Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed QEI HIDScope biquadFilter MODSERIAL FastPWM
Diff: main.cpp
- Revision:
- 27:e704fdc41e87
- Parent:
- 26:418f025a30c6
--- a/main.cpp Fri Nov 01 17:18:39 2019 +0000
+++ b/main.cpp Mon Nov 04 14:47:17 2019 +0000
@@ -1,5 +1,3 @@
-// Operating mode might not go to next state when SW2 is pressed
-
#include "mbed.h"
#include "HIDScope.h"
#include "BiQuad.h"
@@ -11,49 +9,58 @@
#include "Servo.h" // Included to control the servo motor
-Servo myservo(D13); // To control the servo motor
-DigitalIn but3(SW2); // To go to the next state or to choose one of two game modes when in state START_GAME
-DigitalIn but4(SW3); // To choose one of two game modes when in state START_GAME or to move the gripper
-DigitalOut ledr(LED_RED);
+Servo myservo(D13); // To control the servo motor
+
+DigitalIn button1(SW2); // Button to go to the next state or to choose one of two game modes when in state START_GAME
+DigitalIn button2(SW3); // Button to choose one of two game modes when in state START_GAME or to move the gripper in the operating mode
+
+DigitalOut ledr(LED_RED); // Define the output for the three different LED's on the K64F. These will be used to show in which state the robot currently is in
DigitalOut ledg(LED_GREEN);
DigitalOut ledb(LED_BLUE);
-AnalogIn S0(A0);
+AnalogIn S0(A0); // Define the different analog inputs for the four EMG shields that are connected to the
AnalogIn S1(A1);
AnalogIn S2(A2);
AnalogIn S3(A3);
-DigitalOut motor1Direction(D7);
-FastPWM motor1Velocity(D6);
-DigitalOut motor2Direction(D4);
-FastPWM motor2Velocity(D5);
+DigitalOut motor1Direction(D7); // Digital out to control the direction of motor1
+FastPWM motor1Velocity(D6); // FastPWM to control the velocity of motor1
+DigitalOut motor2Direction(D4); // Digital out to control the direction of motor2
+FastPWM motor2Velocity(D5); // FastPWM to control the velocity of motor2
-// Encoders 1 and 2 respectively
+// Encoder for motor1 and motor2
QEI Encoder1(D8,D9,NC,8400);
QEI Encoder2(D11,D10,NC,8400);
-Ticker measurecontrol; // Ticker function for the measurements
+Ticker measurecontrol; // Ticker function for the measurements
+
+Serial pc(USBTX, USBRX); // Used to get information about the different states and choises if a laptop is attached
-// Make arrays for the different variables for the motors
-//AnalogIn Shields[4] = {S0, S1, S2, S3};
-//DigitalOut MotorDirections[2] = {MD0, MD1};
-//FastPWM MotorVelocities[2] = {MV0, MV1};
-//QEI Encoders[2] = {E0, E1};
-
-Serial pc(USBTX, USBRX);
-
-double PI = 3.14159265358;//97932384626433832795028841971693993;
+double PI = 3.14159265358; // Defined pi because it is used multiple times
volatile double timeinterval = 0.001f; // Time interval of the Ticker function
-volatile double frequency = 17000.0; // Set motorfrequency
+volatile double frequency = 17000.0; // Motorfrequency of both motors
double period_signal = 1.0/frequency; // Convert to period of the signal
+/*
+ Motor calibration is done by manually moving the arms to the start position. This is the position in which the arms
+ that are connected to the motors are in line with each other. If they are in the correct position, the robot needs
+ to be reset. Then this programm will run and yendeffector and xendeffector are set to be 10.6159 and 0 which are the
+ correct physical positions on the board.
+*/
double yendeffector = 10.6159;
double xendeffector = 0;
-int ingedrukt = 0;
-int state_int;
-int previous_state_int;
-double motorvalue1;
-double motorvalue2;
+
+/*
+ Boolean that keeps track in which configuration the hook is
+ when 0, the hook is ready to grab a ring
+ when 1, it is ready to drob an object if it grabbed one
+*/
+bool pressed = 0;
+
+int previous_state_int; // Keeps track of the previous state to check if the state has changed
+double motorvalue1; // Motorvalue that has to be send to motor1
+double motorvalue2; // Motorvalue that has to be send to motor2
+
// Define the different states in which the robot can be
enum States {MOTORS_OFF, EMG_CALIBRATION, START_GAME,
DEMO_MODE, OPERATING_MODE, END_GAME
@@ -64,79 +71,58 @@
// Initialise the functions
-
+double PID_controller1(double error1);
+double PID_controller2(double error2);
+void getmeasuredposition(double & measuredposition1, double & measuredposition2);
+void getreferenceposition(double & referenceposition1, double & referenceposition2);
+void sendtomotor(double motorvalue1, double motorvalue2);
+void measureandcontrol();
void motorsoff();
-
void measure_data(double &f_y0, double &f_y1, double &f_y2, double &f_y3);
-
void det_max(double y, double &max_y);
-
void emgcalibration();
-
-void nothing()
-{
- // Do nothing
-}
-
void startgame() ;
-
void demo_mode();
-
void operating_mode();
-
+void endgame();
void New_State();
-void Set_State();
-
-double PID_controller1(double error1);
-
-double PID_controller2(double error2);
-
-void getmeasuredposition(double & measuredposition1, double & measuredposition2);
-
-void getreferenceposition(double & referenceposition1, double & referenceposition2);
-
-void sendtomotor(double motorvalue1, double motorvalue2);
-
-void measureandcontrol();
-
int main()
{
- ledr = 1;
+ ledr = 1; // Set all LEDs to off
ledg = 1;
ledb = 1;
- pc.baud(115200);
+ pc.baud(115200); // Define bitrate for the communication
pc.printf("Starting...\r\n\r\n");
- motor1Velocity.period(period_signal); // Set the period of the PWMfunction
- motor2Velocity.period(period_signal); // Set the period of the PWMfunction
+ motor1Velocity.period(period_signal); // Set the period of the PWMfunction
+ motor2Velocity.period(period_signal); // Set the period of the PWMfunction
previous_state_int = (int)MyState; // Save previous state to compare with current state and possibly execute New_State()
// in the while loop
- New_State(); // Execute the functions belonging to the current state
+ New_State(); // For initialising the state of the robot run New_State() once
while(true) {
- if ( (previous_state_int - (int)MyState) != 0 ) { // If current state is not previous state execute New_State()
- New_State();
+ if ( (previous_state_int - (int)MyState) != 0 ) {
+ New_State(); // If current state is not previous state run New_State()
}
}
}
-
+// Parallel PID controller to calculate the error for motor1
double PID_controller1(double error1)
{
- // Define errors for motor 1 and 2
- static double error_integral1 = 0;
- static double error_prev1 = error1;
+ static double error_integral1 = 0; // Keep track of the integral error within this function
+ static double error_prev1 = error1; // Safe previous error to use for the derivative part
- // Low-pass filter
+ // Low-pass filter to reduce noise from the derivative part
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
- // PID variables: we assume them to be the same for both motors
+ // PID variables: we assume them to be the same for both motors, found by trial and error
double Kp = 63;
double Ki = 3.64;
double Kd = 5;
@@ -159,16 +145,16 @@
}
+// Parallel PID controller to calculate the error for motor2
double PID_controller2(double error2)
{
- // Define errors for motor 1 and 2
- static double error_integral2 = 0;
- static double error_prev2 = error2;
+ static double error_integral2 = 0; // Keep track of the integral error within this function
+ static double error_prev2 = error2; // Safe previous error to use for the derivative part
- // Low-pass filter
+ // Low-pass filter to reduce noise from the derivative part
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
- // PID variables: we assume them to be the same for both motors
+ // PID variables: we assume them to be the same for both motors, found by trial and error
double Kp = 63;
double Ki = 3.64;
double Kd = 5;
@@ -191,53 +177,49 @@
}
-//get the measured position
+// Calculate the current configuration of both motors
void getmeasuredposition(double & measuredposition1, double & measuredposition2)
{
// Obtain the counts of motors 1 and 2 from the encoder
- int countsmotor1;
- int countsmotor2;
- countsmotor1 = Encoder1.getPulses();
- countsmotor2 = Encoder2.getPulses();
+ int countsmotor1 = Encoder1.getPulses();
+ int countsmotor2 = Encoder2.getPulses();
// Obtain the measured position for motor 1 and 2
+ // Devide by 8400 because 8400 counts is one rotation and times 2 to calculate the measuredposition as a fraction of the rotation
measuredposition1 = ((double)countsmotor1) / 8400.0f * 2.0f;
measuredposition2 = ((double)countsmotor2) / 8400.0f * 2.0f;
}
-//get the reference of the
+// Calculates the desired configuration of both motors by using the inverse kinematics
void getreferenceposition(double & referenceposition1, double & referenceposition2)
{
//Measurements of the arm
- double L0=1.95;
- double L1=15;
- double L2=20;
+ double L0=1.95; // Distance from both motors to (0,0), (0,0) is between motors 1 and 2
+ double L1=15; // Length of the arms attached to motor 1 and 2
+ double L2=20; // Length of the arms attached to the end-effector
- //Inverse kinematics: given the end position, what are the desired motor angles of 1 and 2
+ //Inverse kinematics: given the end position, what are the desired motor angles of 1 and 2 (explained in the report)
double desiredmotorangle1, desiredmotorangle2;
desiredmotorangle1 = (atan2(yendeffector,(L0+xendeffector))*180.0/PI + acos((pow(L1,2)+pow(L0+xendeffector,2)+pow(yendeffector,2)-pow(L2,2))/(2*L1*sqrt(pow(L0+xendeffector,2)+pow(yendeffector,2))))*180.0/PI)-180.0;
desiredmotorangle2 = (atan2(yendeffector,(L0-xendeffector))*180.0/PI + acos((pow(L1,2)+pow(L0-xendeffector,2)+pow(yendeffector,2)-pow(L2,2))/(2*L1*sqrt(pow(L0-xendeffector,2)+pow(yendeffector,2))))*180.0/PI)-180.0;
//Convert motor angles to counts
- double desiredmotorrounds1;
- double desiredmotorrounds2;
+ double desiredmotorrounds1, desiredmotorrounds2;
desiredmotorrounds1 = (desiredmotorangle1)/360.0;
desiredmotorrounds2 = (desiredmotorangle2)/360.0;
- //Assign this to new variables because otherwise it doesn't work
+ // Assign this to new variables because otherwise it doesn't work
referenceposition1 = desiredmotorrounds1;
referenceposition2 = desiredmotorrounds2;
}
-//send value to motor
-// IT WAS "void sendtomotor(float & motorvalue1, float & motorvalue2)" BUT I REMOVED THE REFERENCE, BECAUSE I THOUGHT IT WAS NOT NEEDED
+// Send the absolute motorvalues as velocity to the motors and set the motor directions by checking if the motorvalues are positive
void sendtomotor(double motorvalue1, double motorvalue2)
{
// Define the absolute motor values
- double absolutemotorvalue1;
- double absolutemotorvalue2;
+ double absolutemotorvalue1, absolutemotorvalue2;
absolutemotorvalue1 = fabs(motorvalue1);
absolutemotorvalue2 = fabs(motorvalue2);
@@ -254,7 +236,8 @@
motor2Direction = (motorvalue2 > 0.0f);
}
-// function to call reference absolutemotorvalueocity, measured absolutemotorvalueocity and controls motor with feedback
+
+// function to call different functions and control the motors
void measureandcontrol()
{
// Get the reference positions of motor 1 and 2
@@ -266,25 +249,20 @@
getmeasuredposition(measured1, measured2);
// Calculate the motor values
- //double motorvalue1, motorvalue2;
motorvalue1 = PID_controller1(reference1 - measured1);
motorvalue2 = PID_controller2(reference2 - measured2);
sendtomotor(motorvalue1, motorvalue2);
}
-void motorsoff()
-{
- // Function to turn the motors off. First state that the robot has. Robot will stay in this state untill button SW2 is pressed.
- // Robot will not return to this state anymore unless the user sets it back to this state with the keyboard input.
+// Function that is called once in the MOTORS_OFF state, motorvelocities are zero, will run the while loop until button1 is pressed.
+void motorsoff() {
sendtomotor(0.0,0.0); // Set motor velocity to 0
- state_int = 10;
-
bool whileloop_boolean = true; // Boolean for the while loop
while (whileloop_boolean) {
- if (but3.read() == 0) { // If button SW2 is pressed:
+ if (button1.read() == 0) { // If button1 is pressed:
MyState = (States)((int)MyState+1); // set MyState to EMG_CALIBRATION and exit the while loop
whileloop_boolean = false; // by making whileloop_boolean equal to false
wait(0.5f);
@@ -292,9 +270,14 @@
}
}
+/*
+ Uses a high-pass filter, rectifier and a low-pass filter on all EMG signals and then normalises the signal
+ by deviding by the maximum value that was measured during the EMG_CALIBRATION state. This maximum value
+ is determined within this function if the state is EMG_CALIBRATION
+*/
void measure_data(double &f_y0, double &f_y1, double &f_y2, double &f_y3)
{
- // High pass
+ // High-pass
double hb0 = 0.9169; // Coefficients from the following formula:
double hb1 = -1.8338; //
double hb2 = 0.9169; // b0 + b1 z^-1 + b2 z^-2
@@ -302,7 +285,7 @@
double ha1 = -1.8268; // a0 + a1 z^-1 + a2 z^-2
double ha2 = 0.8407; //
- // Low pass
+ // Low-pass
double lb0 = 0.000083621; // Coefficients from the following formula:
double lb1 = 0.0006724; //
double lb2 = 0.000083621; // b0 + b1 z^-1 + b2 z^-2
@@ -310,41 +293,40 @@
double la1 = -1.9740; // a0 + a1 z^-1 + a2 z^-2
double la2 = 0.9743; //
- static double max_y0 = 0.001;
- static double max_y1 = 0.001;
+ static double max_y0 = 0.001; // Maxima have to be static because they have to be changed during the
+ static double max_y1 = 0.001; // calibration and have to be used afterwards to normalise the signal
static double max_y2 = 0.001;
static double max_y3 = 0.001;
- static BiQuad hFilter0(hb0,hb1,hb2,ha0,ha1,ha2); // Create 4 equal filters used for the different EMG signals
+ static BiQuad hFilter0(hb0,hb1,hb2,ha0,ha1,ha2); // Create 4 equal high-pass filters used for the different EMG signals
static BiQuad hFilter1(hb0,hb1,hb2,ha0,ha1,ha2);
static BiQuad hFilter2(hb0,hb1,hb2,ha0,ha1,ha2);
static BiQuad hFilter3(hb0,hb1,hb2,ha0,ha1,ha2);
- static BiQuad lFilter0(lb0,lb1,lb2,la0,la1,la2); // Create 4 equal filters used for the different EMG signals
+ static BiQuad lFilter0(lb0,lb1,lb2,la0,la1,la2); // Create 4 equal low-pass filters used for the different EMG signals
static BiQuad lFilter1(lb0,lb1,lb2,la0,la1,la2);
static BiQuad lFilter2(lb0,lb1,lb2,la0,la1,la2);
static BiQuad lFilter3(lb0,lb1,lb2,la0,la1,la2);
- f_y0 = hFilter0.step(S0); // Apply filters on the different EMG signals
+ f_y0 = hFilter0.step(S0); // Apply high-pass filters on the different EMG signals
f_y1 = hFilter1.step(S1);
f_y2 = hFilter2.step(S2);
f_y3 = hFilter3.step(S3);
- f_y0 = abs(f_y0);
+ f_y0 = abs(f_y0); // Apply rectifier on the different EMG signals
f_y1 = abs(f_y1);
f_y2 = abs(f_y2);
f_y3 = abs(f_y3);
- f_y0 = lFilter0.step(f_y0);
+ f_y0 = lFilter0.step(f_y0); // Apply low-pass filters on the different EMG signals
f_y1 = lFilter1.step(f_y1);
f_y2 = lFilter2.step(f_y2);
f_y3 = lFilter3.step(f_y3);
if (MyState == EMG_CALIBRATION) {
-
- det_max(f_y0, max_y0); // Determine the maximum RMS value of the EMG signals during the EMG_CALIBRATION state
- det_max(f_y1, max_y1);
+ det_max(f_y0, max_y0); // Determine the maximum value of the EMG signals during the EMG_CALIBRATION state
+ det_max(f_y1, max_y1); // If a new maximum is found, the max_y_ value is adjusted
det_max(f_y2, max_y2);
det_max(f_y3, max_y3);
@@ -357,65 +339,74 @@
}
+
+// Function to determine if y is larger than max_y
void det_max(double y, double &max_y)
{
- max_y = max_y < y ? y : max_y; // if max_rms is smaller than rms, set rms as new max_rms, otherwise keep max_rms
+ max_y = max_y < y ? y : max_y; // if max_y is smaller than y, set y as new max_y, otherwise keep max_y
}
+
+// Function that is attached to the measurecontrol ticker when the state is EMG_CALIBRATION, the ticker will run this function for a specific amount of time
void emgcalibration()
{
- double y0, y1, y2, y3; // RMS values of the different EMG signals
+ double y0, y1, y2, y3; // variables to safe the output from measure_data
- measure_data(y0, y1, y2, y3); // Calculate RMS values
+ measure_data(y0, y1, y2, y3); // Calculate y values
- double duration = 20.0; // Duration of the emgcalibration function, in this case 10 seconds
+ double duration = 20.0; // Duration that the emgcalibration() has to run
int rounds = (duration / timeinterval); // Determine the amount of times this function has to run to run for the duration time
- // rounds is an integer so the value of duration / timeinterval is floored
+ // Rounds is an integer so the value of duration / timeinterval is floored
- static int counter = 0; // Counter which keeps track of the amount of times the function has executed
+ static int counter = 0; // Counter which keeps track of the amount of times the function has executed
if (counter >= rounds) {
- MyState = START_GAME; // If counter is larger than rounds, change MyState to the next state
- ledb = 1;
- measurecontrol.detach();
+ MyState = START_GAME; // If counter is larger than rounds, change MyState to the START_GAME state
+ ledb = 1; // Turn the blue LED off
+ measurecontrol.detach(); // detach emgcalibration() from the ticker function
} else {
counter++; // Else increase counter by 1
}
- int duration_led = 0.1 / timeinterval;
- if (counter % duration_led == 0) {
+ int rounds_led = 0.1f / timeinterval; // Amount of rounds that the blue LED has to be on and off
+ if (counter % rounds_led == 0) {
ledb = !ledb;
}
}
+
+// Function that is executed when the state is changed to START_GAME, will run a while loop until
+// button1 or 2 are pressed to choose the game mode
void startgame()
{
+ // Print messages with information for the user
pc.printf("Please choose which game you would like to start:\r\n");
- pc.printf("- Press button SW2 to start the demo mode\r\n Demo mode is a mode in which the different movements of the robot are shown.\r\n");
+ pc.printf("- Press button1 to start the demo mode\r\n Demo mode is a mode in which the different movements of the robot are shown.\r\n");
pc.printf(" It will move in straight lines to show that the robot meets the requirements.\r\n");
pc.printf(" It will also show how it is able to grab and lift objects which are on the board.\r\n\r\n");
- pc.printf("- Press button SW3 to start the operating mode\r\n The operating mode is a mode in which you can control the robot by flexing the muscles to which the electrodes are attached.\r\n");
+ pc.printf("- Press button2 to start the operating mode\r\n The operating mode is a mode in which you can control the robot by flexing the muscles to which the electrodes are attached.\r\n");
pc.printf(" You will be able to move the arm and use the gripper to try and grab and lift objects from the board to the container.\r\n\r\n");
while (MyState == START_GAME) {
-
- if (but3.read() == 0) {
- MyState = (States)((int)MyState+1);
+ if (button1.read() == 0) {
+ MyState = DEMO_MODE; // Press button1 to choose DEMO_MODE
wait(0.5f);
- } else if (but4.read() == 0) {
- MyState = (States)((int)MyState+2);
+ } else if (button2.read() == 0) {
+ MyState = OPERATING_MODE; // Press button2 to choose OPERATING_MODE
wait(0.5f);
}
-
}
}
+// Function that is executed when the state is changed to DEMO_MODE, will move the end-effector
+// to 5 different positions to show it can move in straight lines and then go back to the START_GAME state
void demo_mode()
{
-
- // 5 pre determined positions of the end effector to show it can move in straight lines
+ // CURRENTLY STILL NOT WORKING, ARMS WILL MOVE TO SINGULARITY, WATCH OUT WITH THIS MODE
+
+ // 5 pre determined positions of the end-effector to show it can move in straight lines
xendeffector=-5;
yendeffector=10.6159;
wait(0.5);
@@ -440,49 +431,55 @@
MyState = START_GAME; // Go back to START_GAME mode
}
-
+/*
+ Function that is attached to the measurecontrol ticker when the state is OPERATING_MODE
+ Turns the green LED on and off, calls measuredata(), changes the configuration of the hook
+ when button2 is pressed, sets a new position for the end-effector and goes to the state
+ END_GAME when button1 is pressed.
+*/
void operating_mode()
{
- // green turns on and off while running this function
- static int counter = 0;
- int duration_led = 0.1 / timeinterval;
-
- if (counter % duration_led == 0) {
+ // Turn green LED on or off
+ static int counter = 0; // Keep track of the amount of times the function has executed
+ int rounds_led = 0.1 / timeinterval; // Amount of rounds that the green LED has to be on and off
+ if (counter % rounds_led == 0) {
ledg = !ledg;
counter = 0;
}
counter++;
-
double y0,y1,y2,y3;
- measure_data(y0,y1,y2,y3);
+ measure_data(y0,y1,y2,y3); // Calculate y values
//servo besturing
-
- if(but4.read() == 0 && ingedrukt == 0) {
- for(int i=0; i<100; i++) {
- myservo = i/100.0;
- }
- ingedrukt = 1;
+ if(button2.read() == 0 && pressed == 0) {
+ // if button2 is pressed, set y0, y1, y2 and y3 to zero, change pressed and change
+ // the servo configuration one step at a time to reduce the speed of the rotation
y0 = 0;
y1 = 0;
y2 = 0;
y3 = 0;
- }
- else if(but4.read() == 0 && ingedrukt == 1) {
- for(int i=100; i>0; i--) {
+ pressed = 1;
+ for(int i=0; i<100; i++) {
myservo = i/100.0;
}
+ }
+ else if(button2.read() == 0 && pressed == 1) {
+ // if button2 is pressed, set y0, y1, y2 and y3 to zero, change pressed and change
+ // the servo configuration one step at a time to reduce the speed of the rotation
y0 = 0;
y1 = 0;
y2 = 0;
y3 = 0;
- ingedrukt = 0;
+ pressed = 0;
+ for(int i=100; i>0; i--) {
+ myservo = i/100.0;
+ }
}
-
- double threshold = 0.4; // When the analysed signal is above this threshold, the position of the end effector is changed
- double dr = 0.01; // The change in position with each step
+ // The threshold has been set to 0.4 by trial and error
+ double threshold = 0.4; // When the analysed signal is above this threshold, the position of the end-effector is changed
+ double dr = 0.01; // The change in position with each execution
if(y0 > threshold && xendeffector < 16) {
xendeffector=xendeffector+dr;
@@ -490,6 +487,7 @@
else if(y1 > threshold && xendeffector > -16) {
xendeffector=xendeffector-dr;
}
+ // The threshold was adjusted for the y-position because this worked better, this maybe had to be done because of a broken EMG cable
if(y2 > threshold+0.2 && yendeffector < 28) {
yendeffector=yendeffector+dr;
}
@@ -497,43 +495,49 @@
yendeffector=yendeffector-dr;
}
-
- if (but3.read() == 0) {
+ // When button1 is pressed, run while loop until button is released again to prevent bouncing
+ if (button1.read() == 0) {
bool buttonss = true;
while (buttonss) {
- if (but3.read() == 1) {
+ if (button1.read() == 1) {
buttonss = false;
}
}
- pc.printf("The game has ended, will move the end effector to (0,0), put the motors off and will now return to the state START_GAME");
- MyState = END_GAME;
- measurecontrol.detach();
+ pc.printf("The game has ended, will move the end-effector to (0,0), put the motors off and will return to the state START_GAME");
+ MyState = END_GAME; // Set MyState to END_GAME
+ measurecontrol.detach(); // Detach the operating_mode() function from measurecontrol
}
- measureandcontrol();
+ measureandcontrol(); // Call measureandcontrol() to adjust the motors
}
+
+// Function that is executed once when state is changed to END_GAME, returns the end-effector to
+// the start position and detaches the measureandcontrol function from the measurecontrol ticker
void endgame()
{
measurecontrol.attach(measureandcontrol,timeinterval);
double tempx = xendeffector;
double tempy = yendeffector-10.6159;
- double steps = 20;
+ double steps = 20; // Change the position of the end-effector in a certain amount of steps to the start-position
+ // This is done in steps to reduce abrupt movement of the end-effector
for (int i = 0; i < steps; i++) {
xendeffector = xendeffector - tempx/steps;
yendeffector = yendeffector - tempy/steps;
wait(0.1);
}
-
measurecontrol.detach();
- MyState = START_GAME;
+ MyState = START_GAME; // Return the state to START_GAME so a new game mode can be chosen again
}
+
+// Function that is called by the while loop in the main function if the current state is changed
+// Attaches or executes the functions belonging to the current state
void New_State()
{
- previous_state_int = (int)MyState; // Change previous state to current state
+ previous_state_int = (int)MyState; // Change previous state to current state
switch (MyState) {
case MOTORS_OFF :
@@ -546,7 +550,7 @@
case EMG_CALIBRATION :
pc.printf("\r\nState: EMG Calibration\r\n");
pc.printf("Emg calibration mode will run for 20 seconds. Try to flex the muscles to which the electrodes are attached as hard as possible during this time.\r\n");
- measurecontrol.attach(emgcalibration,timeinterval);
+ measurecontrol.attach(emgcalibration,timeinterval); // Attach emgcalibration() to the measurecontrol ticker
break;
case START_GAME :
@@ -559,12 +563,12 @@
case DEMO_MODE :
pc.printf("\r\nState: Demo mode\r\n");
- measurecontrol.attach(measureandcontrol,timeinterval);
+ measurecontrol.attach(measureandcontrol,timeinterval); // Attach measureandcontrol() to the measurecontrol ticker
ledr = 1; // red led is on when you enter START_GAME state
ledb = 0; // blue led is on when you enter START_GAME state
ledg = 0; // green led is on when you enter START_GAME state
demo_mode();
- measurecontrol.detach();
+ measurecontrol.detach(); // Detach measureandcontrol() grom the measurecontrol ticker
break;
case OPERATING_MODE :
@@ -572,7 +576,7 @@
ledr = 1; // red led is off when you enter OPERATING_MODE state
ledb = 1; // blue led is off when you enter OPERATING_MODE state
ledg = 0; // green led is on when you enter OPERATING_MODE state
- measurecontrol.attach(operating_mode,timeinterval);
+ measurecontrol.attach(operating_mode,timeinterval); // Attach operating_mode() to the measurecontrol ticker
break;
case END_GAME :
@@ -584,44 +588,14 @@
break;
default :
- pc.printf("\r\nDefault state: Motors are turned off\r\n");
-
+ pc.printf("\r\nSTATE IS CHANGED TO A NONEXISTING STATE!\r\n");
+ pc.printf("\r\nMotors are turned off\r\n");
sendtomotor(0.0,0.0);
- break;
+ ledg = 1;
+ ledb = 1;
+ while (true) {
+ ledr = !ledr;
+ wait(0.1f);
+ }
}
}
-
-void Set_State()
-{
- xendeffector=0.0;
- yendeffector=10.6159;
- wait(0.3f);
- sendtomotor(0.0,0.0); // Stop the motors
- // Stop the ticker function from running
-
- pc.printf("\r\nPress number: | To go to state:");
- pc.printf("\r\n (0) | MOTORS_OFF: Set motorspeed just in case to 0 and wait till button SW2 is pressed");
- pc.printf("\r\n (1) | EMG_CALIBRATION: Calibrate the maximum of the emg signals and normalise the emg signals with these maxima");
- pc.printf("\r\n (2) | START_GAME: Determine by keyboard input if you want to go to the demo or operating mode");
- pc.printf("\r\n (3) | DEMO_MODE: The demo mode will show the different motions that the robot can make");
- pc.printf("\r\n (4) | OPERATING_MODE: Move the arms and gripper of the arm by flexing your muscles");
- pc.printf("\r\n (5) | END_GAME: End effector returns to (0,0) and the motors are turned off, returns to START_GAME mode afterwards");
-
- wait(0.5f);
-
- char a = '0';
- char b = '5';
- bool boolean = true;
-
- while (boolean) {
- char c = pc.getc();
-
- if (c >= a && c <= b) {
- MyState = (States)(c-'0');
- boolean = false;
-
- } else {
- pc.printf("\r\nPlease enter a number between 0 and 5\r\n");
- }
- }
-}