Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SPI_TFT_ILI9341 by
SPI_TFT_ILI9341.cpp
- Committer:
 - dreschpe
 - Date:
 - 2013-10-22
 - Revision:
 - 5:55aed13f2630
 - Parent:
 - 4:f018e272220b
 - Child:
 - 6:fe07ae8329f7
 
File content as of revision 5:55aed13f2630:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller
 * Copyright (c) 2013 Peter Drescher - DC2PD
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
 
// 12.06.13 fork from SPI_TFT code because controller is different ...
// 14.07.13 Test with real display and bugfix 
// 18.10.13 Better Circle function from Michael Ammann
// 22.10.13 Fixes for Kinetis Board - 8 bit spi
#include "SPI_TFT_ILI9341.h"
#include "mbed.h"
#define BPP         16                  // Bits per pixel    
            
//extern Serial pc;
//extern DigitalOut xx;     // debug !!
SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name)
    : _spi(mosi, miso, sclk), _cs(cs), _reset(reset), _dc(dc), GraphicsDisplay(name)
{
    orientation = 0;
    char_x = 0;
    tft_reset();
}
int SPI_TFT_ILI9341::width()
{
    if (orientation == 0 || orientation == 2) return 240;
    else return 320;
}
int SPI_TFT_ILI9341::height()
{
    if (orientation == 0 || orientation == 2) return 320;
    else return 240;
}
void SPI_TFT_ILI9341::set_orientation(unsigned int o)
{
    orientation = o;
    wr_cmd(0x36);                     // MEMORY_ACCESS_CONTROL
    switch (orientation) {
        case 0:
            _spi.write(0x48);
            break;
        case 1:
            _spi.write(0x28);
            break;
        case 2:
            _spi.write(0x88);
            break;
        case 3:
            _spi.write(0xE8);
            break;
    }
    _cs = 1; 
    WindowMax();
} 
// write command to tft register
void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd)
{
    _dc = 0;
    _cs = 0;
    _spi.write(cmd);      // mbed lib
    _dc = 1;
}
void SPI_TFT_ILI9341::wr_dat(unsigned char dat)
{
   _spi.write(dat);      // mbed lib
}
// the ILI9341 can read - has to be implemented later
// A read will return 0 at the moment
//unsigned short SPI_TFT_ILI9341::rd_dat (void)
//{
//    unsigned short val = 0;
    //val = _spi.write(0x73ff);                /* Dummy read 1           */
    //val   = _spi.write(0x0000);              /* Read D8..D15           */
//    return (val);
//}
// Init code based on MI0283QT datasheet
void SPI_TFT_ILI9341::tft_reset()
{
    _spi.format(8,3);                  // 8 bit spi mode 3
    _spi.frequency(10000000);          // 10 Mhz SPI clock
    _cs = 1;                           // cs high
    _dc = 1;                           // dc high 
    _reset = 0;                        // display reset
    wait_us(50);
    _reset = 1;                       // end hardware reset
    wait_ms(5);
     
    wr_cmd(0x01);                     // SW reset  
    wait_ms(5);
    wr_cmd(0x28);                     // display off  
    /* Start Initial Sequence ----------------------------------------------------*/
     wr_cmd(0xCF);                     
     _spi.write(0x00);
     _spi.write(0x83);
     _spi.write(0x30);
     _cs = 1;
     
     wr_cmd(0xED);                     
     _spi.write(0x64);
     _spi.write(0x03);
     _spi.write(0x12);
     _spi.write(0x81);
     _cs = 1;
     
     wr_cmd(0xE8);                     
     _spi.write(0x85);
     _spi.write(0x01);
     _spi.write(0x79);
     _cs = 1;
     
     wr_cmd(0xCB);                     
     _spi.write(0x39);
     _spi.write(0x2C);
     _spi.write(0x00);
     _spi.write(0x34);
     _spi.write(0x02);
     _cs = 1;
           
     wr_cmd(0xF7);                     
     _spi.write(0x20);
     _cs = 1;
           
     wr_cmd(0xEA);                     
     _spi.write(0x00);
     _spi.write(0x00);
     _cs = 1;
     
     wr_cmd(0xC0);                     // POWER_CONTROL_1
     _spi.write(0x26);
     _cs = 1;
 
     wr_cmd(0xC1);                     // POWER_CONTROL_2
     _spi.write(0x11);
     _cs = 1;
     
     wr_cmd(0xC5);                     // VCOM_CONTROL_1
     _spi.write(0x35);
     _spi.write(0x3E);
     _cs = 1;
     
     wr_cmd(0xC7);                     // VCOM_CONTROL_2
     _spi.write(0xBE);
     _cs = 1; 
     
     wr_cmd(0x36);                     // MEMORY_ACCESS_CONTROL
     _spi.write(0x48);
     _cs = 1; 
     
     wr_cmd(0x3A);                     // COLMOD_PIXEL_FORMAT_SET
     _spi.write(0x55);                 // 16 bit pixel 
     _cs = 1;
     
     wr_cmd(0xB1);                     // Frame Rate
     _spi.write(0x00);
     _spi.write(0x1B);               
     _cs = 1;
     
     wr_cmd(0xF2);                     // Gamma Function Disable
     _spi.write(0x08);
     _cs = 1; 
     
     wr_cmd(0x26);                     
     _spi.write(0x01);                 // gamma set for curve 01/2/04/08
     _cs = 1; 
     
     wr_cmd(0xE0);                     // positive gamma correction
     _spi.write(0x1F); 
     _spi.write(0x1A); 
     _spi.write(0x18); 
     _spi.write(0x0A); 
     _spi.write(0x0F); 
     _spi.write(0x06); 
     _spi.write(0x45); 
     _spi.write(0x87); 
     _spi.write(0x32); 
     _spi.write(0x0A); 
     _spi.write(0x07); 
     _spi.write(0x02); 
     _spi.write(0x07);
     _spi.write(0x05); 
     _spi.write(0x00);
     _cs = 1;
     
     wr_cmd(0xE1);                     // negativ gamma correction
     _spi.write(0x00); 
     _spi.write(0x25); 
     _spi.write(0x27); 
     _spi.write(0x05); 
     _spi.write(0x10); 
     _spi.write(0x09); 
     _spi.write(0x3A); 
     _spi.write(0x78); 
     _spi.write(0x4D); 
     _spi.write(0x05); 
     _spi.write(0x18); 
     _spi.write(0x0D); 
     _spi.write(0x38);
     _spi.write(0x3A); 
     _spi.write(0x1F);
     _cs = 1;
     
     WindowMax ();
     
     //wr_cmd(0x34);                     // tearing effect off
     //_cs = 1;
     
     //wr_cmd(0x35);                     // tearing effect on
     //_cs = 1;
      
     wr_cmd(0xB7);                       // entry mode
     _spi.write(0x07);
     _cs = 1;
     
     wr_cmd(0xB6);                       // display function control
     _spi.write(0x0A);
     _spi.write(0x82);
     _spi.write(0x27);
     _spi.write(0x00);
     _cs = 1;
     
     wr_cmd(0x11);                     // sleep out
     _cs = 1;
     
     wait_ms(100);
     
     wr_cmd(0x29);                     // display on
     _cs = 1;
     
     wait_ms(100);
     
 }
void SPI_TFT_ILI9341::pixel(int x, int y, int color)
{
    wr_cmd(0x2A);
    _spi.write(x >> 8);
    _spi.write(x);
    _cs = 1;
    wr_cmd(0x2B);
    _spi.write(y >> 8);
    _spi.write(y);
    _cs = 1;
    wr_cmd(0x2C);  // send pixel
    #if defined TARGET_KL25Z  // 8 Bit SPI
    _spi.write(color >> 8);
    _spi.write(color & 0xff);
    #else 
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    _spi.write(color);                              // Write D0..D15
    _spi.format(8,3);
    #endif
    _cs = 1;
}
void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h)
{
    wr_cmd(0x2A);
    _spi.write(x >> 8);
    _spi.write(x);
    _spi.write((x+w-1) >> 8);
    _spi.write(x+w-1);
    
    _cs = 1;
    wr_cmd(0x2B);
    _spi.write(y >> 8);
    _spi.write(y);
    _spi.write((y+h-1) >> 8);
    _spi.write(y+h-1);
    _cs = 1;
}
void SPI_TFT_ILI9341::WindowMax (void)
{
    window (0, 0, width(),  height());
}
void SPI_TFT_ILI9341::cls (void)
{
    int pixel = ( width() * height());
    WindowMax();
    wr_cmd(0x2C);  // send pixel
    #if defined TARGET_KL25Z  // 8 Bit SPI
    unsigned int i;
    for (i = 0; i < ( width() * height()); i++){
        _spi.write(_background >> 8);
        _spi.write(_background & 0xff);
        }
    
    #else 
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    unsigned int i;
    for (i = 0; i < ( width() * height()); i++)
        _spi.write(_background);
    _spi.format(8,3);    
    #endif                         
    _cs = 1; 
}
void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color)
{
    int x = -r, y = 0, err = 2-2*r, e2;
    do {
        pixel(x0-x, y0+y,color);
        pixel(x0+x, y0+y,color);
        pixel(x0+x, y0-y,color);
        pixel(x0-x, y0-y,color);
        e2 = err;
        if (e2 <= y) {
            err += ++y*2+1;
            if (-x == y && e2 <= x) e2 = 0;
        }
        if (e2 > x) err += ++x*2+1;
    } while (x <= 0);
}
void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color)
{
    int x = -r, y = 0, err = 2-2*r, e2;
    do {
        vline(x0-x, y0-y, y0+y, color);
        vline(x0+x, y0-y, y0+y, color);
        e2 = err;
        if (e2 <= y) {
            err += ++y*2+1;
            if (-x == y && e2 <= x) e2 = 0;
        }
        if (e2 > x) err += ++x*2+1;
    } while (x <= 0);
}
void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color)
{
    int w;
    w = x1 - x0 + 1;
    window(x0,y,w,1);
    wr_cmd(0x2C);  // send pixel
    #if defined TARGET_KL25Z  // 8 Bit SPI
    int j;
    for (j=0; j<w; j++) {
        _spi.write(color >> 8);
        _spi.write(color & 0xff);
    } 
    #else 
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    int j;
    for (j=0; j<w; j++) {
        _spi.write(color);
    }
    _spi.format(8,3);
    #endif
    _cs = 1;
    WindowMax();
    return;
}
void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color)
{
    int h;
    h = y1 - y0 + 1;
    window(x,y0,1,h);
    wr_cmd(0x2C);  // send pixel
    #if defined TARGET_KL25Z  // 8 Bit SPI
    for (int y=0; y<h; y++) {
        _spi.write(color >> 8);
        _spi.write(color & 0xff);
    } 
    #else 
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    for (int y=0; y<h; y++) {
        _spi.write(color);
    }
    _spi.format(8,3);
    #endif
    _cs = 1;
    WindowMax();
    return;
}
void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color)
{
    //WindowMax();
    int   dx = 0, dy = 0;
    int   dx_sym = 0, dy_sym = 0;
    int   dx_x2 = 0, dy_x2 = 0;
    int   di = 0;
    dx = x1-x0;
    dy = y1-y0;
    if (dx == 0) {        /* vertical line */
        if (y1 > y0) vline(x0,y0,y1,color);
        else vline(x0,y1,y0,color);
        return;
    }
    if (dx > 0) {
        dx_sym = 1;
    } else {
        dx_sym = -1;
    }
    if (dy == 0) {        /* horizontal line */
        if (x1 > x0) hline(x0,x1,y0,color);
        else  hline(x1,x0,y0,color);
        return;
    }
    if (dy > 0) {
        dy_sym = 1;
    } else {
        dy_sym = -1;
    }
    dx = dx_sym*dx;
    dy = dy_sym*dy;
    dx_x2 = dx*2;
    dy_x2 = dy*2;
    if (dx >= dy) {
        di = dy_x2 - dx;
        while (x0 != x1) {
            pixel(x0, y0, color);
            x0 += dx_sym;
            if (di<0) {
                di += dy_x2;
            } else {
                di += dy_x2 - dx_x2;
                y0 += dy_sym;
            }
        }
        pixel(x0, y0, color);
    } else {
        di = dx_x2 - dy;
        while (y0 != y1) {
            pixel(x0, y0, color);
            y0 += dy_sym;
            if (di < 0) {
                di += dx_x2;
            } else {
                di += dx_x2 - dy_x2;
                x0 += dx_sym;
            }
        }
        pixel(x0, y0, color);
    }
    return;
}
void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color)
{
    if (x1 > x0) hline(x0,x1,y0,color);
    else  hline(x1,x0,y0,color);
    if (y1 > y0) vline(x0,y0,y1,color);
    else vline(x0,y1,y0,color);
    if (x1 > x0) hline(x0,x1,y1,color);
    else  hline(x1,x0,y1,color);
    if (y1 > y0) vline(x1,y0,y1,color);
    else vline(x1,y1,y0,color);
    return;
}
void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color)
{
    int h = y1 - y0 + 1;
    int w = x1 - x0 + 1;
    int pixel = h * w;
    window(x0,y0,w,h);
    wr_cmd(0x2C);  // send pixel 
    #if defined TARGET_KL25Z  // 8 Bit SPI
    for (int p=0; p<pixel; p++) {
        _spi.write(color >> 8);
        _spi.write(color & 0xff);
    }
   #else
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    for (int p=0; p<pixel; p++) {
        _spi.write(color);
    }
    _spi.format(8,3);
    #endif
    _cs = 1;
    WindowMax();
    return;
}
void SPI_TFT_ILI9341::locate(int x, int y)
{
    char_x = x;
    char_y = y;
}
int SPI_TFT_ILI9341::columns()
{
    return width() / font[1];
}
int SPI_TFT_ILI9341::rows()
{
    return height() / font[2];
}
int SPI_TFT_ILI9341::_putc(int value)
{
    if (value == '\n') {    // new line
        char_x = 0;
        char_y = char_y + font[2];
        if (char_y >= height() - font[2]) {
            char_y = 0;
        }
    } else {
        character(char_x, char_y, value);
    }
    return value;
}
void SPI_TFT_ILI9341::character(int x, int y, int c)
{
    unsigned int hor,vert,offset,bpl,j,i,b;
    unsigned char* zeichen;
    unsigned char z,w;
    if ((c < 31) || (c > 127)) return;   // test char range
    // read font parameter from start of array
    offset = font[0];                    // bytes / char
    hor = font[1];                       // get hor size of font
    vert = font[2];                      // get vert size of font
    bpl = font[3];                       // bytes per line
    if (char_x + hor > width()) {
        char_x = 0;
        char_y = char_y + vert;
        if (char_y >= height() - font[2]) {
            char_y = 0;
        }
    }
    window(char_x, char_y,hor,vert); // char box
    wr_cmd(0x2C);  // send pixel
    #ifndef TARGET_KL25Z  // 16 Bit SPI 
    _spi.format(16,3);   
    #endif                         // switch to 16 bit Mode 3
    zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
    w = zeichen[0];                          // width of actual char
     for (j=0; j<vert; j++) {  //  vert line
        for (i=0; i<hor; i++) {   //  horz line
            z =  zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
            b = 1 << (j & 0x07);
            if (( z & b ) == 0x00) {
               #ifndef TARGET_KL25Z  // 16 Bit SPI 
                _spi.write(_background);
               #else
                _spi.write(_background >> 8);
                _spi.write(_background & 0xff);
                #endif
            } else {
                #ifndef TARGET_KL25Z  // 16 Bit SPI
                _spi.write(_foreground);
                #else
                _spi.write(_foreground >> 8);
                _spi.write(_foreground & 0xff);
                #endif
            }
        }
    }
    _cs = 1;
    #ifndef TARGET_KL25Z  // 16 Bit SPI
    _spi.format(8,3);
    #endif
    WindowMax();
    if ((w + 2) < hor) {                   // x offset to next char
        char_x += w + 2;
    } else char_x += hor;
}
void SPI_TFT_ILI9341::set_font(unsigned char* f)
{
    font = f;
}
void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
    unsigned int  j;
    int padd;
    unsigned short *bitmap_ptr = (unsigned short *)bitmap;
    #if defined TARGET_KL25Z  // 8 Bit SPI
        unsigned short pix_temp;
    #endif
    
    unsigned int i;
    
    // the lines are padded to multiple of 4 bytes in a bitmap
    padd = -1;
    do {
        padd ++;
    } while (2*(w + padd)%4 != 0);
    window(x, y, w, h);
    bitmap_ptr += ((h - 1)* (w + padd));
    wr_cmd(0x2C);  // send pixel
    #ifndef TARGET_KL25Z  // 16 Bit SPI 
    _spi.format(16,3);
    #endif                            // switch to 16 bit Mode 3
    for (j = 0; j < h; j++) {         //Lines
        for (i = 0; i < w; i++) {     // one line
            #if defined TARGET_KL25Z  // 8 Bit SPI
                pix_temp = *bitmap_ptr;
                _spi.write(pix_temp >> 8);
                _spi.write(pix_temp);
                bitmap_ptr++;
            #else
                _spi.write(*bitmap_ptr);    // one line
                bitmap_ptr++;
            #endif
        }
        bitmap_ptr -= 2*w;
        bitmap_ptr -= padd;
    }
    _cs = 1;
    #ifndef TARGET_KL25Z  // 16 Bit SPI 
    _spi.format(8,3);
    #endif
    WindowMax();
}
// local filesystem is not implemented in kinetis board
#ifndef TARGET_KL25Z
int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{
#define OffsetPixelWidth    18
#define OffsetPixelHeigh    22
#define OffsetFileSize      34
#define OffsetPixData       10
#define OffsetBPP           28
    char filename[50];
    unsigned char BMP_Header[54];
    unsigned short BPP_t;
    unsigned int PixelWidth,PixelHeigh,start_data;
    unsigned int    i,off;
    int padd,j;
    unsigned short *line;
    // get the filename
    LocalFileSystem local("local");
    sprintf(&filename[0],"/local/");
    i=7;
    while (*Name_BMP!='\0') {
        filename[i++]=*Name_BMP++;
    }
    fprintf(stderr, "filename : %s \n\r",filename);
    FILE *Image = fopen((const char *)&filename[0], "rb");  // open the bmp file
    if (!Image) {
        return(0);      // error file not found !
    }
    fread(&BMP_Header[0],1,54,Image);      // get the BMP Header
    if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) {  // check magic byte
        fclose(Image);
        return(-1);     // error no BMP file
    }
    BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
    if (BPP_t != 0x0010) {
        fclose(Image);
        return(-2);     // error no 16 bit BMP
    }
    PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
    PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
    if (PixelHeigh > height() + y || PixelWidth > width() + x) {
        fclose(Image);
        return(-3);      // to big
    }
    start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);
    line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
    if (line == NULL) {
        return(-4);         // error no memory
    }
    // the bmp lines are padded to multiple of 4 bytes
    padd = -1;
    do {
        padd ++;
    } while ((PixelWidth * 2 + padd)%4 != 0);
//fseek(Image, 70 ,SEEK_SET);
    window(x, y,PixelWidth ,PixelHeigh);
    wr_cmd(0x2C);  // send pixel 
    _spi.format(16,3);                            // switch to 16 bit Mode 3
    for (j = PixelHeigh - 1; j >= 0; j--) {               //Lines bottom up
        off = j * (PixelWidth  * 2 + padd) + start_data;   // start of line
        fseek(Image, off ,SEEK_SET);
        fread(line,1,PixelWidth * 2,Image);       // read a line - slow !
        for (i = 0; i < PixelWidth; i++) {        // copy pixel data to TFT
            _spi.write(line[i]);                  // one 16 bit pixel
        } 
     }
    _cs = 1;
    _spi.format(8,3);
    free (line);
    fclose(Image);
    WindowMax();
    return(1);
}
#endif
            
    