.
Gurvan 0:9cb9445a11f0 1480 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
Gurvan 0:9cb9445a11f0 1481 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
Gurvan 0:9cb9445a11f0 1482 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1483 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
Gurvan 0:9cb9445a11f0 1484 */
Gurvan 0:9cb9445a11f0 1485 bool MPU6050::getInterruptLatch()
Gurvan 0:9cb9445a11f0 1486 {
Gurvan 0:9cb9445a11f0 1487 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1488 return buffer[0];
Gurvan 0:9cb9445a11f0 1489 }
Gurvan 0:9cb9445a11f0 1490 /** Set interrupt latch mode.
Gurvan 0:9cb9445a11f0 1491 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
Gurvan 0:9cb9445a11f0 1492 * @see getInterruptLatch()
Gurvan 0:9cb9445a11f0 1493 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1494 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
Gurvan 0:9cb9445a11f0 1495 */
Gurvan 0:9cb9445a11f0 1496 void MPU6050::setInterruptLatch(bool latch)
Gurvan 0:9cb9445a11f0 1497 {
Gurvan 0:9cb9445a11f0 1498 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
Gurvan 0:9cb9445a11f0 1499 }
Gurvan 0:9cb9445a11f0 1500 /** Get interrupt latch clear mode.
Gurvan 0:9cb9445a11f0 1501 * Will be set 0 for status-read-only, 1 for any-register-read.
Gurvan 0:9cb9445a11f0 1502 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
Gurvan 0:9cb9445a11f0 1503 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1504 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
Gurvan 0:9cb9445a11f0 1505 */
Gurvan 0:9cb9445a11f0 1506 bool MPU6050::getInterruptLatchClear()
Gurvan 0:9cb9445a11f0 1507 {
Gurvan 0:9cb9445a11f0 1508 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
Gurvan 0:9cb9445a11f0 1509 return buffer[0];
Gurvan 0:9cb9445a11f0 1510 }
Gurvan 0:9cb9445a11f0 1511 /** Set interrupt latch clear mode.
Gurvan 0:9cb9445a11f0 1512 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
Gurvan 0:9cb9445a11f0 1513 * @see getInterruptLatchClear()
Gurvan 0:9cb9445a11f0 1514 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1515 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
Gurvan 0:9cb9445a11f0 1516 */
Gurvan 0:9cb9445a11f0 1517 void MPU6050::setInterruptLatchClear(bool clear)
Gurvan 0:9cb9445a11f0 1518 {
Gurvan 0:9cb9445a11f0 1519 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
Gurvan 0:9cb9445a11f0 1520 }
Gurvan 0:9cb9445a11f0 1521 /** Get FSYNC interrupt logic level mode.
Gurvan 0:9cb9445a11f0 1522 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
Gurvan 0:9cb9445a11f0 1523 * @see getFSyncInterruptMode()
Gurvan 0:9cb9445a11f0 1524 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1525 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
Gurvan 0:9cb9445a11f0 1526 */
Gurvan 0:9cb9445a11f0 1527 bool MPU6050::getFSyncInterruptLevel()
Gurvan 0:9cb9445a11f0 1528 {
Gurvan 0:9cb9445a11f0 1529 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
Gurvan 0:9cb9445a11f0 1530 return buffer[0];
Gurvan 0:9cb9445a11f0 1531 }
Gurvan 0:9cb9445a11f0 1532 /** Set FSYNC interrupt logic level mode.
Gurvan 0:9cb9445a11f0 1533 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
Gurvan 0:9cb9445a11f0 1534 * @see getFSyncInterruptMode()
Gurvan 0:9cb9445a11f0 1535 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1536 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
Gurvan 0:9cb9445a11f0 1537 */
Gurvan 0:9cb9445a11f0 1538 void MPU6050::setFSyncInterruptLevel(bool level)
Gurvan 0:9cb9445a11f0 1539 {
Gurvan 0:9cb9445a11f0 1540 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
Gurvan 0:9cb9445a11f0 1541 }
Gurvan 0:9cb9445a11f0 1542 /** Get FSYNC pin interrupt enabled setting.
Gurvan 0:9cb9445a11f0 1543 * Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1544 * @return Current interrupt enabled setting
Gurvan 0:9cb9445a11f0 1545 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1546 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
Gurvan 0:9cb9445a11f0 1547 */
Gurvan 0:9cb9445a11f0 1548 bool MPU6050::getFSyncInterruptEnabled()
Gurvan 0:9cb9445a11f0 1549 {
Gurvan 0:9cb9445a11f0 1550 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1551 return buffer[0];
Gurvan 0:9cb9445a11f0 1552 }
Gurvan 0:9cb9445a11f0 1553 /** Set FSYNC pin interrupt enabled setting.
Gurvan 0:9cb9445a11f0 1554 * @param enabled New FSYNC pin interrupt enabled setting
Gurvan 0:9cb9445a11f0 1555 * @see getFSyncInterruptEnabled()
Gurvan 0:9cb9445a11f0 1556 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1557 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
Gurvan 0:9cb9445a11f0 1558 */
Gurvan 0:9cb9445a11f0 1559 void MPU6050::setFSyncInterruptEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1560 {
Gurvan 0:9cb9445a11f0 1561 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 1562 }
Gurvan 0:9cb9445a11f0 1563 /** Get I2C bypass enabled status.
Gurvan 0:9cb9445a11f0 1564 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
Gurvan 0:9cb9445a11f0 1565 * 0, the host application processor will be able to directly access the
Gurvan 0:9cb9445a11f0 1566 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
Gurvan 0:9cb9445a11f0 1567 * application processor will not be able to directly access the auxiliary I2C
Gurvan 0:9cb9445a11f0 1568 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
Gurvan 0:9cb9445a11f0 1569 * bit[5]).
Gurvan 0:9cb9445a11f0 1570 * @return Current I2C bypass enabled status
Gurvan 0:9cb9445a11f0 1571 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1572 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
Gurvan 0:9cb9445a11f0 1573 */
Gurvan 0:9cb9445a11f0 1574 bool MPU6050::getI2CBypassEnabled()
Gurvan 0:9cb9445a11f0 1575 {
Gurvan 0:9cb9445a11f0 1576 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1577 return buffer[0];
Gurvan 0:9cb9445a11f0 1578 }
Gurvan 0:9cb9445a11f0 1579 /** Set I2C bypass enabled status.
Gurvan 0:9cb9445a11f0 1580 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
Gurvan 0:9cb9445a11f0 1581 * 0, the host application processor will be able to directly access the
Gurvan 0:9cb9445a11f0 1582 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
Gurvan 0:9cb9445a11f0 1583 * application processor will not be able to directly access the auxiliary I2C
Gurvan 0:9cb9445a11f0 1584 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
Gurvan 0:9cb9445a11f0 1585 * bit[5]).
Gurvan 0:9cb9445a11f0 1586 * @param enabled New I2C bypass enabled status
Gurvan 0:9cb9445a11f0 1587 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1588 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
Gurvan 0:9cb9445a11f0 1589 */
Gurvan 0:9cb9445a11f0 1590 void MPU6050::setI2CBypassEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1591 {
Gurvan 0:9cb9445a11f0 1592 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 1593 }
Gurvan 0:9cb9445a11f0 1594 /** Get reference clock output enabled status.
Gurvan 0:9cb9445a11f0 1595 * When this bit is equal to 1, a reference clock output is provided at the
Gurvan 0:9cb9445a11f0 1596 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
Gurvan 0:9cb9445a11f0 1597 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
Gurvan 0:9cb9445a11f0 1598 * Specification document.
Gurvan 0:9cb9445a11f0 1599 * @return Current reference clock output enabled status
Gurvan 0:9cb9445a11f0 1600 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1601 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
Gurvan 0:9cb9445a11f0 1602 */
Gurvan 0:9cb9445a11f0 1603 bool MPU6050::getClockOutputEnabled()
Gurvan 0:9cb9445a11f0 1604 {
Gurvan 0:9cb9445a11f0 1605 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 1606 return buffer[0];
Gurvan 0:9cb9445a11f0 1607 }
Gurvan 0:9cb9445a11f0 1608 /** Set reference clock output enabled status.
Gurvan 0:9cb9445a11f0 1609 * When this bit is equal to 1, a reference clock output is provided at the
Gurvan 0:9cb9445a11f0 1610 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
Gurvan 0:9cb9445a11f0 1611 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
Gurvan 0:9cb9445a11f0 1612 * Specification document.
Gurvan 0:9cb9445a11f0 1613 * @param enabled New reference clock output enabled status
Gurvan 0:9cb9445a11f0 1614 * @see MPU6050_RA_INT_PIN_CFG
Gurvan 0:9cb9445a11f0 1615 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
Gurvan 0:9cb9445a11f0 1616 */
Gurvan 0:9cb9445a11f0 1617 void MPU6050::setClockOutputEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1618 {
Gurvan 0:9cb9445a11f0 1619 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 1620 }
Gurvan 0:9cb9445a11f0 1621
Gurvan 0:9cb9445a11f0 1622 // INT_ENABLE register
Gurvan 0:9cb9445a11f0 1623
Gurvan 0:9cb9445a11f0 1624 /** Get full interrupt enabled status.
Gurvan 0:9cb9445a11f0 1625 * Full register byte for all interrupts, for quick reading. Each bit will be
Gurvan 0:9cb9445a11f0 1626 * set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1627 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1628 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1629 * @see MPU6050_INTERRUPT_FF_BIT
Gurvan 0:9cb9445a11f0 1630 **/
Gurvan 0:9cb9445a11f0 1631 uint8_t MPU6050::getIntEnabled()
Gurvan 0:9cb9445a11f0 1632 {
Gurvan 0:9cb9445a11f0 1633 i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
Gurvan 0:9cb9445a11f0 1634 return buffer[0];
Gurvan 0:9cb9445a11f0 1635 }
Gurvan 0:9cb9445a11f0 1636 /** Set full interrupt enabled status.
Gurvan 0:9cb9445a11f0 1637 * Full register byte for all interrupts, for quick reading. Each bit should be
Gurvan 0:9cb9445a11f0 1638 * set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1639 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1640 * @see getIntFreefallEnabled()
Gurvan 0:9cb9445a11f0 1641 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1642 * @see MPU6050_INTERRUPT_FF_BIT
Gurvan 0:9cb9445a11f0 1643 **/
Gurvan 0:9cb9445a11f0 1644 void MPU6050::setIntEnabled(uint8_t enabled)
Gurvan 0:9cb9445a11f0 1645 {
Gurvan 0:9cb9445a11f0 1646 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
Gurvan 0:9cb9445a11f0 1647 }
Gurvan 0:9cb9445a11f0 1648 /** Get Free Fall interrupt enabled status.
Gurvan 0:9cb9445a11f0 1649 * Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1650 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1651 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1652 * @see MPU6050_INTERRUPT_FF_BIT
Gurvan 0:9cb9445a11f0 1653 **/
Gurvan 0:9cb9445a11f0 1654 bool MPU6050::getIntFreefallEnabled()
Gurvan 0:9cb9445a11f0 1655 {
Gurvan 0:9cb9445a11f0 1656 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
Gurvan 0:9cb9445a11f0 1657 return buffer[0];
Gurvan 0:9cb9445a11f0 1658 }
Gurvan 0:9cb9445a11f0 1659 /** Set Free Fall interrupt enabled status.
Gurvan 0:9cb9445a11f0 1660 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1661 * @see getIntFreefallEnabled()
Gurvan 0:9cb9445a11f0 1662 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1663 * @see MPU6050_INTERRUPT_FF_BIT
Gurvan 0:9cb9445a11f0 1664 **/
Gurvan 0:9cb9445a11f0 1665 void MPU6050::setIntFreefallEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1666 {
Gurvan 0:9cb9445a11f0 1667 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
Gurvan 0:9cb9445a11f0 1668 }
Gurvan 0:9cb9445a11f0 1669 /** Get Motion Detection interrupt enabled status.
Gurvan 0:9cb9445a11f0 1670 * Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1671 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1672 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1673 * @see MPU6050_INTERRUPT_MOT_BIT
Gurvan 0:9cb9445a11f0 1674 **/
Gurvan 0:9cb9445a11f0 1675 bool MPU6050::getIntMotionEnabled()
Gurvan 0:9cb9445a11f0 1676 {
Gurvan 0:9cb9445a11f0 1677 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
Gurvan 0:9cb9445a11f0 1678 return buffer[0];
Gurvan 0:9cb9445a11f0 1679 }
Gurvan 0:9cb9445a11f0 1680 /** Set Motion Detection interrupt enabled status.
Gurvan 0:9cb9445a11f0 1681 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1682 * @see getIntMotionEnabled()
Gurvan 0:9cb9445a11f0 1683 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1684 * @see MPU6050_INTERRUPT_MOT_BIT
Gurvan 0:9cb9445a11f0 1685 **/
Gurvan 0:9cb9445a11f0 1686 void MPU6050::setIntMotionEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1687 {
Gurvan 0:9cb9445a11f0 1688 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
Gurvan 0:9cb9445a11f0 1689 }
Gurvan 0:9cb9445a11f0 1690 /** Get Zero Motion Detection interrupt enabled status.
Gurvan 0:9cb9445a11f0 1691 * Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1692 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1693 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1694 * @see MPU6050_INTERRUPT_ZMOT_BIT
Gurvan 0:9cb9445a11f0 1695 **/
Gurvan 0:9cb9445a11f0 1696 bool MPU6050::getIntZeroMotionEnabled()
Gurvan 0:9cb9445a11f0 1697 {
Gurvan 0:9cb9445a11f0 1698 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
Gurvan 0:9cb9445a11f0 1699 return buffer[0];
Gurvan 0:9cb9445a11f0 1700 }
Gurvan 0:9cb9445a11f0 1701 /** Set Zero Motion Detection interrupt enabled status.
Gurvan 0:9cb9445a11f0 1702 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1703 * @see getIntZeroMotionEnabled()
Gurvan 0:9cb9445a11f0 1704 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1705 * @see MPU6050_INTERRUPT_ZMOT_BIT
Gurvan 0:9cb9445a11f0 1706 **/
Gurvan 0:9cb9445a11f0 1707 void MPU6050::setIntZeroMotionEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1708 {
Gurvan 0:9cb9445a11f0 1709 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
Gurvan 0:9cb9445a11f0 1710 }
Gurvan 0:9cb9445a11f0 1711 /** Get FIFO Buffer Overflow interrupt enabled status.
Gurvan 0:9cb9445a11f0 1712 * Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1713 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1714 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1715 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Gurvan 0:9cb9445a11f0 1716 **/
Gurvan 0:9cb9445a11f0 1717 bool MPU6050::getIntFIFOBufferOverflowEnabled()
Gurvan 0:9cb9445a11f0 1718 {
Gurvan 0:9cb9445a11f0 1719 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
Gurvan 0:9cb9445a11f0 1720 return buffer[0];
Gurvan 0:9cb9445a11f0 1721 }
Gurvan 0:9cb9445a11f0 1722 /** Set FIFO Buffer Overflow interrupt enabled status.
Gurvan 0:9cb9445a11f0 1723 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1724 * @see getIntFIFOBufferOverflowEnabled()
Gurvan 0:9cb9445a11f0 1725 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1726 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Gurvan 0:9cb9445a11f0 1727 **/
Gurvan 0:9cb9445a11f0 1728 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1729 {
Gurvan 0:9cb9445a11f0 1730 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
Gurvan 0:9cb9445a11f0 1731 }
Gurvan 0:9cb9445a11f0 1732 /** Get I2C Master interrupt enabled status.
Gurvan 0:9cb9445a11f0 1733 * This enables any of the I2C Master interrupt sources to generate an
Gurvan 0:9cb9445a11f0 1734 * interrupt. Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1735 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1736 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1737 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Gurvan 0:9cb9445a11f0 1738 **/
Gurvan 0:9cb9445a11f0 1739 bool MPU6050::getIntI2CMasterEnabled()
Gurvan 0:9cb9445a11f0 1740 {
Gurvan 0:9cb9445a11f0 1741 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
Gurvan 0:9cb9445a11f0 1742 return buffer[0];
Gurvan 0:9cb9445a11f0 1743 }
Gurvan 0:9cb9445a11f0 1744 /** Set I2C Master interrupt enabled status.
Gurvan 0:9cb9445a11f0 1745 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1746 * @see getIntI2CMasterEnabled()
Gurvan 0:9cb9445a11f0 1747 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1748 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Gurvan 0:9cb9445a11f0 1749 **/
Gurvan 0:9cb9445a11f0 1750 void MPU6050::setIntI2CMasterEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1751 {
Gurvan 0:9cb9445a11f0 1752 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
Gurvan 0:9cb9445a11f0 1753 }
Gurvan 0:9cb9445a11f0 1754 /** Get Data Ready interrupt enabled setting.
Gurvan 0:9cb9445a11f0 1755 * This event occurs each time a write operation to all of the sensor registers
Gurvan 0:9cb9445a11f0 1756 * has been completed. Will be set 0 for disabled, 1 for enabled.
Gurvan 0:9cb9445a11f0 1757 * @return Current interrupt enabled status
Gurvan 0:9cb9445a11f0 1758 * @see MPU6050_RA_INT_ENABLE
Gurvan 0:9cb9445a11f0 1759 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Gurvan 0:9cb9445a11f0 1760 */
Gurvan 0:9cb9445a11f0 1761 bool MPU6050::getIntDataReadyEnabled()
Gurvan 0:9cb9445a11f0 1762 {
Gurvan 0:9cb9445a11f0 1763 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
Gurvan 0:9cb9445a11f0 1764 return buffer[0];
Gurvan 0:9cb9445a11f0 1765 }
Gurvan 0:9cb9445a11f0 1766 /** Set Data Ready interrupt enabled status.
Gurvan 0:9cb9445a11f0 1767 * @param enabled New interrupt enabled status
Gurvan 0:9cb9445a11f0 1768 * @see getIntDataReadyEnabled()
Gurvan 0:9cb9445a11f0 1769 * @see MPU6050_RA_INT_CFG
Gurvan 0:9cb9445a11f0 1770 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Gurvan 0:9cb9445a11f0 1771 */
Gurvan 0:9cb9445a11f0 1772 void MPU6050::setIntDataReadyEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 1773 {
Gurvan 0:9cb9445a11f0 1774 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
Gurvan 0:9cb9445a11f0 1775 }
Gurvan 0:9cb9445a11f0 1776
Gurvan 0:9cb9445a11f0 1777 // INT_STATUS register
Gurvan 0:9cb9445a11f0 1778
Gurvan 0:9cb9445a11f0 1779 /** Get full set of interrupt status bits.
Gurvan 0:9cb9445a11f0 1780 * These bits clear to 0 after the register has been read. Very useful
Gurvan 0:9cb9445a11f0 1781 * for getting multiple INT statuses, since each single bit read clears
Gurvan 0:9cb9445a11f0 1782 * all of them because it has to read the whole byte.
Gurvan 0:9cb9445a11f0 1783 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1784 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1785 */
Gurvan 0:9cb9445a11f0 1786 uint8_t MPU6050::getIntStatus()
Gurvan 0:9cb9445a11f0 1787 {
Gurvan 0:9cb9445a11f0 1788 i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
Gurvan 0:9cb9445a11f0 1789 return buffer[0];
Gurvan 0:9cb9445a11f0 1790 }
Gurvan 0:9cb9445a11f0 1791 /** Get Free Fall interrupt status.
Gurvan 0:9cb9445a11f0 1792 * This bit automatically sets to 1 when a Free Fall interrupt has been
Gurvan 0:9cb9445a11f0 1793 * generated. The bit clears to 0 after the register has been read.
Gurvan 0:9cb9445a11f0 1794 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1795 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1796 * @see MPU6050_INTERRUPT_FF_BIT
Gurvan 0:9cb9445a11f0 1797 */
Gurvan 0:9cb9445a11f0 1798 bool MPU6050::getIntFreefallStatus()
Gurvan 0:9cb9445a11f0 1799 {
Gurvan 0:9cb9445a11f0 1800 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
Gurvan 0:9cb9445a11f0 1801 return buffer[0];
Gurvan 0:9cb9445a11f0 1802 }
Gurvan 0:9cb9445a11f0 1803 /** Get Motion Detection interrupt status.
Gurvan 0:9cb9445a11f0 1804 * This bit automatically sets to 1 when a Motion Detection interrupt has been
Gurvan 0:9cb9445a11f0 1805 * generated. The bit clears to 0 after the register has been read.
Gurvan 0:9cb9445a11f0 1806 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1807 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1808 * @see MPU6050_INTERRUPT_MOT_BIT
Gurvan 0:9cb9445a11f0 1809 */
Gurvan 0:9cb9445a11f0 1810 bool MPU6050::getIntMotionStatus()
Gurvan 0:9cb9445a11f0 1811 {
Gurvan 0:9cb9445a11f0 1812 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
Gurvan 0:9cb9445a11f0 1813 return buffer[0];
Gurvan 0:9cb9445a11f0 1814 }
Gurvan 0:9cb9445a11f0 1815 /** Get Zero Motion Detection interrupt status.
Gurvan 0:9cb9445a11f0 1816 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
Gurvan 0:9cb9445a11f0 1817 * been generated. The bit clears to 0 after the register has been read.
Gurvan 0:9cb9445a11f0 1818 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1819 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1820 * @see MPU6050_INTERRUPT_ZMOT_BIT
Gurvan 0:9cb9445a11f0 1821 */
Gurvan 0:9cb9445a11f0 1822 bool MPU6050::getIntZeroMotionStatus()
Gurvan 0:9cb9445a11f0 1823 {
Gurvan 0:9cb9445a11f0 1824 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
Gurvan 0:9cb9445a11f0 1825 return buffer[0];
Gurvan 0:9cb9445a11f0 1826 }
Gurvan 0:9cb9445a11f0 1827 /** Get FIFO Buffer Overflow interrupt status.
Gurvan 0:9cb9445a11f0 1828 * This bit automatically sets to 1 when a Free Fall interrupt has been
Gurvan 0:9cb9445a11f0 1829 * generated. The bit clears to 0 after the register has been read.
Gurvan 0:9cb9445a11f0 1830 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1831 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1832 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Gurvan 0:9cb9445a11f0 1833 */
Gurvan 0:9cb9445a11f0 1834 bool MPU6050::getIntFIFOBufferOverflowStatus()
Gurvan 0:9cb9445a11f0 1835 {
Gurvan 0:9cb9445a11f0 1836 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
Gurvan 0:9cb9445a11f0 1837 return buffer[0];
Gurvan 0:9cb9445a11f0 1838 }
Gurvan 0:9cb9445a11f0 1839 /** Get I2C Master interrupt status.
Gurvan 0:9cb9445a11f0 1840 * This bit automatically sets to 1 when an I2C Master interrupt has been
Gurvan 0:9cb9445a11f0 1841 * generated. For a list of I2C Master interrupts, please refer to Register 54.
Gurvan 0:9cb9445a11f0 1842 * The bit clears to 0 after the register has been read.
Gurvan 0:9cb9445a11f0 1843 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1844 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1845 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Gurvan 0:9cb9445a11f0 1846 */
Gurvan 0:9cb9445a11f0 1847 bool MPU6050::getIntI2CMasterStatus()
Gurvan 0:9cb9445a11f0 1848 {
Gurvan 0:9cb9445a11f0 1849 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
Gurvan 0:9cb9445a11f0 1850 return buffer[0];
Gurvan 0:9cb9445a11f0 1851 }
Gurvan 0:9cb9445a11f0 1852 /** Get Data Ready interrupt status.
Gurvan 0:9cb9445a11f0 1853 * This bit automatically sets to 1 when a Data Ready interrupt has been
Gurvan 0:9cb9445a11f0 1854 * generated. The bit clears to 0 after the register has been read.
Gurvan 0:9cb9445a11f0 1855 * @return Current interrupt status
Gurvan 0:9cb9445a11f0 1856 * @see MPU6050_RA_INT_STATUS
Gurvan 0:9cb9445a11f0 1857 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Gurvan 0:9cb9445a11f0 1858 */
Gurvan 0:9cb9445a11f0 1859 bool MPU6050::getIntDataReadyStatus()
Gurvan 0:9cb9445a11f0 1860 {
Gurvan 0:9cb9445a11f0 1861 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
Gurvan 0:9cb9445a11f0 1862 return buffer[0];
Gurvan 0:9cb9445a11f0 1863 }
Gurvan 0:9cb9445a11f0 1864
Gurvan 0:9cb9445a11f0 1865 // ACCEL_*OUT_* registers
Gurvan 0:9cb9445a11f0 1866
Gurvan 0:9cb9445a11f0 1867 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
Gurvan 0:9cb9445a11f0 1868 * FUNCTION NOT FULLY IMPLEMENTED YET.
Gurvan 0:9cb9445a11f0 1869 * @param ax 16-bit signed integer container for accelerometer X-axis value
Gurvan 0:9cb9445a11f0 1870 * @param ay 16-bit signed integer container for accelerometer Y-axis value
Gurvan 0:9cb9445a11f0 1871 * @param az 16-bit signed integer container for accelerometer Z-axis value
Gurvan 0:9cb9445a11f0 1872 * @param gx 16-bit signed integer container for gyroscope X-axis value
Gurvan 0:9cb9445a11f0 1873 * @param gy 16-bit signed integer container for gyroscope Y-axis value
Gurvan 0:9cb9445a11f0 1874 * @param gz 16-bit signed integer container for gyroscope Z-axis value
Gurvan 0:9cb9445a11f0 1875 * @param mx 16-bit signed integer container for magnetometer X-axis value
Gurvan 0:9cb9445a11f0 1876 * @param my 16-bit signed integer container for magnetometer Y-axis value
Gurvan 0:9cb9445a11f0 1877 * @param mz 16-bit signed integer container for magnetometer Z-axis value
Gurvan 0:9cb9445a11f0 1878 * @see getMotion6()
Gurvan 0:9cb9445a11f0 1879 * @see getAcceleration()
Gurvan 0:9cb9445a11f0 1880 * @see getRotation()
Gurvan 0:9cb9445a11f0 1881 * @see MPU6050_RA_ACCEL_XOUT_H
Gurvan 0:9cb9445a11f0 1882 */
Gurvan 0:9cb9445a11f0 1883 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
Gurvan 0:9cb9445a11f0 1884 {
Gurvan 0:9cb9445a11f0 1885 getMotion6(ax, ay, az, gx, gy, gz);
Gurvan 0:9cb9445a11f0 1886 // TODO: magnetometer integration
Gurvan 0:9cb9445a11f0 1887 }
Gurvan 0:9cb9445a11f0 1888 /** Get raw 6-axis motion sensor readings (accel/gyro).
Gurvan 0:9cb9445a11f0 1889 * Retrieves all currently available motion sensor values.
Gurvan 0:9cb9445a11f0 1890 * @param ax 16-bit signed integer container for accelerometer X-axis value
Gurvan 0:9cb9445a11f0 1891 * @param ay 16-bit signed integer container for accelerometer Y-axis value
Gurvan 0:9cb9445a11f0 1892 * @param az 16-bit signed integer container for accelerometer Z-axis value
Gurvan 0:9cb9445a11f0 1893 * @param gx 16-bit signed integer container for gyroscope X-axis value
Gurvan 0:9cb9445a11f0 1894 * @param gy 16-bit signed integer container for gyroscope Y-axis value
Gurvan 0:9cb9445a11f0 1895 * @param gz 16-bit signed integer container for gyroscope Z-axis value
Gurvan 0:9cb9445a11f0 1896 * @see getAcceleration()
Gurvan 0:9cb9445a11f0 1897 * @see getRotation()
Gurvan 0:9cb9445a11f0 1898 * @see MPU6050_RA_ACCEL_XOUT_H
Gurvan 0:9cb9445a11f0 1899 */
Gurvan 0:9cb9445a11f0 1900 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
Gurvan 0:9cb9445a11f0 1901 {
Gurvan 0:9cb9445a11f0 1902 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
Gurvan 0:9cb9445a11f0 1903 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 1904 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
Gurvan 0:9cb9445a11f0 1905 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
Gurvan 0:9cb9445a11f0 1906 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
Gurvan 0:9cb9445a11f0 1907 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
Gurvan 0:9cb9445a11f0 1908 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
Gurvan 0:9cb9445a11f0 1909 }
Gurvan 0:9cb9445a11f0 1910 /** Get 3-axis accelerometer readings.
Gurvan 0:9cb9445a11f0 1911 * These registers store the most recent accelerometer measurements.
Gurvan 0:9cb9445a11f0 1912 * Accelerometer measurements are written to these registers at the Sample Rate
Gurvan 0:9cb9445a11f0 1913 * as defined in Register 25.
Gurvan 0:9cb9445a11f0 1914 *
Gurvan 0:9cb9445a11f0 1915 * The accelerometer measurement registers, along with the temperature
Gurvan 0:9cb9445a11f0 1916 * measurement registers, gyroscope measurement registers, and external sensor
Gurvan 0:9cb9445a11f0 1917 * data registers, are composed of two sets of registers: an internal register
Gurvan 0:9cb9445a11f0 1918 * set and a user-facing read register set.
Gurvan 0:9cb9445a11f0 1919 *
Gurvan 0:9cb9445a11f0 1920 * The data within the accelerometer sensors' internal register set is always
Gurvan 0:9cb9445a11f0 1921 * updated at the Sample Rate. Meanwhile, the user-facing read register set
Gurvan 0:9cb9445a11f0 1922 * duplicates the internal register set's data values whenever the serial
Gurvan 0:9cb9445a11f0 1923 * interface is idle. This guarantees that a burst read of sensor registers will
Gurvan 0:9cb9445a11f0 1924 * read measurements from the same sampling instant. Note that if burst reads
Gurvan 0:9cb9445a11f0 1925 * are not used, the user is responsible for ensuring a set of single byte reads
Gurvan 0:9cb9445a11f0 1926 * correspond to a single sampling instant by checking the Data Ready interrupt.
Gurvan 0:9cb9445a11f0 1927 *
Gurvan 0:9cb9445a11f0 1928 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
Gurvan 0:9cb9445a11f0 1929 * (Register 28). For each full scale setting, the accelerometers' sensitivity
Gurvan 0:9cb9445a11f0 1930 * per LSB in ACCEL_xOUT is shown in the table below:
Gurvan 0:9cb9445a11f0 1931 *
Gurvan 0:9cb9445a11f0 1932 * <pre>
Gurvan 0:9cb9445a11f0 1933 * AFS_SEL | Full Scale Range | LSB Sensitivity
Gurvan 0:9cb9445a11f0 1934 * --------+------------------+----------------
Gurvan 0:9cb9445a11f0 1935 * 0 | +/- 2g | 8192 LSB/mg
Gurvan 0:9cb9445a11f0 1936 * 1 | +/- 4g | 4096 LSB/mg
Gurvan 0:9cb9445a11f0 1937 * 2 | +/- 8g | 2048 LSB/mg
Gurvan 0:9cb9445a11f0 1938 * 3 | +/- 16g | 1024 LSB/mg
Gurvan 0:9cb9445a11f0 1939 * </pre>
Gurvan 0:9cb9445a11f0 1940 *
Gurvan 0:9cb9445a11f0 1941 * @param x 16-bit signed integer container for X-axis acceleration
Gurvan 0:9cb9445a11f0 1942 * @param y 16-bit signed integer container for Y-axis acceleration
Gurvan 0:9cb9445a11f0 1943 * @param z 16-bit signed integer container for Z-axis acceleration
Gurvan 0:9cb9445a11f0 1944 * @see MPU6050_RA_GYRO_XOUT_H
Gurvan 0:9cb9445a11f0 1945 */
Gurvan 0:9cb9445a11f0 1946 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
Gurvan 0:9cb9445a11f0 1947 {
Gurvan 0:9cb9445a11f0 1948 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
Gurvan 0:9cb9445a11f0 1949 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 1950 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
Gurvan 0:9cb9445a11f0 1951 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
Gurvan 0:9cb9445a11f0 1952 }
Gurvan 0:9cb9445a11f0 1953 /** Get X-axis accelerometer reading.
Gurvan 0:9cb9445a11f0 1954 * @return X-axis acceleration measurement in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 1955 * @see getMotion6()
Gurvan 0:9cb9445a11f0 1956 * @see MPU6050_RA_ACCEL_XOUT_H
Gurvan 0:9cb9445a11f0 1957 */
Gurvan 0:9cb9445a11f0 1958 int16_t MPU6050::getAccelerationX()
Gurvan 0:9cb9445a11f0 1959 {
Gurvan 0:9cb9445a11f0 1960 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 1961 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 1962 }
Gurvan 0:9cb9445a11f0 1963 /** Get Y-axis accelerometer reading.
Gurvan 0:9cb9445a11f0 1964 * @return Y-axis acceleration measurement in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 1965 * @see getMotion6()
Gurvan 0:9cb9445a11f0 1966 * @see MPU6050_RA_ACCEL_YOUT_H
Gurvan 0:9cb9445a11f0 1967 */
Gurvan 0:9cb9445a11f0 1968 int16_t MPU6050::getAccelerationY()
Gurvan 0:9cb9445a11f0 1969 {
Gurvan 0:9cb9445a11f0 1970 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 1971 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 1972 }
Gurvan 0:9cb9445a11f0 1973 /** Get Z-axis accelerometer reading.
Gurvan 0:9cb9445a11f0 1974 * @return Z-axis acceleration measurement in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 1975 * @see getMotion6()
Gurvan 0:9cb9445a11f0 1976 * @see MPU6050_RA_ACCEL_ZOUT_H
Gurvan 0:9cb9445a11f0 1977 */
Gurvan 0:9cb9445a11f0 1978 int16_t MPU6050::getAccelerationZ()
Gurvan 0:9cb9445a11f0 1979 {
Gurvan 0:9cb9445a11f0 1980 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 1981 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 1982 }
Gurvan 0:9cb9445a11f0 1983
Gurvan 0:9cb9445a11f0 1984 // TEMP_OUT_* registers
Gurvan 0:9cb9445a11f0 1985
Gurvan 0:9cb9445a11f0 1986 /** Get current internal temperature.
Gurvan 0:9cb9445a11f0 1987 * @return Temperature reading in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 1988 * @see MPU6050_RA_TEMP_OUT_H
Gurvan 0:9cb9445a11f0 1989 */
Gurvan 0:9cb9445a11f0 1990 int16_t MPU6050::getTemperature()
Gurvan 0:9cb9445a11f0 1991 {
Gurvan 0:9cb9445a11f0 1992 i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 1993 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 1994 }
Gurvan 0:9cb9445a11f0 1995
Gurvan 0:9cb9445a11f0 1996 // GYRO_*OUT_* registers
Gurvan 0:9cb9445a11f0 1997
Gurvan 0:9cb9445a11f0 1998 /** Get 3-axis gyroscope readings.
Gurvan 0:9cb9445a11f0 1999 * These gyroscope measurement registers, along with the accelerometer
Gurvan 0:9cb9445a11f0 2000 * measurement registers, temperature measurement registers, and external sensor
Gurvan 0:9cb9445a11f0 2001 * data registers, are composed of two sets of registers: an internal register
Gurvan 0:9cb9445a11f0 2002 * set and a user-facing read register set.
Gurvan 0:9cb9445a11f0 2003 * The data within the gyroscope sensors' internal register set is always
Gurvan 0:9cb9445a11f0 2004 * updated at the Sample Rate. Meanwhile, the user-facing read register set
Gurvan 0:9cb9445a11f0 2005 * duplicates the internal register set's data values whenever the serial
Gurvan 0:9cb9445a11f0 2006 * interface is idle. This guarantees that a burst read of sensor registers will
Gurvan 0:9cb9445a11f0 2007 * read measurements from the same sampling instant. Note that if burst reads
Gurvan 0:9cb9445a11f0 2008 * are not used, the user is responsible for ensuring a set of single byte reads
Gurvan 0:9cb9445a11f0 2009 * correspond to a single sampling instant by checking the Data Ready interrupt.
Gurvan 0:9cb9445a11f0 2010 *
Gurvan 0:9cb9445a11f0 2011 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
Gurvan 0:9cb9445a11f0 2012 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
Gurvan 0:9cb9445a11f0 2013 * LSB in GYRO_xOUT is shown in the table below:
Gurvan 0:9cb9445a11f0 2014 *
Gurvan 0:9cb9445a11f0 2015 * <pre>
Gurvan 0:9cb9445a11f0 2016 * FS_SEL | Full Scale Range | LSB Sensitivity
Gurvan 0:9cb9445a11f0 2017 * -------+--------------------+----------------
Gurvan 0:9cb9445a11f0 2018 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
Gurvan 0:9cb9445a11f0 2019 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
Gurvan 0:9cb9445a11f0 2020 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
Gurvan 0:9cb9445a11f0 2021 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
Gurvan 0:9cb9445a11f0 2022 * </pre>
Gurvan 0:9cb9445a11f0 2023 *
Gurvan 0:9cb9445a11f0 2024 * @param x 16-bit signed integer container for X-axis rotation
Gurvan 0:9cb9445a11f0 2025 * @param y 16-bit signed integer container for Y-axis rotation
Gurvan 0:9cb9445a11f0 2026 * @param z 16-bit signed integer container for Z-axis rotation
Gurvan 0:9cb9445a11f0 2027 * @see getMotion6()
Gurvan 0:9cb9445a11f0 2028 * @see MPU6050_RA_GYRO_XOUT_H
Gurvan 0:9cb9445a11f0 2029 */
Gurvan 0:9cb9445a11f0 2030 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
Gurvan 0:9cb9445a11f0 2031 {
Gurvan 0:9cb9445a11f0 2032 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
Gurvan 0:9cb9445a11f0 2033 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 2034 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
Gurvan 0:9cb9445a11f0 2035 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
Gurvan 0:9cb9445a11f0 2036 }
Gurvan 0:9cb9445a11f0 2037 /** Get X-axis gyroscope reading.
Gurvan 0:9cb9445a11f0 2038 * @return X-axis rotation measurement in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 2039 * @see getMotion6()
Gurvan 0:9cb9445a11f0 2040 * @see MPU6050_RA_GYRO_XOUT_H
Gurvan 0:9cb9445a11f0 2041 */
Gurvan 0:9cb9445a11f0 2042 int16_t MPU6050::getRotationX()
Gurvan 0:9cb9445a11f0 2043 {
Gurvan 0:9cb9445a11f0 2044 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 2045 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 2046 }
Gurvan 0:9cb9445a11f0 2047 /** Get Y-axis gyroscope reading.
Gurvan 0:9cb9445a11f0 2048 * @return Y-axis rotation measurement in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 2049 * @see getMotion6()
Gurvan 0:9cb9445a11f0 2050 * @see MPU6050_RA_GYRO_YOUT_H
Gurvan 0:9cb9445a11f0 2051 */
Gurvan 0:9cb9445a11f0 2052 int16_t MPU6050::getRotationY()
Gurvan 0:9cb9445a11f0 2053 {
Gurvan 0:9cb9445a11f0 2054 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 2055 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 2056 }
Gurvan 0:9cb9445a11f0 2057 /** Get Z-axis gyroscope reading.
Gurvan 0:9cb9445a11f0 2058 * @return Z-axis rotation measurement in 16-bit 2's complement format
Gurvan 0:9cb9445a11f0 2059 * @see getMotion6()
Gurvan 0:9cb9445a11f0 2060 * @see MPU6050_RA_GYRO_ZOUT_H
Gurvan 0:9cb9445a11f0 2061 */
Gurvan 0:9cb9445a11f0 2062 int16_t MPU6050::getRotationZ()
Gurvan 0:9cb9445a11f0 2063 {
Gurvan 0:9cb9445a11f0 2064 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
Gurvan 0:9cb9445a11f0 2065 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 2066 }
Gurvan 0:9cb9445a11f0 2067
Gurvan 0:9cb9445a11f0 2068 // EXT_SENS_DATA_* registers
Gurvan 0:9cb9445a11f0 2069
Gurvan 0:9cb9445a11f0 2070 /** Read single byte from external sensor data register.
Gurvan 0:9cb9445a11f0 2071 * These registers store data read from external sensors by the Slave 0, 1, 2,
Gurvan 0:9cb9445a11f0 2072 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
Gurvan 0:9cb9445a11f0 2073 * I2C_SLV4_DI (Register 53).
Gurvan 0:9cb9445a11f0 2074 *
Gurvan 0:9cb9445a11f0 2075 * External sensor data is written to these registers at the Sample Rate as
Gurvan 0:9cb9445a11f0 2076 * defined in Register 25. This access rate can be reduced by using the Slave
Gurvan 0:9cb9445a11f0 2077 * Delay Enable registers (Register 103).
Gurvan 0:9cb9445a11f0 2078 *
Gurvan 0:9cb9445a11f0 2079 * External sensor data registers, along with the gyroscope measurement
Gurvan 0:9cb9445a11f0 2080 * registers, accelerometer measurement registers, and temperature measurement
Gurvan 0:9cb9445a11f0 2081 * registers, are composed of two sets of registers: an internal register set
Gurvan 0:9cb9445a11f0 2082 * and a user-facing read register set.
Gurvan 0:9cb9445a11f0 2083 *
Gurvan 0:9cb9445a11f0 2084 * The data within the external sensors' internal register set is always updated
Gurvan 0:9cb9445a11f0 2085 * at the Sample Rate (or the reduced access rate) whenever the serial interface
Gurvan 0:9cb9445a11f0 2086 * is idle. This guarantees that a burst read of sensor registers will read
Gurvan 0:9cb9445a11f0 2087 * measurements from the same sampling instant. Note that if burst reads are not
Gurvan 0:9cb9445a11f0 2088 * used, the user is responsible for ensuring a set of single byte reads
Gurvan 0:9cb9445a11f0 2089 * correspond to a single sampling instant by checking the Data Ready interrupt.
Gurvan 0:9cb9445a11f0 2090 *
Gurvan 0:9cb9445a11f0 2091 * Data is placed in these external sensor data registers according to
Gurvan 0:9cb9445a11f0 2092 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
Gurvan 0:9cb9445a11f0 2093 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
Gurvan 0:9cb9445a11f0 2094 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
Gurvan 0:9cb9445a11f0 2095 * defined in Register 25) or delayed rate (if specified in Register 52 and
Gurvan 0:9cb9445a11f0 2096 * 103). During each Sample cycle, slave reads are performed in order of Slave
Gurvan 0:9cb9445a11f0 2097 * number. If all slaves are enabled with more than zero bytes to be read, the
Gurvan 0:9cb9445a11f0 2098 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
Gurvan 0:9cb9445a11f0 2099 *
Gurvan 0:9cb9445a11f0 2100 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
Gurvan 0:9cb9445a11f0 2101 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
Gurvan 0:9cb9445a11f0 2102 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
Gurvan 0:9cb9445a11f0 2103 * change the higher numbered slaves' associated registers. Furthermore, if
Gurvan 0:9cb9445a11f0 2104 * fewer total bytes are being read from the external sensors as a result of
Gurvan 0:9cb9445a11f0 2105 * such a change, then the data remaining in the registers which no longer have
Gurvan 0:9cb9445a11f0 2106 * an associated slave device (i.e. high numbered registers) will remain in
Gurvan 0:9cb9445a11f0 2107 * these previously allocated registers unless reset.
Gurvan 0:9cb9445a11f0 2108 *
Gurvan 0:9cb9445a11f0 2109 * If the sum of the read lengths of all SLVx transactions exceed the number of
Gurvan 0:9cb9445a11f0 2110 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
Gurvan 0:9cb9445a11f0 2111 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
Gurvan 0:9cb9445a11f0 2112 * the slaves cannot be greater than 24 or some bytes will be lost.
Gurvan 0:9cb9445a11f0 2113 *
Gurvan 0:9cb9445a11f0 2114 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
Gurvan 0:9cb9445a11f0 2115 * information regarding the characteristics of Slave 4, please refer to
Gurvan 0:9cb9445a11f0 2116 * Registers 49 to 53.
Gurvan 0:9cb9445a11f0 2117 *
Gurvan 0:9cb9445a11f0 2118 * EXAMPLE:
Gurvan 0:9cb9445a11f0 2119 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
Gurvan 0:9cb9445a11f0 2120 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
Gurvan 0:9cb9445a11f0 2121 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
Gurvan 0:9cb9445a11f0 2122 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
Gurvan 0:9cb9445a11f0 2123 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
Gurvan 0:9cb9445a11f0 2124 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
Gurvan 0:9cb9445a11f0 2125 *
Gurvan 0:9cb9445a11f0 2126 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
Gurvan 0:9cb9445a11f0 2127 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
Gurvan 0:9cb9445a11f0 2128 * instead.
Gurvan 0:9cb9445a11f0 2129 *
Gurvan 0:9cb9445a11f0 2130 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
Gurvan 0:9cb9445a11f0 2131 * If a slave is disabled at any time, the space initially allocated to the
Gurvan 0:9cb9445a11f0 2132 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
Gurvan 0:9cb9445a11f0 2133 * This is to avoid dynamic adjustment of the register allocation.
Gurvan 0:9cb9445a11f0 2134 *
Gurvan 0:9cb9445a11f0 2135 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
Gurvan 0:9cb9445a11f0 2136 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
Gurvan 0:9cb9445a11f0 2137 *
Gurvan 0:9cb9445a11f0 2138 * This above is also true if one of the slaves gets NACKed and stops
Gurvan 0:9cb9445a11f0 2139 * functioning.
Gurvan 0:9cb9445a11f0 2140 *
Gurvan 0:9cb9445a11f0 2141 * @param position Starting position (0-23)
Gurvan 0:9cb9445a11f0 2142 * @return Byte read from register
Gurvan 0:9cb9445a11f0 2143 */
Gurvan 0:9cb9445a11f0 2144 uint8_t MPU6050::getExternalSensorByte(int position)
Gurvan 0:9cb9445a11f0 2145 {
Gurvan 0:9cb9445a11f0 2146 i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
Gurvan 0:9cb9445a11f0 2147 return buffer[0];
Gurvan 0:9cb9445a11f0 2148 }
Gurvan 0:9cb9445a11f0 2149 /** Read word (2 bytes) from external sensor data registers.
Gurvan 0:9cb9445a11f0 2150 * @param position Starting position (0-21)
Gurvan 0:9cb9445a11f0 2151 * @return Word read from register
Gurvan 0:9cb9445a11f0 2152 * @see getExternalSensorByte()
Gurvan 0:9cb9445a11f0 2153 */
Gurvan 0:9cb9445a11f0 2154 uint16_t MPU6050::getExternalSensorWord(int position)
Gurvan 0:9cb9445a11f0 2155 {
Gurvan 0:9cb9445a11f0 2156 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
Gurvan 0:9cb9445a11f0 2157 return (((uint16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 2158 }
Gurvan 0:9cb9445a11f0 2159 /** Read double word (4 bytes) from external sensor data registers.
Gurvan 0:9cb9445a11f0 2160 * @param position Starting position (0-20)
Gurvan 0:9cb9445a11f0 2161 * @return Double word read from registers
Gurvan 0:9cb9445a11f0 2162 * @see getExternalSensorByte()
Gurvan 0:9cb9445a11f0 2163 */
Gurvan 0:9cb9445a11f0 2164 uint32_t MPU6050::getExternalSensorDWord(int position)
Gurvan 0:9cb9445a11f0 2165 {
Gurvan 0:9cb9445a11f0 2166 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
Gurvan 0:9cb9445a11f0 2167 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
Gurvan 0:9cb9445a11f0 2168 }
Gurvan 0:9cb9445a11f0 2169
Gurvan 0:9cb9445a11f0 2170 // MOT_DETECT_STATUS register
Gurvan 0:9cb9445a11f0 2171
Gurvan 0:9cb9445a11f0 2172 /** Get X-axis negative motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2173 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2174 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2175 * @see MPU6050_MOTION_MOT_XNEG_BIT
Gurvan 0:9cb9445a11f0 2176 */
Gurvan 0:9cb9445a11f0 2177 bool MPU6050::getXNegMotionDetected()
Gurvan 0:9cb9445a11f0 2178 {
Gurvan 0:9cb9445a11f0 2179 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
Gurvan 0:9cb9445a11f0 2180 return buffer[0];
Gurvan 0:9cb9445a11f0 2181 }
Gurvan 0:9cb9445a11f0 2182 /** Get X-axis positive motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2183 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2184 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2185 * @see MPU6050_MOTION_MOT_XPOS_BIT
Gurvan 0:9cb9445a11f0 2186 */
Gurvan 0:9cb9445a11f0 2187 bool MPU6050::getXPosMotionDetected()
Gurvan 0:9cb9445a11f0 2188 {
Gurvan 0:9cb9445a11f0 2189 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
Gurvan 0:9cb9445a11f0 2190 return buffer[0];
Gurvan 0:9cb9445a11f0 2191 }
Gurvan 0:9cb9445a11f0 2192 /** Get Y-axis negative motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2193 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2194 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2195 * @see MPU6050_MOTION_MOT_YNEG_BIT
Gurvan 0:9cb9445a11f0 2196 */
Gurvan 0:9cb9445a11f0 2197 bool MPU6050::getYNegMotionDetected()
Gurvan 0:9cb9445a11f0 2198 {
Gurvan 0:9cb9445a11f0 2199 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
Gurvan 0:9cb9445a11f0 2200 return buffer[0];
Gurvan 0:9cb9445a11f0 2201 }
Gurvan 0:9cb9445a11f0 2202 /** Get Y-axis positive motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2203 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2204 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2205 * @see MPU6050_MOTION_MOT_YPOS_BIT
Gurvan 0:9cb9445a11f0 2206 */
Gurvan 0:9cb9445a11f0 2207 bool MPU6050::getYPosMotionDetected()
Gurvan 0:9cb9445a11f0 2208 {
Gurvan 0:9cb9445a11f0 2209 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
Gurvan 0:9cb9445a11f0 2210 return buffer[0];
Gurvan 0:9cb9445a11f0 2211 }
Gurvan 0:9cb9445a11f0 2212 /** Get Z-axis negative motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2213 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2214 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2215 * @see MPU6050_MOTION_MOT_ZNEG_BIT
Gurvan 0:9cb9445a11f0 2216 */
Gurvan 0:9cb9445a11f0 2217 bool MPU6050::getZNegMotionDetected()
Gurvan 0:9cb9445a11f0 2218 {
Gurvan 0:9cb9445a11f0 2219 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
Gurvan 0:9cb9445a11f0 2220 return buffer[0];
Gurvan 0:9cb9445a11f0 2221 }
Gurvan 0:9cb9445a11f0 2222 /** Get Z-axis positive motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2223 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2224 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2225 * @see MPU6050_MOTION_MOT_ZPOS_BIT
Gurvan 0:9cb9445a11f0 2226 */
Gurvan 0:9cb9445a11f0 2227 bool MPU6050::getZPosMotionDetected()
Gurvan 0:9cb9445a11f0 2228 {
Gurvan 0:9cb9445a11f0 2229 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
Gurvan 0:9cb9445a11f0 2230 return buffer[0];
Gurvan 0:9cb9445a11f0 2231 }
Gurvan 0:9cb9445a11f0 2232 /** Get zero motion detection interrupt status.
Gurvan 0:9cb9445a11f0 2233 * @return Motion detection status
Gurvan 0:9cb9445a11f0 2234 * @see MPU6050_RA_MOT_DETECT_STATUS
Gurvan 0:9cb9445a11f0 2235 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
Gurvan 0:9cb9445a11f0 2236 */
Gurvan 0:9cb9445a11f0 2237 bool MPU6050::getZeroMotionDetected()
Gurvan 0:9cb9445a11f0 2238 {
Gurvan 0:9cb9445a11f0 2239 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
Gurvan 0:9cb9445a11f0 2240 return buffer[0];
Gurvan 0:9cb9445a11f0 2241 }
Gurvan 0:9cb9445a11f0 2242
Gurvan 0:9cb9445a11f0 2243 // I2C_SLV*_DO register
Gurvan 0:9cb9445a11f0 2244
Gurvan 0:9cb9445a11f0 2245 /** Write byte to Data Output container for specified slave.
Gurvan 0:9cb9445a11f0 2246 * This register holds the output data written into Slave when Slave is set to
Gurvan 0:9cb9445a11f0 2247 * write mode. For further information regarding Slave control, please
Gurvan 0:9cb9445a11f0 2248 * refer to Registers 37 to 39 and immediately following.
Gurvan 0:9cb9445a11f0 2249 * @param num Slave number (0-3)
Gurvan 0:9cb9445a11f0 2250 * @param data Byte to write
Gurvan 0:9cb9445a11f0 2251 * @see MPU6050_RA_I2C_SLV0_DO
Gurvan 0:9cb9445a11f0 2252 */
Gurvan 0:9cb9445a11f0 2253 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
Gurvan 0:9cb9445a11f0 2254 {
Gurvan 0:9cb9445a11f0 2255 if (num > 3) return;
Gurvan 0:9cb9445a11f0 2256 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
Gurvan 0:9cb9445a11f0 2257 }
Gurvan 0:9cb9445a11f0 2258
Gurvan 0:9cb9445a11f0 2259 // I2C_MST_DELAY_CTRL register
Gurvan 0:9cb9445a11f0 2260
Gurvan 0:9cb9445a11f0 2261 /** Get external data shadow delay enabled status.
Gurvan 0:9cb9445a11f0 2262 * This register is used to specify the timing of external sensor data
Gurvan 0:9cb9445a11f0 2263 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
Gurvan 0:9cb9445a11f0 2264 * sensor data is delayed until all data has been received.
Gurvan 0:9cb9445a11f0 2265 * @return Current external data shadow delay enabled status.
Gurvan 0:9cb9445a11f0 2266 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gurvan 0:9cb9445a11f0 2267 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
Gurvan 0:9cb9445a11f0 2268 */
Gurvan 0:9cb9445a11f0 2269 bool MPU6050::getExternalShadowDelayEnabled()
Gurvan 0:9cb9445a11f0 2270 {
Gurvan 0:9cb9445a11f0 2271 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
Gurvan 0:9cb9445a11f0 2272 return buffer[0];
Gurvan 0:9cb9445a11f0 2273 }
Gurvan 0:9cb9445a11f0 2274 /** Set external data shadow delay enabled status.
Gurvan 0:9cb9445a11f0 2275 * @param enabled New external data shadow delay enabled status.
Gurvan 0:9cb9445a11f0 2276 * @see getExternalShadowDelayEnabled()
Gurvan 0:9cb9445a11f0 2277 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gurvan 0:9cb9445a11f0 2278 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
Gurvan 0:9cb9445a11f0 2279 */
Gurvan 0:9cb9445a11f0 2280 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2281 {
Gurvan 0:9cb9445a11f0 2282 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
Gurvan 0:9cb9445a11f0 2283 }
Gurvan 0:9cb9445a11f0 2284 /** Get slave delay enabled status.
Gurvan 0:9cb9445a11f0 2285 * When a particular slave delay is enabled, the rate of access for the that
Gurvan 0:9cb9445a11f0 2286 * slave device is reduced. When a slave's access rate is decreased relative to
Gurvan 0:9cb9445a11f0 2287 * the Sample Rate, the slave is accessed every:
Gurvan 0:9cb9445a11f0 2288 *
Gurvan 0:9cb9445a11f0 2289 * 1 / (1 + I2C_MST_DLY) Samples
Gurvan 0:9cb9445a11f0 2290 *
Gurvan 0:9cb9445a11f0 2291 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
Gurvan 0:9cb9445a11f0 2292 * and DLPF_CFG (register 26).
Gurvan 0:9cb9445a11f0 2293 *
Gurvan 0:9cb9445a11f0 2294 * For further information regarding I2C_MST_DLY, please refer to register 52.
Gurvan 0:9cb9445a11f0 2295 * For further information regarding the Sample Rate, please refer to register 25.
Gurvan 0:9cb9445a11f0 2296 *
Gurvan 0:9cb9445a11f0 2297 * @param num Slave number (0-4)
Gurvan 0:9cb9445a11f0 2298 * @return Current slave delay enabled status.
Gurvan 0:9cb9445a11f0 2299 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gurvan 0:9cb9445a11f0 2300 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
Gurvan 0:9cb9445a11f0 2301 */
Gurvan 0:9cb9445a11f0 2302 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
Gurvan 0:9cb9445a11f0 2303 {
Gurvan 0:9cb9445a11f0 2304 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
Gurvan 0:9cb9445a11f0 2305 if (num > 4) return 0;
Gurvan 0:9cb9445a11f0 2306 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
Gurvan 0:9cb9445a11f0 2307 return buffer[0];
Gurvan 0:9cb9445a11f0 2308 }
Gurvan 0:9cb9445a11f0 2309 /** Set slave delay enabled status.
Gurvan 0:9cb9445a11f0 2310 * @param num Slave number (0-4)
Gurvan 0:9cb9445a11f0 2311 * @param enabled New slave delay enabled status.
Gurvan 0:9cb9445a11f0 2312 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gurvan 0:9cb9445a11f0 2313 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
Gurvan 0:9cb9445a11f0 2314 */
Gurvan 0:9cb9445a11f0 2315 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
Gurvan 0:9cb9445a11f0 2316 {
Gurvan 0:9cb9445a11f0 2317 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
Gurvan 0:9cb9445a11f0 2318 }
Gurvan 0:9cb9445a11f0 2319
Gurvan 0:9cb9445a11f0 2320 // SIGNAL_PATH_RESET register
Gurvan 0:9cb9445a11f0 2321
Gurvan 0:9cb9445a11f0 2322 /** Reset gyroscope signal path.
Gurvan 0:9cb9445a11f0 2323 * The reset will revert the signal path analog to digital converters and
Gurvan 0:9cb9445a11f0 2324 * filters to their power up configurations.
Gurvan 0:9cb9445a11f0 2325 * @see MPU6050_RA_SIGNAL_PATH_RESET
Gurvan 0:9cb9445a11f0 2326 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
Gurvan 0:9cb9445a11f0 2327 */
Gurvan 0:9cb9445a11f0 2328 void MPU6050::resetGyroscopePath()
Gurvan 0:9cb9445a11f0 2329 {
Gurvan 0:9cb9445a11f0 2330 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2331 }
Gurvan 0:9cb9445a11f0 2332 /** Reset accelerometer signal path.
Gurvan 0:9cb9445a11f0 2333 * The reset will revert the signal path analog to digital converters and
Gurvan 0:9cb9445a11f0 2334 * filters to their power up configurations.
Gurvan 0:9cb9445a11f0 2335 * @see MPU6050_RA_SIGNAL_PATH_RESET
Gurvan 0:9cb9445a11f0 2336 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
Gurvan 0:9cb9445a11f0 2337 */
Gurvan 0:9cb9445a11f0 2338 void MPU6050::resetAccelerometerPath()
Gurvan 0:9cb9445a11f0 2339 {
Gurvan 0:9cb9445a11f0 2340 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2341 }
Gurvan 0:9cb9445a11f0 2342 /** Reset temperature sensor signal path.
Gurvan 0:9cb9445a11f0 2343 * The reset will revert the signal path analog to digital converters and
Gurvan 0:9cb9445a11f0 2344 * filters to their power up configurations.
Gurvan 0:9cb9445a11f0 2345 * @see MPU6050_RA_SIGNAL_PATH_RESET
Gurvan 0:9cb9445a11f0 2346 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
Gurvan 0:9cb9445a11f0 2347 */
Gurvan 0:9cb9445a11f0 2348 void MPU6050::resetTemperaturePath()
Gurvan 0:9cb9445a11f0 2349 {
Gurvan 0:9cb9445a11f0 2350 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2351 }
Gurvan 0:9cb9445a11f0 2352
Gurvan 0:9cb9445a11f0 2353 // MOT_DETECT_CTRL register
Gurvan 0:9cb9445a11f0 2354
Gurvan 0:9cb9445a11f0 2355 /** Get accelerometer power-on delay.
Gurvan 0:9cb9445a11f0 2356 * The accelerometer data path provides samples to the sensor registers, Motion
Gurvan 0:9cb9445a11f0 2357 * detection, Zero Motion detection, and Free Fall detection modules. The
Gurvan 0:9cb9445a11f0 2358 * signal path contains filters which must be flushed on wake-up with new
Gurvan 0:9cb9445a11f0 2359 * samples before the detection modules begin operations. The default wake-up
Gurvan 0:9cb9445a11f0 2360 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
Gurvan 0:9cb9445a11f0 2361 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
Gurvan 0:9cb9445a11f0 2362 * any value above zero unless instructed otherwise by InvenSense. Please refer
Gurvan 0:9cb9445a11f0 2363 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
Gurvan 0:9cb9445a11f0 2364 * further information regarding the detection modules.
Gurvan 0:9cb9445a11f0 2365 * @return Current accelerometer power-on delay
Gurvan 0:9cb9445a11f0 2366 * @see MPU6050_RA_MOT_DETECT_CTRL
Gurvan 0:9cb9445a11f0 2367 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
Gurvan 0:9cb9445a11f0 2368 */
Gurvan 0:9cb9445a11f0 2369 uint8_t MPU6050::getAccelerometerPowerOnDelay()
Gurvan 0:9cb9445a11f0 2370 {
Gurvan 0:9cb9445a11f0 2371 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2372 return buffer[0];
Gurvan 0:9cb9445a11f0 2373 }
Gurvan 0:9cb9445a11f0 2374 /** Set accelerometer power-on delay.
Gurvan 0:9cb9445a11f0 2375 * @param delay New accelerometer power-on delay (0-3)
Gurvan 0:9cb9445a11f0 2376 * @see getAccelerometerPowerOnDelay()
Gurvan 0:9cb9445a11f0 2377 * @see MPU6050_RA_MOT_DETECT_CTRL
Gurvan 0:9cb9445a11f0 2378 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
Gurvan 0:9cb9445a11f0 2379 */
Gurvan 0:9cb9445a11f0 2380 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
Gurvan 0:9cb9445a11f0 2381 {
Gurvan 0:9cb9445a11f0 2382 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
Gurvan 0:9cb9445a11f0 2383 }
Gurvan 0:9cb9445a11f0 2384 /** Get Free Fall detection counter decrement configuration.
Gurvan 0:9cb9445a11f0 2385 * Detection is registered by the Free Fall detection module after accelerometer
Gurvan 0:9cb9445a11f0 2386 * measurements meet their respective threshold conditions over a specified
Gurvan 0:9cb9445a11f0 2387 * number of samples. When the threshold conditions are met, the corresponding
Gurvan 0:9cb9445a11f0 2388 * detection counter increments by 1. The user may control the rate at which the
Gurvan 0:9cb9445a11f0 2389 * detection counter decrements when the threshold condition is not met by
Gurvan 0:9cb9445a11f0 2390 * configuring FF_COUNT. The decrement rate can be set according to the
Gurvan 0:9cb9445a11f0 2391 * following table:
Gurvan 0:9cb9445a11f0 2392 *
Gurvan 0:9cb9445a11f0 2393 * <pre>
Gurvan 0:9cb9445a11f0 2394 * FF_COUNT | Counter Decrement
Gurvan 0:9cb9445a11f0 2395 * ---------+------------------
Gurvan 0:9cb9445a11f0 2396 * 0 | Reset
Gurvan 0:9cb9445a11f0 2397 * 1 | 1
Gurvan 0:9cb9445a11f0 2398 * 2 | 2
Gurvan 0:9cb9445a11f0 2399 * 3 | 4
Gurvan 0:9cb9445a11f0 2400 * </pre>
Gurvan 0:9cb9445a11f0 2401 *
Gurvan 0:9cb9445a11f0 2402 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
Gurvan 0:9cb9445a11f0 2403 * reset the counter to 0. For further information on Free Fall detection,
Gurvan 0:9cb9445a11f0 2404 * please refer to Registers 29 to 32.
Gurvan 0:9cb9445a11f0 2405 *
Gurvan 0:9cb9445a11f0 2406 * @return Current decrement configuration
Gurvan 0:9cb9445a11f0 2407 * @see MPU6050_RA_MOT_DETECT_CTRL
Gurvan 0:9cb9445a11f0 2408 * @see MPU6050_DETECT_FF_COUNT_BIT
Gurvan 0:9cb9445a11f0 2409 */
Gurvan 0:9cb9445a11f0 2410 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
Gurvan 0:9cb9445a11f0 2411 {
Gurvan 0:9cb9445a11f0 2412 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2413 return buffer[0];
Gurvan 0:9cb9445a11f0 2414 }
Gurvan 0:9cb9445a11f0 2415 /** Set Free Fall detection counter decrement configuration.
Gurvan 0:9cb9445a11f0 2416 * @param decrement New decrement configuration value
Gurvan 0:9cb9445a11f0 2417 * @see getFreefallDetectionCounterDecrement()
Gurvan 0:9cb9445a11f0 2418 * @see MPU6050_RA_MOT_DETECT_CTRL
Gurvan 0:9cb9445a11f0 2419 * @see MPU6050_DETECT_FF_COUNT_BIT
Gurvan 0:9cb9445a11f0 2420 */
Gurvan 0:9cb9445a11f0 2421 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
Gurvan 0:9cb9445a11f0 2422 {
Gurvan 0:9cb9445a11f0 2423 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
Gurvan 0:9cb9445a11f0 2424 }
Gurvan 0:9cb9445a11f0 2425 /** Get Motion detection counter decrement configuration.
Gurvan 0:9cb9445a11f0 2426 * Detection is registered by the Motion detection module after accelerometer
Gurvan 0:9cb9445a11f0 2427 * measurements meet their respective threshold conditions over a specified
Gurvan 0:9cb9445a11f0 2428 * number of samples. When the threshold conditions are met, the corresponding
Gurvan 0:9cb9445a11f0 2429 * detection counter increments by 1. The user may control the rate at which the
Gurvan 0:9cb9445a11f0 2430 * detection counter decrements when the threshold condition is not met by
Gurvan 0:9cb9445a11f0 2431 * configuring MOT_COUNT. The decrement rate can be set according to the
Gurvan 0:9cb9445a11f0 2432 * following table:
Gurvan 0:9cb9445a11f0 2433 *
Gurvan 0:9cb9445a11f0 2434 * <pre>
Gurvan 0:9cb9445a11f0 2435 * MOT_COUNT | Counter Decrement
Gurvan 0:9cb9445a11f0 2436 * ----------+------------------
Gurvan 0:9cb9445a11f0 2437 * 0 | Reset
Gurvan 0:9cb9445a11f0 2438 * 1 | 1
Gurvan 0:9cb9445a11f0 2439 * 2 | 2
Gurvan 0:9cb9445a11f0 2440 * 3 | 4
Gurvan 0:9cb9445a11f0 2441 * </pre>
Gurvan 0:9cb9445a11f0 2442 *
Gurvan 0:9cb9445a11f0 2443 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
Gurvan 0:9cb9445a11f0 2444 * reset the counter to 0. For further information on Motion detection,
Gurvan 0:9cb9445a11f0 2445 * please refer to Registers 29 to 32.
Gurvan 0:9cb9445a11f0 2446 *
Gurvan 0:9cb9445a11f0 2447 */
Gurvan 0:9cb9445a11f0 2448 uint8_t MPU6050::getMotionDetectionCounterDecrement()
Gurvan 0:9cb9445a11f0 2449 {
Gurvan 0:9cb9445a11f0 2450 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2451 return buffer[0];
Gurvan 0:9cb9445a11f0 2452 }
Gurvan 0:9cb9445a11f0 2453 /** Set Motion detection counter decrement configuration.
Gurvan 0:9cb9445a11f0 2454 * @param decrement New decrement configuration value
Gurvan 0:9cb9445a11f0 2455 * @see getMotionDetectionCounterDecrement()
Gurvan 0:9cb9445a11f0 2456 * @see MPU6050_RA_MOT_DETECT_CTRL
Gurvan 0:9cb9445a11f0 2457 * @see MPU6050_DETECT_MOT_COUNT_BIT
Gurvan 0:9cb9445a11f0 2458 */
Gurvan 0:9cb9445a11f0 2459 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
Gurvan 0:9cb9445a11f0 2460 {
Gurvan 0:9cb9445a11f0 2461 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
Gurvan 0:9cb9445a11f0 2462 }
Gurvan 0:9cb9445a11f0 2463
Gurvan 0:9cb9445a11f0 2464 // USER_CTRL register
Gurvan 0:9cb9445a11f0 2465
Gurvan 0:9cb9445a11f0 2466 /** Get FIFO enabled status.
Gurvan 0:9cb9445a11f0 2467 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
Gurvan 0:9cb9445a11f0 2468 * cannot be written to or read from while disabled. The FIFO buffer's state
Gurvan 0:9cb9445a11f0 2469 * does not change unless the MPU-60X0 is power cycled.
Gurvan 0:9cb9445a11f0 2470 * @return Current FIFO enabled status
Gurvan 0:9cb9445a11f0 2471 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2472 * @see MPU6050_USERCTRL_FIFO_EN_BIT
Gurvan 0:9cb9445a11f0 2473 */
Gurvan 0:9cb9445a11f0 2474 bool MPU6050::getFIFOEnabled()
Gurvan 0:9cb9445a11f0 2475 {
Gurvan 0:9cb9445a11f0 2476 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 2477 return buffer[0];
Gurvan 0:9cb9445a11f0 2478 }
Gurvan 0:9cb9445a11f0 2479 /** Set FIFO enabled status.
Gurvan 0:9cb9445a11f0 2480 * @param enabled New FIFO enabled status
Gurvan 0:9cb9445a11f0 2481 * @see getFIFOEnabled()
Gurvan 0:9cb9445a11f0 2482 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2483 * @see MPU6050_USERCTRL_FIFO_EN_BIT
Gurvan 0:9cb9445a11f0 2484 */
Gurvan 0:9cb9445a11f0 2485 void MPU6050::setFIFOEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2486 {
Gurvan 0:9cb9445a11f0 2487 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 2488 }
Gurvan 0:9cb9445a11f0 2489 /** Get I2C Master Mode enabled status.
Gurvan 0:9cb9445a11f0 2490 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
Gurvan 0:9cb9445a11f0 2491 * external sensor slave devices on the auxiliary I2C bus. When this bit is
Gurvan 0:9cb9445a11f0 2492 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
Gurvan 0:9cb9445a11f0 2493 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
Gurvan 0:9cb9445a11f0 2494 * enabling Bypass Mode. For further information regarding Bypass Mode, please
Gurvan 0:9cb9445a11f0 2495 * refer to Register 55.
Gurvan 0:9cb9445a11f0 2496 * @return Current I2C Master Mode enabled status
Gurvan 0:9cb9445a11f0 2497 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2498 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
Gurvan 0:9cb9445a11f0 2499 */
Gurvan 0:9cb9445a11f0 2500 bool MPU6050::getI2CMasterModeEnabled()
Gurvan 0:9cb9445a11f0 2501 {
Gurvan 0:9cb9445a11f0 2502 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 2503 return buffer[0];
Gurvan 0:9cb9445a11f0 2504 }
Gurvan 0:9cb9445a11f0 2505 /** Set I2C Master Mode enabled status.
Gurvan 0:9cb9445a11f0 2506 * @param enabled New I2C Master Mode enabled status
Gurvan 0:9cb9445a11f0 2507 * @see getI2CMasterModeEnabled()
Gurvan 0:9cb9445a11f0 2508 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2509 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
Gurvan 0:9cb9445a11f0 2510 */
Gurvan 0:9cb9445a11f0 2511 void MPU6050::setI2CMasterModeEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2512 {
Gurvan 0:9cb9445a11f0 2513 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 2514 }
Gurvan 0:9cb9445a11f0 2515 /** Switch from I2C to SPI mode (MPU-6000 only)
Gurvan 0:9cb9445a11f0 2516 * If this is set, the primary SPI interface will be enabled in place of the
Gurvan 0:9cb9445a11f0 2517 * disabled primary I2C interface.
Gurvan 0:9cb9445a11f0 2518 */
Gurvan 0:9cb9445a11f0 2519 void MPU6050::switchSPIEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2520 {
Gurvan 0:9cb9445a11f0 2521 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
Gurvan 0:9cb9445a11f0 2522 }
Gurvan 0:9cb9445a11f0 2523 /** Reset the FIFO.
Gurvan 0:9cb9445a11f0 2524 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
Gurvan 0:9cb9445a11f0 2525 * bit automatically clears to 0 after the reset has been triggered.
Gurvan 0:9cb9445a11f0 2526 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2527 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
Gurvan 0:9cb9445a11f0 2528 */
Gurvan 0:9cb9445a11f0 2529 void MPU6050::resetFIFO()
Gurvan 0:9cb9445a11f0 2530 {
Gurvan 0:9cb9445a11f0 2531 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2532 }
Gurvan 0:9cb9445a11f0 2533 /** Reset the I2C Master.
Gurvan 0:9cb9445a11f0 2534 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
Gurvan 0:9cb9445a11f0 2535 * This bit automatically clears to 0 after the reset has been triggered.
Gurvan 0:9cb9445a11f0 2536 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2537 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
Gurvan 0:9cb9445a11f0 2538 */
Gurvan 0:9cb9445a11f0 2539 void MPU6050::resetI2CMaster()
Gurvan 0:9cb9445a11f0 2540 {
Gurvan 0:9cb9445a11f0 2541 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2542 }
Gurvan 0:9cb9445a11f0 2543 /** Reset all sensor registers and signal paths.
Gurvan 0:9cb9445a11f0 2544 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
Gurvan 0:9cb9445a11f0 2545 * accelerometers, and temperature sensor). This operation will also clear the
Gurvan 0:9cb9445a11f0 2546 * sensor registers. This bit automatically clears to 0 after the reset has been
Gurvan 0:9cb9445a11f0 2547 * triggered.
Gurvan 0:9cb9445a11f0 2548 *
Gurvan 0:9cb9445a11f0 2549 * When resetting only the signal path (and not the sensor registers), please
Gurvan 0:9cb9445a11f0 2550 * use Register 104, SIGNAL_PATH_RESET.
Gurvan 0:9cb9445a11f0 2551 *
Gurvan 0:9cb9445a11f0 2552 * @see MPU6050_RA_USER_CTRL
Gurvan 0:9cb9445a11f0 2553 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
Gurvan 0:9cb9445a11f0 2554 */
Gurvan 0:9cb9445a11f0 2555 void MPU6050::resetSensors()
Gurvan 0:9cb9445a11f0 2556 {
Gurvan 0:9cb9445a11f0 2557 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2558 }
Gurvan 0:9cb9445a11f0 2559
Gurvan 0:9cb9445a11f0 2560 // PWR_MGMT_1 register
Gurvan 0:9cb9445a11f0 2561
Gurvan 0:9cb9445a11f0 2562 /** Trigger a full device reset.
Gurvan 0:9cb9445a11f0 2563 * A small delay of ~50ms may be desirable after triggering a reset.
Gurvan 0:9cb9445a11f0 2564 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2565 * @see MPU6050_PWR1_DEVICE_RESET_BIT
Gurvan 0:9cb9445a11f0 2566 */
Gurvan 0:9cb9445a11f0 2567 void MPU6050::reset()
Gurvan 0:9cb9445a11f0 2568 {
Gurvan 0:9cb9445a11f0 2569 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 2570 }
Gurvan 0:9cb9445a11f0 2571 /** Get sleep mode status.
Gurvan 0:9cb9445a11f0 2572 * Setting the SLEEP bit in the register puts the device into very low power
Gurvan 0:9cb9445a11f0 2573 * sleep mode. In this mode, only the serial interface and internal registers
Gurvan 0:9cb9445a11f0 2574 * remain active, allowing for a very low standby current. Clearing this bit
Gurvan 0:9cb9445a11f0 2575 * puts the device back into normal mode. To save power, the individual standby
Gurvan 0:9cb9445a11f0 2576 * selections for each of the gyros should be used if any gyro axis is not used
Gurvan 0:9cb9445a11f0 2577 * by the application.
Gurvan 0:9cb9445a11f0 2578 * @return Current sleep mode enabled status
Gurvan 0:9cb9445a11f0 2579 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2580 * @see MPU6050_PWR1_SLEEP_BIT
Gurvan 0:9cb9445a11f0 2581 */
Gurvan 0:9cb9445a11f0 2582 bool MPU6050::getSleepEnabled()
Gurvan 0:9cb9445a11f0 2583 {
Gurvan 0:9cb9445a11f0 2584 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
Gurvan 0:9cb9445a11f0 2585 return buffer[0];
Gurvan 0:9cb9445a11f0 2586 }
Gurvan 0:9cb9445a11f0 2587 /** Set sleep mode status.
Gurvan 0:9cb9445a11f0 2588 * @param enabled New sleep mode enabled status
Gurvan 0:9cb9445a11f0 2589 * @see getSleepEnabled()
Gurvan 0:9cb9445a11f0 2590 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2591 * @see MPU6050_PWR1_SLEEP_BIT
Gurvan 0:9cb9445a11f0 2592 */
Gurvan 0:9cb9445a11f0 2593 void MPU6050::setSleepEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2594 {
Gurvan 0:9cb9445a11f0 2595 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
Gurvan 0:9cb9445a11f0 2596 }
Gurvan 0:9cb9445a11f0 2597 /** Get wake cycle enabled status.
Gurvan 0:9cb9445a11f0 2598 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
Gurvan 0:9cb9445a11f0 2599 * between sleep mode and waking up to take a single sample of data from active
Gurvan 0:9cb9445a11f0 2600 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
Gurvan 0:9cb9445a11f0 2601 * @return Current sleep mode enabled status
Gurvan 0:9cb9445a11f0 2602 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2603 * @see MPU6050_PWR1_CYCLE_BIT
Gurvan 0:9cb9445a11f0 2604 */
Gurvan 0:9cb9445a11f0 2605 bool MPU6050::getWakeCycleEnabled()
Gurvan 0:9cb9445a11f0 2606 {
Gurvan 0:9cb9445a11f0 2607 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
Gurvan 0:9cb9445a11f0 2608 return buffer[0];
Gurvan 0:9cb9445a11f0 2609 }
Gurvan 0:9cb9445a11f0 2610 /** Set wake cycle enabled status.
Gurvan 0:9cb9445a11f0 2611 * @param enabled New sleep mode enabled status
Gurvan 0:9cb9445a11f0 2612 * @see getWakeCycleEnabled()
Gurvan 0:9cb9445a11f0 2613 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2614 * @see MPU6050_PWR1_CYCLE_BIT
Gurvan 0:9cb9445a11f0 2615 */
Gurvan 0:9cb9445a11f0 2616 void MPU6050::setWakeCycleEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2617 {
Gurvan 0:9cb9445a11f0 2618 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
Gurvan 0:9cb9445a11f0 2619 }
Gurvan 0:9cb9445a11f0 2620 /** Get temperature sensor enabled status.
Gurvan 0:9cb9445a11f0 2621 * Control the usage of the internal temperature sensor.
Gurvan 0:9cb9445a11f0 2622 *
Gurvan 0:9cb9445a11f0 2623 * Note: this register stores the *disabled* value, but for consistency with the
Gurvan 0:9cb9445a11f0 2624 * rest of the code, the function is named and used with standard true/false
Gurvan 0:9cb9445a11f0 2625 * values to indicate whether the sensor is enabled or disabled, respectively.
Gurvan 0:9cb9445a11f0 2626 *
Gurvan 0:9cb9445a11f0 2627 * @return Current temperature sensor enabled status
Gurvan 0:9cb9445a11f0 2628 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2629 * @see MPU6050_PWR1_TEMP_DIS_BIT
Gurvan 0:9cb9445a11f0 2630 */
Gurvan 0:9cb9445a11f0 2631 bool MPU6050::getTempSensorEnabled()
Gurvan 0:9cb9445a11f0 2632 {
Gurvan 0:9cb9445a11f0 2633 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
Gurvan 0:9cb9445a11f0 2634 return buffer[0] == 0; // 1 is actually disabled here
Gurvan 0:9cb9445a11f0 2635 }
Gurvan 0:9cb9445a11f0 2636 /** Set temperature sensor enabled status.
Gurvan 0:9cb9445a11f0 2637 * Note: this register stores the *disabled* value, but for consistency with the
Gurvan 0:9cb9445a11f0 2638 * rest of the code, the function is named and used with standard true/false
Gurvan 0:9cb9445a11f0 2639 * values to indicate whether the sensor is enabled or disabled, respectively.
Gurvan 0:9cb9445a11f0 2640 *
Gurvan 0:9cb9445a11f0 2641 * @param enabled New temperature sensor enabled status
Gurvan 0:9cb9445a11f0 2642 * @see getTempSensorEnabled()
Gurvan 0:9cb9445a11f0 2643 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2644 * @see MPU6050_PWR1_TEMP_DIS_BIT
Gurvan 0:9cb9445a11f0 2645 */
Gurvan 0:9cb9445a11f0 2646 void MPU6050::setTempSensorEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2647 {
Gurvan 0:9cb9445a11f0 2648 // 1 is actually disabled here
Gurvan 0:9cb9445a11f0 2649 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
Gurvan 0:9cb9445a11f0 2650 }
Gurvan 0:9cb9445a11f0 2651 /** Get clock source setting.
Gurvan 0:9cb9445a11f0 2652 * @return Current clock source setting
Gurvan 0:9cb9445a11f0 2653 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2654 * @see MPU6050_PWR1_CLKSEL_BIT
Gurvan 0:9cb9445a11f0 2655 * @see MPU6050_PWR1_CLKSEL_LENGTH
Gurvan 0:9cb9445a11f0 2656 */
Gurvan 0:9cb9445a11f0 2657 uint8_t MPU6050::getClockSource()
Gurvan 0:9cb9445a11f0 2658 {
Gurvan 0:9cb9445a11f0 2659 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2660 return buffer[0];
Gurvan 0:9cb9445a11f0 2661 }
Gurvan 0:9cb9445a11f0 2662 /** Set clock source setting.
Gurvan 0:9cb9445a11f0 2663 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
Gurvan 0:9cb9445a11f0 2664 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
Gurvan 0:9cb9445a11f0 2665 * or an external source is chosen as the clock source, the MPU-60X0 can operate
Gurvan 0:9cb9445a11f0 2666 * in low power modes with the gyroscopes disabled.
Gurvan 0:9cb9445a11f0 2667 *
Gurvan 0:9cb9445a11f0 2668 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
Gurvan 0:9cb9445a11f0 2669 * However, it is highly recommended that the device be configured to use one of
Gurvan 0:9cb9445a11f0 2670 * the gyroscopes (or an external clock source) as the clock reference for
Gurvan 0:9cb9445a11f0 2671 * improved stability. The clock source can be selected according to the following table:
Gurvan 0:9cb9445a11f0 2672 *
Gurvan 0:9cb9445a11f0 2673 * <pre>
Gurvan 0:9cb9445a11f0 2674 * CLK_SEL | Clock Source
Gurvan 0:9cb9445a11f0 2675 * --------+--------------------------------------
Gurvan 0:9cb9445a11f0 2676 * 0 | Internal oscillator
Gurvan 0:9cb9445a11f0 2677 * 1 | PLL with X Gyro reference
Gurvan 0:9cb9445a11f0 2678 * 2 | PLL with Y Gyro reference
Gurvan 0:9cb9445a11f0 2679 * 3 | PLL with Z Gyro reference
Gurvan 0:9cb9445a11f0 2680 * 4 | PLL with external 32.768kHz reference
Gurvan 0:9cb9445a11f0 2681 * 5 | PLL with external 19.2MHz reference
Gurvan 0:9cb9445a11f0 2682 * 6 | Reserved
Gurvan 0:9cb9445a11f0 2683 * 7 | Stops the clock and keeps the timing generator in reset
Gurvan 0:9cb9445a11f0 2684 * </pre>
Gurvan 0:9cb9445a11f0 2685 *
Gurvan 0:9cb9445a11f0 2686 * @param source New clock source setting
Gurvan 0:9cb9445a11f0 2687 * @see getClockSource()
Gurvan 0:9cb9445a11f0 2688 * @see MPU6050_RA_PWR_MGMT_1
Gurvan 0:9cb9445a11f0 2689 * @see MPU6050_PWR1_CLKSEL_BIT
Gurvan 0:9cb9445a11f0 2690 * @see MPU6050_PWR1_CLKSEL_LENGTH
Gurvan 0:9cb9445a11f0 2691 */
Gurvan 0:9cb9445a11f0 2692 void MPU6050::setClockSource(uint8_t source)
Gurvan 0:9cb9445a11f0 2693 {
Gurvan 0:9cb9445a11f0 2694 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
Gurvan 0:9cb9445a11f0 2695 }
Gurvan 0:9cb9445a11f0 2696
Gurvan 0:9cb9445a11f0 2697 // PWR_MGMT_2 register
Gurvan 0:9cb9445a11f0 2698
Gurvan 0:9cb9445a11f0 2699 /** Get wake frequency in Accel-Only Low Power Mode.
Gurvan 0:9cb9445a11f0 2700 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
Gurvan 0:9cb9445a11f0 2701 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
Gurvan 0:9cb9445a11f0 2702 * the device will power off all devices except for the primary I2C interface,
Gurvan 0:9cb9445a11f0 2703 * waking only the accelerometer at fixed intervals to take a single
Gurvan 0:9cb9445a11f0 2704 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
Gurvan 0:9cb9445a11f0 2705 * as shown below:
Gurvan 0:9cb9445a11f0 2706 *
Gurvan 0:9cb9445a11f0 2707 * <pre>
Gurvan 0:9cb9445a11f0 2708 * LP_WAKE_CTRL | Wake-up Frequency
Gurvan 0:9cb9445a11f0 2709 * -------------+------------------
Gurvan 0:9cb9445a11f0 2710 * 0 | 1.25 Hz
Gurvan 0:9cb9445a11f0 2711 * 1 | 2.5 Hz
Gurvan 0:9cb9445a11f0 2712 * 2 | 5 Hz
Gurvan 0:9cb9445a11f0 2713 * 3 | 10 Hz
Gurvan 0:9cb9445a11f0 2714 * <pre>
Gurvan 0:9cb9445a11f0 2715 *
Gurvan 0:9cb9445a11f0 2716 * For further information regarding the MPU-60X0's power modes, please refer to
Gurvan 0:9cb9445a11f0 2717 * Register 107.
Gurvan 0:9cb9445a11f0 2718 *
Gurvan 0:9cb9445a11f0 2719 * @return Current wake frequency
Gurvan 0:9cb9445a11f0 2720 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2721 */
Gurvan 0:9cb9445a11f0 2722 uint8_t MPU6050::getWakeFrequency()
Gurvan 0:9cb9445a11f0 2723 {
Gurvan 0:9cb9445a11f0 2724 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2725 return buffer[0];
Gurvan 0:9cb9445a11f0 2726 }
Gurvan 0:9cb9445a11f0 2727 /** Set wake frequency in Accel-Only Low Power Mode.
Gurvan 0:9cb9445a11f0 2728 * @param frequency New wake frequency
Gurvan 0:9cb9445a11f0 2729 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2730 */
Gurvan 0:9cb9445a11f0 2731 void MPU6050::setWakeFrequency(uint8_t frequency)
Gurvan 0:9cb9445a11f0 2732 {
Gurvan 0:9cb9445a11f0 2733 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
Gurvan 0:9cb9445a11f0 2734 }
Gurvan 0:9cb9445a11f0 2735
Gurvan 0:9cb9445a11f0 2736 /** Get X-axis accelerometer standby enabled status.
Gurvan 0:9cb9445a11f0 2737 * If enabled, the X-axis will not gather or report data (or use power).
Gurvan 0:9cb9445a11f0 2738 * @return Current X-axis standby enabled status
Gurvan 0:9cb9445a11f0 2739 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2740 * @see MPU6050_PWR2_STBY_XA_BIT
Gurvan 0:9cb9445a11f0 2741 */
Gurvan 0:9cb9445a11f0 2742 bool MPU6050::getStandbyXAccelEnabled()
Gurvan 0:9cb9445a11f0 2743 {
Gurvan 0:9cb9445a11f0 2744 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
Gurvan 0:9cb9445a11f0 2745 return buffer[0];
Gurvan 0:9cb9445a11f0 2746 }
Gurvan 0:9cb9445a11f0 2747 /** Set X-axis accelerometer standby enabled status.
Gurvan 0:9cb9445a11f0 2748 * @param New X-axis standby enabled status
Gurvan 0:9cb9445a11f0 2749 * @see getStandbyXAccelEnabled()
Gurvan 0:9cb9445a11f0 2750 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2751 * @see MPU6050_PWR2_STBY_XA_BIT
Gurvan 0:9cb9445a11f0 2752 */
Gurvan 0:9cb9445a11f0 2753 void MPU6050::setStandbyXAccelEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2754 {
Gurvan 0:9cb9445a11f0 2755 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
Gurvan 0:9cb9445a11f0 2756 }
Gurvan 0:9cb9445a11f0 2757 /** Get Y-axis accelerometer standby enabled status.
Gurvan 0:9cb9445a11f0 2758 * If enabled, the Y-axis will not gather or report data (or use power).
Gurvan 0:9cb9445a11f0 2759 * @return Current Y-axis standby enabled status
Gurvan 0:9cb9445a11f0 2760 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2761 * @see MPU6050_PWR2_STBY_YA_BIT
Gurvan 0:9cb9445a11f0 2762 */
Gurvan 0:9cb9445a11f0 2763 bool MPU6050::getStandbyYAccelEnabled()
Gurvan 0:9cb9445a11f0 2764 {
Gurvan 0:9cb9445a11f0 2765 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
Gurvan 0:9cb9445a11f0 2766 return buffer[0];
Gurvan 0:9cb9445a11f0 2767 }
Gurvan 0:9cb9445a11f0 2768 /** Set Y-axis accelerometer standby enabled status.
Gurvan 0:9cb9445a11f0 2769 * @param New Y-axis standby enabled status
Gurvan 0:9cb9445a11f0 2770 * @see getStandbyYAccelEnabled()
Gurvan 0:9cb9445a11f0 2771 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2772 * @see MPU6050_PWR2_STBY_YA_BIT
Gurvan 0:9cb9445a11f0 2773 */
Gurvan 0:9cb9445a11f0 2774 void MPU6050::setStandbyYAccelEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2775 {
Gurvan 0:9cb9445a11f0 2776 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
Gurvan 0:9cb9445a11f0 2777 }
Gurvan 0:9cb9445a11f0 2778 /** Get Z-axis accelerometer standby enabled status.
Gurvan 0:9cb9445a11f0 2779 * If enabled, the Z-axis will not gather or report data (or use power).
Gurvan 0:9cb9445a11f0 2780 * @return Current Z-axis standby enabled status
Gurvan 0:9cb9445a11f0 2781 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2782 * @see MPU6050_PWR2_STBY_ZA_BIT
Gurvan 0:9cb9445a11f0 2783 */
Gurvan 0:9cb9445a11f0 2784 bool MPU6050::getStandbyZAccelEnabled()
Gurvan 0:9cb9445a11f0 2785 {
Gurvan 0:9cb9445a11f0 2786 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
Gurvan 0:9cb9445a11f0 2787 return buffer[0];
Gurvan 0:9cb9445a11f0 2788 }
Gurvan 0:9cb9445a11f0 2789 /** Set Z-axis accelerometer standby enabled status.
Gurvan 0:9cb9445a11f0 2790 * @param New Z-axis standby enabled status
Gurvan 0:9cb9445a11f0 2791 * @see getStandbyZAccelEnabled()
Gurvan 0:9cb9445a11f0 2792 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2793 * @see MPU6050_PWR2_STBY_ZA_BIT
Gurvan 0:9cb9445a11f0 2794 */
Gurvan 0:9cb9445a11f0 2795 void MPU6050::setStandbyZAccelEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2796 {
Gurvan 0:9cb9445a11f0 2797 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
Gurvan 0:9cb9445a11f0 2798 }
Gurvan 0:9cb9445a11f0 2799 /** Get X-axis gyroscope standby enabled status.
Gurvan 0:9cb9445a11f0 2800 * If enabled, the X-axis will not gather or report data (or use power).
Gurvan 0:9cb9445a11f0 2801 * @return Current X-axis standby enabled status
Gurvan 0:9cb9445a11f0 2802 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2803 * @see MPU6050_PWR2_STBY_XG_BIT
Gurvan 0:9cb9445a11f0 2804 */
Gurvan 0:9cb9445a11f0 2805 bool MPU6050::getStandbyXGyroEnabled()
Gurvan 0:9cb9445a11f0 2806 {
Gurvan 0:9cb9445a11f0 2807 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
Gurvan 0:9cb9445a11f0 2808 return buffer[0];
Gurvan 0:9cb9445a11f0 2809 }
Gurvan 0:9cb9445a11f0 2810 /** Set X-axis gyroscope standby enabled status.
Gurvan 0:9cb9445a11f0 2811 * @param New X-axis standby enabled status
Gurvan 0:9cb9445a11f0 2812 * @see getStandbyXGyroEnabled()
Gurvan 0:9cb9445a11f0 2813 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2814 * @see MPU6050_PWR2_STBY_XG_BIT
Gurvan 0:9cb9445a11f0 2815 */
Gurvan 0:9cb9445a11f0 2816 void MPU6050::setStandbyXGyroEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2817 {
Gurvan 0:9cb9445a11f0 2818 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
Gurvan 0:9cb9445a11f0 2819 }
Gurvan 0:9cb9445a11f0 2820 /** Get Y-axis gyroscope standby enabled status.
Gurvan 0:9cb9445a11f0 2821 * If enabled, the Y-axis will not gather or report data (or use power).
Gurvan 0:9cb9445a11f0 2822 * @return Current Y-axis standby enabled status
Gurvan 0:9cb9445a11f0 2823 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2824 * @see MPU6050_PWR2_STBY_YG_BIT
Gurvan 0:9cb9445a11f0 2825 */
Gurvan 0:9cb9445a11f0 2826 bool MPU6050::getStandbyYGyroEnabled()
Gurvan 0:9cb9445a11f0 2827 {
Gurvan 0:9cb9445a11f0 2828 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
Gurvan 0:9cb9445a11f0 2829 return buffer[0];
Gurvan 0:9cb9445a11f0 2830 }
Gurvan 0:9cb9445a11f0 2831 /** Set Y-axis gyroscope standby enabled status.
Gurvan 0:9cb9445a11f0 2832 * @param New Y-axis standby enabled status
Gurvan 0:9cb9445a11f0 2833 * @see getStandbyYGyroEnabled()
Gurvan 0:9cb9445a11f0 2834 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2835 * @see MPU6050_PWR2_STBY_YG_BIT
Gurvan 0:9cb9445a11f0 2836 */
Gurvan 0:9cb9445a11f0 2837 void MPU6050::setStandbyYGyroEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2838 {
Gurvan 0:9cb9445a11f0 2839 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
Gurvan 0:9cb9445a11f0 2840 }
Gurvan 0:9cb9445a11f0 2841 /** Get Z-axis gyroscope standby enabled status.
Gurvan 0:9cb9445a11f0 2842 * If enabled, the Z-axis will not gather or report data (or use power).
Gurvan 0:9cb9445a11f0 2843 * @return Current Z-axis standby enabled status
Gurvan 0:9cb9445a11f0 2844 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2845 * @see MPU6050_PWR2_STBY_ZG_BIT
Gurvan 0:9cb9445a11f0 2846 */
Gurvan 0:9cb9445a11f0 2847 bool MPU6050::getStandbyZGyroEnabled()
Gurvan 0:9cb9445a11f0 2848 {
Gurvan 0:9cb9445a11f0 2849 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
Gurvan 0:9cb9445a11f0 2850 return buffer[0];
Gurvan 0:9cb9445a11f0 2851 }
Gurvan 0:9cb9445a11f0 2852 /** Set Z-axis gyroscope standby enabled status.
Gurvan 0:9cb9445a11f0 2853 * @param New Z-axis standby enabled status
Gurvan 0:9cb9445a11f0 2854 * @see getStandbyZGyroEnabled()
Gurvan 0:9cb9445a11f0 2855 * @see MPU6050_RA_PWR_MGMT_2
Gurvan 0:9cb9445a11f0 2856 * @see MPU6050_PWR2_STBY_ZG_BIT
Gurvan 0:9cb9445a11f0 2857 */
Gurvan 0:9cb9445a11f0 2858 void MPU6050::setStandbyZGyroEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 2859 {
Gurvan 0:9cb9445a11f0 2860 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
Gurvan 0:9cb9445a11f0 2861 }
Gurvan 0:9cb9445a11f0 2862
Gurvan 0:9cb9445a11f0 2863 // FIFO_COUNT* registers
Gurvan 0:9cb9445a11f0 2864
Gurvan 0:9cb9445a11f0 2865 /** Get current FIFO buffer size.
Gurvan 0:9cb9445a11f0 2866 * This value indicates the number of bytes stored in the FIFO buffer. This
Gurvan 0:9cb9445a11f0 2867 * number is in turn the number of bytes that can be read from the FIFO buffer
Gurvan 0:9cb9445a11f0 2868 * and it is directly proportional to the number of samples available given the
Gurvan 0:9cb9445a11f0 2869 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
Gurvan 0:9cb9445a11f0 2870 * @return Current FIFO buffer size
Gurvan 0:9cb9445a11f0 2871 */
Gurvan 0:9cb9445a11f0 2872 uint16_t MPU6050::getFIFOCount()
Gurvan 0:9cb9445a11f0 2873 {
Gurvan 0:9cb9445a11f0 2874 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
Gurvan 0:9cb9445a11f0 2875 return (((uint16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 2876 }
Gurvan 0:9cb9445a11f0 2877
Gurvan 0:9cb9445a11f0 2878 // FIFO_R_W register
Gurvan 0:9cb9445a11f0 2879
Gurvan 0:9cb9445a11f0 2880 /** Get byte from FIFO buffer.
Gurvan 0:9cb9445a11f0 2881 * This register is used to read and write data from the FIFO buffer. Data is
Gurvan 0:9cb9445a11f0 2882 * written to the FIFO in order of register number (from lowest to highest). If
Gurvan 0:9cb9445a11f0 2883 * all the FIFO enable flags (see below) are enabled and all External Sensor
Gurvan 0:9cb9445a11f0 2884 * Data registers (Registers 73 to 96) are associated with a Slave device, the
Gurvan 0:9cb9445a11f0 2885 * contents of registers 59 through 96 will be written in order at the Sample
Gurvan 0:9cb9445a11f0 2886 * Rate.
Gurvan 0:9cb9445a11f0 2887 *
Gurvan 0:9cb9445a11f0 2888 * The contents of the sensor data registers (Registers 59 to 96) are written
Gurvan 0:9cb9445a11f0 2889 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
Gurvan 0:9cb9445a11f0 2890 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
Gurvan 0:9cb9445a11f0 2891 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
Gurvan 0:9cb9445a11f0 2892 *
Gurvan 0:9cb9445a11f0 2893 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
Gurvan 0:9cb9445a11f0 2894 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
Gurvan 0:9cb9445a11f0 2895 * When the FIFO buffer has overflowed, the oldest data will be lost and new
Gurvan 0:9cb9445a11f0 2896 * data will be written to the FIFO.
Gurvan 0:9cb9445a11f0 2897 *
Gurvan 0:9cb9445a11f0 2898 * If the FIFO buffer is empty, reading this register will return the last byte
Gurvan 0:9cb9445a11f0 2899 * that was previously read from the FIFO until new data is available. The user
Gurvan 0:9cb9445a11f0 2900 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
Gurvan 0:9cb9445a11f0 2901 * empty.
Gurvan 0:9cb9445a11f0 2902 *
Gurvan 0:9cb9445a11f0 2903 * @return Byte from FIFO buffer
Gurvan 0:9cb9445a11f0 2904 */
Gurvan 0:9cb9445a11f0 2905 uint8_t MPU6050::getFIFOByte()
Gurvan 0:9cb9445a11f0 2906 {
Gurvan 0:9cb9445a11f0 2907 i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
Gurvan 0:9cb9445a11f0 2908 return buffer[0];
Gurvan 0:9cb9445a11f0 2909 }
Gurvan 0:9cb9445a11f0 2910 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
Gurvan 0:9cb9445a11f0 2911 {
Gurvan 0:9cb9445a11f0 2912 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
Gurvan 0:9cb9445a11f0 2913 }
Gurvan 0:9cb9445a11f0 2914 /** Write byte to FIFO buffer.
Gurvan 0:9cb9445a11f0 2915 * @see getFIFOByte()
Gurvan 0:9cb9445a11f0 2916 * @see MPU6050_RA_FIFO_R_W
Gurvan 0:9cb9445a11f0 2917 */
Gurvan 0:9cb9445a11f0 2918 void MPU6050::setFIFOByte(uint8_t data)
Gurvan 0:9cb9445a11f0 2919 {
Gurvan 0:9cb9445a11f0 2920 i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
Gurvan 0:9cb9445a11f0 2921 }
Gurvan 0:9cb9445a11f0 2922
Gurvan 0:9cb9445a11f0 2923 // WHO_AM_I register
Gurvan 0:9cb9445a11f0 2924
Gurvan 0:9cb9445a11f0 2925 /** Get Device ID.
Gurvan 0:9cb9445a11f0 2926 * This register is used to verify the identity of the device (0b110100, 0x34).
Gurvan 0:9cb9445a11f0 2927 * @return Device ID (6 bits only! should be 0x34)
Gurvan 0:9cb9445a11f0 2928 * @see MPU6050_RA_WHO_AM_I
Gurvan 0:9cb9445a11f0 2929 * @see MPU6050_WHO_AM_I_BIT
Gurvan 0:9cb9445a11f0 2930 * @see MPU6050_WHO_AM_I_LENGTH
Gurvan 0:9cb9445a11f0 2931 */
Gurvan 0:9cb9445a11f0 2932 uint8_t MPU6050::getDeviceID()
Gurvan 0:9cb9445a11f0 2933 {
Gurvan 0:9cb9445a11f0 2934 i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2935 return buffer[0];
Gurvan 0:9cb9445a11f0 2936 }
Gurvan 0:9cb9445a11f0 2937 /** Set Device ID.
Gurvan 0:9cb9445a11f0 2938 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
Gurvan 0:9cb9445a11f0 2939 * necessary though).
Gurvan 0:9cb9445a11f0 2940 * @param id New device ID to set.
Gurvan 0:9cb9445a11f0 2941 * @see getDeviceID()
Gurvan 0:9cb9445a11f0 2942 * @see MPU6050_RA_WHO_AM_I
Gurvan 0:9cb9445a11f0 2943 * @see MPU6050_WHO_AM_I_BIT
Gurvan 0:9cb9445a11f0 2944 * @see MPU6050_WHO_AM_I_LENGTH
Gurvan 0:9cb9445a11f0 2945 */
Gurvan 0:9cb9445a11f0 2946 void MPU6050::setDeviceID(uint8_t id)
Gurvan 0:9cb9445a11f0 2947 {
Gurvan 0:9cb9445a11f0 2948 i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
Gurvan 0:9cb9445a11f0 2949 }
Gurvan 0:9cb9445a11f0 2950
Gurvan 0:9cb9445a11f0 2951 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
Gurvan 0:9cb9445a11f0 2952
Gurvan 0:9cb9445a11f0 2953 // XG_OFFS_TC register
Gurvan 0:9cb9445a11f0 2954
Gurvan 0:9cb9445a11f0 2955 uint8_t MPU6050::getOTPBankValid()
Gurvan 0:9cb9445a11f0 2956 {
Gurvan 0:9cb9445a11f0 2957 i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
Gurvan 0:9cb9445a11f0 2958 return buffer[0];
Gurvan 0:9cb9445a11f0 2959 }
Gurvan 0:9cb9445a11f0 2960 void MPU6050::setOTPBankValid(bool enabled)
Gurvan 0:9cb9445a11f0 2961 {
Gurvan 0:9cb9445a11f0 2962 i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
Gurvan 0:9cb9445a11f0 2963 }
Gurvan 0:9cb9445a11f0 2964 int8_t MPU6050::getXGyroOffset()
Gurvan 0:9cb9445a11f0 2965 {
Gurvan 0:9cb9445a11f0 2966 i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2967 return buffer[0];
Gurvan 0:9cb9445a11f0 2968 }
Gurvan 0:9cb9445a11f0 2969 void MPU6050::setXGyroOffset(int8_t offset)
Gurvan 0:9cb9445a11f0 2970 {
Gurvan 0:9cb9445a11f0 2971 i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Gurvan 0:9cb9445a11f0 2972 }
Gurvan 0:9cb9445a11f0 2973
Gurvan 0:9cb9445a11f0 2974 // YG_OFFS_TC register
Gurvan 0:9cb9445a11f0 2975
Gurvan 0:9cb9445a11f0 2976 int8_t MPU6050::getYGyroOffset()
Gurvan 0:9cb9445a11f0 2977 {
Gurvan 0:9cb9445a11f0 2978 i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2979 return buffer[0];
Gurvan 0:9cb9445a11f0 2980 }
Gurvan 0:9cb9445a11f0 2981 void MPU6050::setYGyroOffset(int8_t offset)
Gurvan 0:9cb9445a11f0 2982 {
Gurvan 0:9cb9445a11f0 2983 i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Gurvan 0:9cb9445a11f0 2984 }
Gurvan 0:9cb9445a11f0 2985
Gurvan 0:9cb9445a11f0 2986 // ZG_OFFS_TC register
Gurvan 0:9cb9445a11f0 2987
Gurvan 0:9cb9445a11f0 2988 int8_t MPU6050::getZGyroOffset()
Gurvan 0:9cb9445a11f0 2989 {
Gurvan 0:9cb9445a11f0 2990 i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Gurvan 0:9cb9445a11f0 2991 return buffer[0];
Gurvan 0:9cb9445a11f0 2992 }
Gurvan 0:9cb9445a11f0 2993 void MPU6050::setZGyroOffset(int8_t offset)
Gurvan 0:9cb9445a11f0 2994 {
Gurvan 0:9cb9445a11f0 2995 i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Gurvan 0:9cb9445a11f0 2996 }
Gurvan 0:9cb9445a11f0 2997
Gurvan 0:9cb9445a11f0 2998 // X_FINE_GAIN register
Gurvan 0:9cb9445a11f0 2999
Gurvan 0:9cb9445a11f0 3000 int8_t MPU6050::getXFineGain()
Gurvan 0:9cb9445a11f0 3001 {
Gurvan 0:9cb9445a11f0 3002 i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
Gurvan 0:9cb9445a11f0 3003 return buffer[0];
Gurvan 0:9cb9445a11f0 3004 }
Gurvan 0:9cb9445a11f0 3005 void MPU6050::setXFineGain(int8_t gain)
Gurvan 0:9cb9445a11f0 3006 {
Gurvan 0:9cb9445a11f0 3007 i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
Gurvan 0:9cb9445a11f0 3008 }
Gurvan 0:9cb9445a11f0 3009
Gurvan 0:9cb9445a11f0 3010 // Y_FINE_GAIN register
Gurvan 0:9cb9445a11f0 3011
Gurvan 0:9cb9445a11f0 3012 int8_t MPU6050::getYFineGain()
Gurvan 0:9cb9445a11f0 3013 {
Gurvan 0:9cb9445a11f0 3014 i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
Gurvan 0:9cb9445a11f0 3015 return buffer[0];
Gurvan 0:9cb9445a11f0 3016 }
Gurvan 0:9cb9445a11f0 3017 void MPU6050::setYFineGain(int8_t gain)
Gurvan 0:9cb9445a11f0 3018 {
Gurvan 0:9cb9445a11f0 3019 i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
Gurvan 0:9cb9445a11f0 3020 }
Gurvan 0:9cb9445a11f0 3021
Gurvan 0:9cb9445a11f0 3022 // Z_FINE_GAIN register
Gurvan 0:9cb9445a11f0 3023
Gurvan 0:9cb9445a11f0 3024 int8_t MPU6050::getZFineGain()
Gurvan 0:9cb9445a11f0 3025 {
Gurvan 0:9cb9445a11f0 3026 i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
Gurvan 0:9cb9445a11f0 3027 return buffer[0];
Gurvan 0:9cb9445a11f0 3028 }
Gurvan 0:9cb9445a11f0 3029 void MPU6050::setZFineGain(int8_t gain)
Gurvan 0:9cb9445a11f0 3030 {
Gurvan 0:9cb9445a11f0 3031 i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
Gurvan 0:9cb9445a11f0 3032 }
Gurvan 0:9cb9445a11f0 3033
Gurvan 0:9cb9445a11f0 3034 // XA_OFFS_* registers
Gurvan 0:9cb9445a11f0 3035
Gurvan 0:9cb9445a11f0 3036 int16_t MPU6050::getXAccelOffset()
Gurvan 0:9cb9445a11f0 3037 {
Gurvan 0:9cb9445a11f0 3038 i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
Gurvan 0:9cb9445a11f0 3039 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 3040 }
Gurvan 0:9cb9445a11f0 3041 void MPU6050::setXAccelOffset(int16_t offset)
Gurvan 0:9cb9445a11f0 3042 {
Gurvan 0:9cb9445a11f0 3043 i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
Gurvan 0:9cb9445a11f0 3044 }
Gurvan 0:9cb9445a11f0 3045
Gurvan 0:9cb9445a11f0 3046 // YA_OFFS_* register
Gurvan 0:9cb9445a11f0 3047
Gurvan 0:9cb9445a11f0 3048 int16_t MPU6050::getYAccelOffset()
Gurvan 0:9cb9445a11f0 3049 {
Gurvan 0:9cb9445a11f0 3050 i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
Gurvan 0:9cb9445a11f0 3051 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 3052 }
Gurvan 0:9cb9445a11f0 3053 void MPU6050::setYAccelOffset(int16_t offset)
Gurvan 0:9cb9445a11f0 3054 {
Gurvan 0:9cb9445a11f0 3055 i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
Gurvan 0:9cb9445a11f0 3056 }
Gurvan 0:9cb9445a11f0 3057
Gurvan 0:9cb9445a11f0 3058 // ZA_OFFS_* register
Gurvan 0:9cb9445a11f0 3059
Gurvan 0:9cb9445a11f0 3060 int16_t MPU6050::getZAccelOffset()
Gurvan 0:9cb9445a11f0 3061 {
Gurvan 0:9cb9445a11f0 3062 i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
Gurvan 0:9cb9445a11f0 3063 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 3064 }
Gurvan 0:9cb9445a11f0 3065 void MPU6050::setZAccelOffset(int16_t offset)
Gurvan 0:9cb9445a11f0 3066 {
Gurvan 0:9cb9445a11f0 3067 i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
Gurvan 0:9cb9445a11f0 3068 }
Gurvan 0:9cb9445a11f0 3069
Gurvan 0:9cb9445a11f0 3070 // XG_OFFS_USR* registers
Gurvan 0:9cb9445a11f0 3071
Gurvan 0:9cb9445a11f0 3072 int16_t MPU6050::getXGyroOffsetUser()
Gurvan 0:9cb9445a11f0 3073 {
Gurvan 0:9cb9445a11f0 3074 i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
Gurvan 0:9cb9445a11f0 3075 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 3076 }
Gurvan 0:9cb9445a11f0 3077 void MPU6050::setXGyroOffsetUser(int16_t offset)
Gurvan 0:9cb9445a11f0 3078 {
Gurvan 0:9cb9445a11f0 3079 i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
Gurvan 0:9cb9445a11f0 3080 }
Gurvan 0:9cb9445a11f0 3081
Gurvan 0:9cb9445a11f0 3082 // YG_OFFS_USR* register
Gurvan 0:9cb9445a11f0 3083
Gurvan 0:9cb9445a11f0 3084 int16_t MPU6050::getYGyroOffsetUser()
Gurvan 0:9cb9445a11f0 3085 {
Gurvan 0:9cb9445a11f0 3086 i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
Gurvan 0:9cb9445a11f0 3087 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 3088 }
Gurvan 0:9cb9445a11f0 3089 void MPU6050::setYGyroOffsetUser(int16_t offset)
Gurvan 0:9cb9445a11f0 3090 {
Gurvan 0:9cb9445a11f0 3091 i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
Gurvan 0:9cb9445a11f0 3092 }
Gurvan 0:9cb9445a11f0 3093
Gurvan 0:9cb9445a11f0 3094 // ZG_OFFS_USR* register
Gurvan 0:9cb9445a11f0 3095
Gurvan 0:9cb9445a11f0 3096 int16_t MPU6050::getZGyroOffsetUser()
Gurvan 0:9cb9445a11f0 3097 {
Gurvan 0:9cb9445a11f0 3098 i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
Gurvan 0:9cb9445a11f0 3099 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gurvan 0:9cb9445a11f0 3100 }
Gurvan 0:9cb9445a11f0 3101 void MPU6050::setZGyroOffsetUser(int16_t offset)
Gurvan 0:9cb9445a11f0 3102 {
Gurvan 0:9cb9445a11f0 3103 i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
Gurvan 0:9cb9445a11f0 3104 }
Gurvan 0:9cb9445a11f0 3105
Gurvan 0:9cb9445a11f0 3106 // INT_ENABLE register (DMP functions)
Gurvan 0:9cb9445a11f0 3107
Gurvan 0:9cb9445a11f0 3108 bool MPU6050::getIntPLLReadyEnabled()
Gurvan 0:9cb9445a11f0 3109 {
Gurvan 0:9cb9445a11f0 3110 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
Gurvan 0:9cb9445a11f0 3111 return buffer[0];
Gurvan 0:9cb9445a11f0 3112 }
Gurvan 0:9cb9445a11f0 3113 void MPU6050::setIntPLLReadyEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 3114 {
Gurvan 0:9cb9445a11f0 3115 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
Gurvan 0:9cb9445a11f0 3116 }
Gurvan 0:9cb9445a11f0 3117 bool MPU6050::getIntDMPEnabled()
Gurvan 0:9cb9445a11f0 3118 {
Gurvan 0:9cb9445a11f0 3119 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
Gurvan 0:9cb9445a11f0 3120 return buffer[0];
Gurvan 0:9cb9445a11f0 3121 }
Gurvan 0:9cb9445a11f0 3122 void MPU6050::setIntDMPEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 3123 {
Gurvan 0:9cb9445a11f0 3124 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
Gurvan 0:9cb9445a11f0 3125 }
Gurvan 0:9cb9445a11f0 3126
Gurvan 0:9cb9445a11f0 3127 // DMP_INT_STATUS
Gurvan 0:9cb9445a11f0 3128
Gurvan 0:9cb9445a11f0 3129 bool MPU6050::getDMPInt5Status()
Gurvan 0:9cb9445a11f0 3130 {
Gurvan 0:9cb9445a11f0 3131 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
Gurvan 0:9cb9445a11f0 3132 return buffer[0];
Gurvan 0:9cb9445a11f0 3133 }
Gurvan 0:9cb9445a11f0 3134 bool MPU6050::getDMPInt4Status()
Gurvan 0:9cb9445a11f0 3135 {
Gurvan 0:9cb9445a11f0 3136 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
Gurvan 0:9cb9445a11f0 3137 return buffer[0];
Gurvan 0:9cb9445a11f0 3138 }
Gurvan 0:9cb9445a11f0 3139 bool MPU6050::getDMPInt3Status()
Gurvan 0:9cb9445a11f0 3140 {
Gurvan 0:9cb9445a11f0 3141 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
Gurvan 0:9cb9445a11f0 3142 return buffer[0];
Gurvan 0:9cb9445a11f0 3143 }
Gurvan 0:9cb9445a11f0 3144 bool MPU6050::getDMPInt2Status()
Gurvan 0:9cb9445a11f0 3145 {
Gurvan 0:9cb9445a11f0 3146 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
Gurvan 0:9cb9445a11f0 3147 return buffer[0];
Gurvan 0:9cb9445a11f0 3148 }
Gurvan 0:9cb9445a11f0 3149 bool MPU6050::getDMPInt1Status()
Gurvan 0:9cb9445a11f0 3150 {
Gurvan 0:9cb9445a11f0 3151 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
Gurvan 0:9cb9445a11f0 3152 return buffer[0];
Gurvan 0:9cb9445a11f0 3153 }
Gurvan 0:9cb9445a11f0 3154 bool MPU6050::getDMPInt0Status()
Gurvan 0:9cb9445a11f0 3155 {
Gurvan 0:9cb9445a11f0 3156 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
Gurvan 0:9cb9445a11f0 3157 return buffer[0];
Gurvan 0:9cb9445a11f0 3158 }
Gurvan 0:9cb9445a11f0 3159
Gurvan 0:9cb9445a11f0 3160 // INT_STATUS register (DMP functions)
Gurvan 0:9cb9445a11f0 3161
Gurvan 0:9cb9445a11f0 3162 bool MPU6050::getIntPLLReadyStatus()
Gurvan 0:9cb9445a11f0 3163 {
Gurvan 0:9cb9445a11f0 3164 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
Gurvan 0:9cb9445a11f0 3165 return buffer[0];
Gurvan 0:9cb9445a11f0 3166 }
Gurvan 0:9cb9445a11f0 3167 bool MPU6050::getIntDMPStatus()
Gurvan 0:9cb9445a11f0 3168 {
Gurvan 0:9cb9445a11f0 3169 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
Gurvan 0:9cb9445a11f0 3170 return buffer[0];
Gurvan 0:9cb9445a11f0 3171 }
Gurvan 0:9cb9445a11f0 3172
Gurvan 0:9cb9445a11f0 3173 // USER_CTRL register (DMP functions)
Gurvan 0:9cb9445a11f0 3174
Gurvan 0:9cb9445a11f0 3175 bool MPU6050::getDMPEnabled()
Gurvan 0:9cb9445a11f0 3176 {
Gurvan 0:9cb9445a11f0 3177 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
Gurvan 0:9cb9445a11f0 3178 return buffer[0];
Gurvan 0:9cb9445a11f0 3179 }
Gurvan 0:9cb9445a11f0 3180 void MPU6050::setDMPEnabled(bool enabled)
Gurvan 0:9cb9445a11f0 3181 {
Gurvan 0:9cb9445a11f0 3182 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
Gurvan 0:9cb9445a11f0 3183 }
Gurvan 0:9cb9445a11f0 3184 void MPU6050::resetDMP()
Gurvan 0:9cb9445a11f0 3185 {
Gurvan 0:9cb9445a11f0 3186 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
Gurvan 0:9cb9445a11f0 3187 }
Gurvan 0:9cb9445a11f0 3188
Gurvan 0:9cb9445a11f0 3189 // BANK_SEL register
Gurvan 0:9cb9445a11f0 3190
Gurvan 0:9cb9445a11f0 3191 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
Gurvan 0:9cb9445a11f0 3192 {
Gurvan 0:9cb9445a11f0 3193 bank &= 0x1F;
Gurvan 0:9cb9445a11f0 3194 if (userBank) bank |= 0x20;
Gurvan 0:9cb9445a11f0 3195 if (prefetchEnabled) bank |= 0x40;
Gurvan 0:9cb9445a11f0 3196 i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
Gurvan 0:9cb9445a11f0 3197 }
Gurvan 0:9cb9445a11f0 3198
Gurvan 0:9cb9445a11f0 3199 // MEM_START_ADDR register
Gurvan 0:9cb9445a11f0 3200
Gurvan 0:9cb9445a11f0 3201 void MPU6050::setMemoryStartAddress(uint8_t address)
Gurvan 0:9cb9445a11f0 3202 {
Gurvan 0:9cb9445a11f0 3203 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
Gurvan 0:9cb9445a11f0 3204 }
Gurvan 0:9cb9445a11f0 3205
Gurvan 0:9cb9445a11f0 3206 // MEM_R_W register
Gurvan 0:9cb9445a11f0 3207
Gurvan 0:9cb9445a11f0 3208 uint8_t MPU6050::readMemoryByte()
Gurvan 0:9cb9445a11f0 3209 {
Gurvan 0:9cb9445a11f0 3210 i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
Gurvan 0:9cb9445a11f0 3211 return buffer[0];
Gurvan 0:9cb9445a11f0 3212 }
Gurvan 0:9cb9445a11f0 3213 void MPU6050::writeMemoryByte(uint8_t data)
Gurvan 0:9cb9445a11f0 3214 {
Gurvan 0:9cb9445a11f0 3215 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
Gurvan 0:9cb9445a11f0 3216 }
Gurvan 0:9cb9445a11f0 3217 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
Gurvan 0:9cb9445a11f0 3218 {
Gurvan 0:9cb9445a11f0 3219 setMemoryBank(bank);
Gurvan 0:9cb9445a11f0 3220 setMemoryStartAddress(address);
Gurvan 0:9cb9445a11f0 3221 uint8_t chunkSize;
Gurvan 0:9cb9445a11f0 3222 for (uint16_t i = 0; i < dataSize;) {
Gurvan 0:9cb9445a11f0 3223 // determine correct chunk size according to bank position and data size
Gurvan 0:9cb9445a11f0 3224 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
Gurvan 0:9cb9445a11f0 3225
Gurvan 0:9cb9445a11f0 3226 // make sure we don't go past the data size
Gurvan 0:9cb9445a11f0 3227 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
Gurvan 0:9cb9445a11f0 3228
Gurvan 0:9cb9445a11f0 3229 // make sure this chunk doesn't go past the bank boundary (256 bytes)
Gurvan 0:9cb9445a11f0 3230 if (chunkSize > 256 - address) chunkSize = 256 - address;
Gurvan 0:9cb9445a11f0 3231
Gurvan 0:9cb9445a11f0 3232 // read the chunk of data as specified
Gurvan 0:9cb9445a11f0 3233 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
Gurvan 0:9cb9445a11f0 3234
Gurvan 0:9cb9445a11f0 3235 // increase byte index by [chunkSize]
Gurvan 0:9cb9445a11f0 3236 i += chunkSize;
Gurvan 0:9cb9445a11f0 3237
Gurvan 0:9cb9445a11f0 3238 // uint8_t automatically wraps to 0 at 256
Gurvan 0:9cb9445a11f0 3239 address += chunkSize;
Gurvan 0:9cb9445a11f0 3240
Gurvan 0:9cb9445a11f0 3241 // if we aren't done, update bank (if necessary) and address
Gurvan 0:9cb9445a11f0 3242 if (i < dataSize) {
Gurvan 0:9cb9445a11f0 3243 if (address == 0) bank++;
Gurvan 0:9cb9445a11f0 3244 setMemoryBank(bank);
Gurvan 0:9cb9445a11f0 3245 setMemoryStartAddress(address);
Gurvan 0:9cb9445a11f0 3246 }
Gurvan 0:9cb9445a11f0 3247 }
Gurvan 0:9cb9445a11f0 3248 }
Gurvan 0:9cb9445a11f0 3249 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
Gurvan 0:9cb9445a11f0 3250 {
Gurvan 0:9cb9445a11f0 3251 setMemoryBank(bank);
Gurvan 0:9cb9445a11f0 3252 setMemoryStartAddress(address);
Gurvan 0:9cb9445a11f0 3253 uint8_t chunkSize;
Gurvan 0:9cb9445a11f0 3254 uint8_t *verifyBuffer;
Gurvan 0:9cb9445a11f0 3255 uint8_t *progBuffer;
Gurvan 0:9cb9445a11f0 3256 uint16_t i;
Gurvan 0:9cb9445a11f0 3257 uint8_t j;
Gurvan 0:9cb9445a11f0 3258 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
Gurvan 0:9cb9445a11f0 3259 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
Gurvan 0:9cb9445a11f0 3260 for (i = 0; i < dataSize;) {
Gurvan 0:9cb9445a11f0 3261 // determine correct chunk size according to bank position and data size
Gurvan 0:9cb9445a11f0 3262 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
Gurvan 0:9cb9445a11f0 3263
Gurvan 0:9cb9445a11f0 3264 // make sure we don't go past the data size
Gurvan 0:9cb9445a11f0 3265 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
Gurvan 0:9cb9445a11f0 3266
Gurvan 0:9cb9445a11f0 3267 // make sure this chunk doesn't go past the bank boundary (256 bytes)
Gurvan 0:9cb9445a11f0 3268 if (chunkSize > 256 - address) chunkSize = 256 - address;
Gurvan 0:9cb9445a11f0 3269
Gurvan 0:9cb9445a11f0 3270 if (useProgMem) {
Gurvan 0:9cb9445a11f0 3271 // write the chunk of data as specified
Gurvan 0:9cb9445a11f0 3272 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
Gurvan 0:9cb9445a11f0 3273 } else {
Gurvan 0:9cb9445a11f0 3274 // write the chunk of data as specified
Gurvan 0:9cb9445a11f0 3275 progBuffer = (uint8_t *)data + i;
Gurvan 0:9cb9445a11f0 3276 }
Gurvan 0:9cb9445a11f0 3277
Gurvan 0:9cb9445a11f0 3278 i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
Gurvan 0:9cb9445a11f0 3279
Gurvan 0:9cb9445a11f0 3280 // verify data if needed
Gurvan 0:9cb9445a11f0 3281 if (verify && verifyBuffer) {
Gurvan 0:9cb9445a11f0 3282 setMemoryBank(bank);
Gurvan 0:9cb9445a11f0 3283 setMemoryStartAddress(address);
Gurvan 0:9cb9445a11f0 3284 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
Gurvan 0:9cb9445a11f0 3285 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
Gurvan 0:9cb9445a11f0 3286 /*Serial.print("Block write verification error, bank ");
Gurvan 0:9cb9445a11f0 3287 Serial.print(bank, DEC);
Gurvan 0:9cb9445a11f0 3288 Serial.print(", address ");
Gurvan 0:9cb9445a11f0 3289 Serial.print(address, DEC);
Gurvan 0:9cb9445a11f0 3290 Serial.print("!\nExpected:");
Gurvan 0:9cb9445a11f0 3291 for (j = 0; j < chunkSize; j++) {
Gurvan 0:9cb9445a11f0 3292 Serial.print(" 0x");
Gurvan 0:9cb9445a11f0 3293 if (progBuffer[j] < 16) Serial.print("0");
Gurvan 0:9cb9445a11f0 3294 Serial.print(progBuffer[j], HEX);
Gurvan 0:9cb9445a11f0 3295 }
Gurvan 0:9cb9445a11f0 3296 Serial.print("\nReceived:");
Gurvan 0:9cb9445a11f0 3297 for (uint8_t j = 0; j < chunkSize; j++) {
Gurvan 0:9cb9445a11f0 3298 Serial.print(" 0x");
Gurvan 0:9cb9445a11f0 3299 if (verifyBuffer[i + j] < 16) Serial.print("0");
Gurvan 0:9cb9445a11f0 3300 Serial.print(verifyBuffer[i + j], HEX);
Gurvan 0:9cb9445a11f0 3301 }
Gurvan 0:9cb9445a11f0 3302 Serial.print("\n");*/
Gurvan 0:9cb9445a11f0 3303 free(verifyBuffer);
Gurvan 0:9cb9445a11f0 3304 if (useProgMem) free(progBuffer);
Gurvan 0:9cb9445a11f0 3305 return false; // uh oh.
Gurvan 0:9cb9445a11f0 3306 }
Gurvan 0:9cb9445a11f0 3307 }
Gurvan 0:9cb9445a11f0 3308
Gurvan 0:9cb9445a11f0 3309 // increase byte index by [chunkSize]
Gurvan 0:9cb9445a11f0 3310 i += chunkSize;
Gurvan 0:9cb9445a11f0 3311
Gurvan 0:9cb9445a11f0 3312 // uint8_t automatically wraps to 0 at 256
Gurvan 0:9cb9445a11f0 3313 address += chunkSize;
Gurvan 0:9cb9445a11f0 3314
Gurvan 0:9cb9445a11f0 3315 // if we aren't done, update bank (if necessary) and address
Gurvan 0:9cb9445a11f0 3316 if (i < dataSize) {
Gurvan 0:9cb9445a11f0 3317 if (address == 0) bank++;
Gurvan 0:9cb9445a11f0 3318 setMemoryBank(bank);
Gurvan 0:9cb9445a11f0 3319 setMemoryStartAddress(address);
Gurvan 0:9cb9445a11f0 3320 }
Gurvan 0:9cb9445a11f0 3321 }
Gurvan 0:9cb9445a11f0 3322 if (verify) free(verifyBuffer);
Gurvan 0:9cb9445a11f0 3323 if (useProgMem) free(progBuffer);
Gurvan 0:9cb9445a11f0 3324 return true;
Gurvan 0:9cb9445a11f0 3325 }
Gurvan 0:9cb9445a11f0 3326 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
Gurvan 0:9cb9445a11f0 3327 {
Gurvan 0:9cb9445a11f0 3328 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
Gurvan 0:9cb9445a11f0 3329 }
Gurvan 0:9cb9445a11f0 3330 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
Gurvan 0:9cb9445a11f0 3331 {
Gurvan 0:9cb9445a11f0 3332 uint8_t *progBuffer, success, special;
Gurvan 0:9cb9445a11f0 3333 uint16_t i, j;
Gurvan 0:9cb9445a11f0 3334 if (useProgMem) {
Gurvan 0:9cb9445a11f0 3335 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
Gurvan 0:9cb9445a11f0 3336 }
Gurvan 0:9cb9445a11f0 3337
Gurvan 0:9cb9445a11f0 3338 // config set data is a long string of blocks with the following structure:
Gurvan 0:9cb9445a11f0 3339 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
Gurvan 0:9cb9445a11f0 3340 uint8_t bank, offset, length;
Gurvan 0:9cb9445a11f0 3341 for (i = 0; i < dataSize;) {
Gurvan 0:9cb9445a11f0 3342 if (useProgMem) {
Gurvan 0:9cb9445a11f0 3343 bank = pgm_read_byte(data + i++);
Gurvan 0:9cb9445a11f0 3344 offset = pgm_read_byte(data + i++);
Gurvan 0:9cb9445a11f0 3345 length = pgm_read_byte(data + i++);
Gurvan 0:9cb9445a11f0 3346 } else {
Gurvan 0:9cb9445a11f0 3347 bank = data[i++];
Gurvan 0:9cb9445a11f0 3348 offset = data[i++];
Gurvan 0:9cb9445a11f0 3349 length = data[i++];
Gurvan 0:9cb9445a11f0 3350 }
Gurvan 0:9cb9445a11f0 3351
Gurvan 0:9cb9445a11f0 3352 // write data or perform special action
Gurvan 0:9cb9445a11f0 3353 if (length > 0) {
Gurvan 0:9cb9445a11f0 3354 // regular block of data to write
Gurvan 0:9cb9445a11f0 3355 /*Serial.print("Writing config block to bank ");
Gurvan 0:9cb9445a11f0 3356 Serial.print(bank);
Gurvan 0:9cb9445a11f0 3357 Serial.print(", offset ");
Gurvan 0:9cb9445a11f0 3358 Serial.print(offset);
Gurvan 0:9cb9445a11f0 3359 Serial.print(", length=");
Gurvan 0:9cb9445a11f0 3360 Serial.println(length);*/
Gurvan 0:9cb9445a11f0 3361 if (useProgMem) {
Gurvan 0:9cb9445a11f0 3362 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
Gurvan 0:9cb9445a11f0 3363 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
Gurvan 0:9cb9445a11f0 3364 } else {
Gurvan 0:9cb9445a11f0 3365 progBuffer = (uint8_t *)data + i;
Gurvan 0:9cb9445a11f0 3366 }
Gurvan 0:9cb9445a11f0 3367 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
Gurvan 0:9cb9445a11f0 3368 i += length;
Gurvan 0:9cb9445a11f0 3369 } else {
Gurvan 0:9cb9445a11f0 3370 // special instruction
Gurvan 0:9cb9445a11f0 3371 // NOTE: this kind of behavior (what and when to do certain things)
Gurvan 0:9cb9445a11f0 3372 // is totally undocumented. This code is in here based on observed
Gurvan 0:9cb9445a11f0 3373 // behavior only, and exactly why (or even whether) it has to be here
Gurvan 0:9cb9445a11f0 3374 // is anybody's guess for now.
Gurvan 0:9cb9445a11f0 3375 if (useProgMem) {
Gurvan 0:9cb9445a11f0 3376 special = pgm_read_byte(data + i++);
Gurvan 0:9cb9445a11f0 3377 } else {
Gurvan 0:9cb9445a11f0 3378 special = data[i++];
Gurvan 0:9cb9445a11f0 3379 }
Gurvan 0:9cb9445a11f0 3380 /*Serial.print("Special command code ");
Gurvan 0:9cb9445a11f0 3381 Serial.print(special, HEX);
Gurvan 0:9cb9445a11f0 3382 Serial.println(" found...");*/
Gurvan 0:9cb9445a11f0 3383 if (special == 0x01) {
Gurvan 0:9cb9445a11f0 3384 // enable DMP-related interrupts
Gurvan 0:9cb9445a11f0 3385
Gurvan 0:9cb9445a11f0 3386 //setIntZeroMotionEnabled(true);
Gurvan 0:9cb9445a11f0 3387 //setIntFIFOBufferOverflowEnabled(true);
Gurvan 0:9cb9445a11f0 3388 //setIntDMPEnabled(true);
Gurvan 0:9cb9445a11f0 3389 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
Gurvan 0:9cb9445a11f0 3390
Gurvan 0:9cb9445a11f0 3391 success = true;
Gurvan 0:9cb9445a11f0 3392 } else {
Gurvan 0:9cb9445a11f0 3393 // unknown special command
Gurvan 0:9cb9445a11f0 3394 success = false;
Gurvan 0:9cb9445a11f0 3395 }
Gurvan 0:9cb9445a11f0 3396 }
Gurvan 0:9cb9445a11f0 3397
Gurvan 0:9cb9445a11f0 3398 if (!success) {
Gurvan 0:9cb9445a11f0 3399 if (useProgMem) free(progBuffer);
Gurvan 0:9cb9445a11f0 3400 return false; // uh oh
Gurvan 0:9cb9445a11f0 3401 }
Gurvan 0:9cb9445a11f0 3402 }
Gurvan 0:9cb9445a11f0 3403 if (useProgMem) free(progBuffer);
Gurvan 0:9cb9445a11f0 3404 return true;
Gurvan 0:9cb9445a11f0 3405 }
Gurvan 0:9cb9445a11f0 3406 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
Gurvan 0:9cb9445a11f0 3407 {
Gurvan 0:9cb9445a11f0 3408 return writeDMPConfigurationSet(data, dataSize, false);
Gurvan 0:9cb9445a11f0 3409 }
Gurvan 0:9cb9445a11f0 3410
Gurvan 0:9cb9445a11f0 3411 // DMP_CFG_1 register
Gurvan 0:9cb9445a11f0 3412
Gurvan 0:9cb9445a11f0 3413 uint8_t MPU6050::getDMPConfig1()
Gurvan 0:9cb9445a11f0 3414 {
Gurvan 0:9cb9445a11f0 3415 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
Gurvan 0:9cb9445a11f0 3416 return buffer[0];
Gurvan 0:9cb9445a11f0 3417 }
Gurvan 0:9cb9445a11f0 3418 void MPU6050::setDMPConfig1(uint8_t config)
Gurvan 0:9cb9445a11f0 3419 {
Gurvan 0:9cb9445a11f0 3420 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
Gurvan 0:9cb9445a11f0 3421 }
Gurvan 0:9cb9445a11f0 3422
Gurvan 0:9cb9445a11f0 3423 // DMP_CFG_2 register
Gurvan 0:9cb9445a11f0 3424
Gurvan 0:9cb9445a11f0 3425 uint8_t MPU6050::getDMPConfig2()
Gurvan 0:9cb9445a11f0 3426 {
Gurvan 0:9cb9445a11f0 3427 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
Gurvan 0:9cb9445a11f0 3428 return buffer[0];
Gurvan 0:9cb9445a11f0 3429 }
Gurvan 0:9cb9445a11f0 3430 void MPU6050::setDMPConfig2(uint8_t config)
Gurvan 0:9cb9445a11f0 3431 {
Gurvan 0:9cb9445a11f0 3432 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
Gurvan 0:9cb9445a11f0 3433 }