Robot tryout

Dependencies:   mbed QEI biquadFilter MODSERIAL FastPWM ttmath Math

Motor_tryout.cpp

Committer:
Feike
Date:
2019-10-21
Revision:
18:ab0fe311e7f3
Parent:
17:6da57acb7bea
Child:
19:9c8ab7922191

File content as of revision 18:ab0fe311e7f3:

#include "mbed.h" 
#include "MODSERIAL.h"
#include "QEI1.h"
#include "QEI2.h"
#include "QEI.h"
#include "Math.h"
#include "ttmath.h"

MODSERIAL pc(USBTX, USBRX);
//Serial term (USBTX, USBRX);
PwmOut motor1_pwm(PTC2);
DigitalOut motor1_dir(PTC3);
PwmOut motor2_pwm(PTA2);
DigitalOut motor2_dir(PTB23);
PwmOut motor3_pwm(PTC4);
DigitalOut motor3_dir(PTC12);

QEI1 Encoder1(D12,D13,NC,64,QEI1::X4_ENCODING);
QEI2 Encoder2(D10,D11,NC,64,QEI2::X4_ENCODING);
QEI  Encoder(D2,D3,NC,64,QEI::X4_ENCODING);

int quit;
int counts1 = 0;
int counts2 = 0;
int counts3 = 0;
int limit_pos = 8400;
int x;
int y;
int z;
float steps;
int g = 0;

const float le = 15.0;
const float f = 37.5;
const float re = 174.0;
const float rf = 50.0;
const float pi = 3.14159265358979323846;
float y2;
float y1;
float z1;
float z2;
float rje2;
float rje;
float r2;
float r;
float z0=-172;
float y0=0;
float x0=0;
int check;
float theta1;
float theta2;
float theta3;
float oldtheta1=0;
float oldtheta2=0;
float oldtheta3=0;
int direction;
float delta_calcangleyz(float x0, float y0, float z0)   {
    float y2 = y0 + le;
    float y1 = f;
    float z1 = 0.0;
    float z2 = z0;
    float rje2 = re*re - x0*x0;
    float rje = sqrt(rje2);
    float r2 = (y1-y2)*(y1-y2) + (z1-z0)*(z1-z0);
    float r = sqrt(r2);
     
    
    if ((r+rje<rf) || (r + rf <rje) || (rf+rje<r))
    {
    int check = 1;
    pc.printf("\n\rPunt bestaat niet");
       }
    else
    {
        float alpha = acos((r2 + rf*rf -rje2)/(2*rf*r));
        float beta = atan((z1-z2)/(y1-y2));
               
                if(beta<0)  {
                    beta = beta + pi;
                    }
        float theta1 = (beta - alpha)*180.0/pi;
        int check = 0;
        return theta1;
        }
}

float delta_calcinverse(float x0, float y0, float z0) {
            theta1 = theta2 = theta3 = 0;
            theta1 = delta_calcangleyz(x0, y0, z0);
            if (check == 0)
            {
                theta2 = delta_calcangleyz(x0*cos(2/3*pi) + y0*sin(2/3*pi), y0*cos(2/3*pi)-x0*sin(2/3*pi), z0);
                theta3 = delta_calcangleyz(x0*cos(2/3*pi) - y0*sin(2/3*pi), y0*cos(2/3*pi)+x0*sin(2/3*pi), z0);
                //return theta2;
                //return theta3;
                }
return theta1, theta2, theta3;

}
            
            
Ticker pulse;
void pulseget()
{
    counts1 = Encoder1.getPulses();
    counts2 = Encoder2.getPulses();
    counts3 = Encoder.getPulses();
    }

int anglestep(float angle)
{
    float steps;
    steps = angle / 360 * 8400;
    return steps;
    }

// DE MAIN FUNCTIE
int main(void)
{    
    pc.baud(115200);
        
    char cc = pc.getc();
    pc.printf("\n\r cc check");  
    //char key = term.getc();
    pc.printf("\n\r term check");  

    float angle = 360;
    while(true)
    {
       counts1 = 0;
       counts2 = 0;
       counts3 = 0;
       
        float steps1;
        float steps2;
        float steps3;
                     
            counts1 = Encoder1.getPulses();
            counts2 = Encoder2.getPulses();
            counts3 = Encoder.getPulses();
            
            delta_calcinverse(x0,y0,z0);
            
            oldtheta1 = theta1;
            oldtheta2 = theta2;
            oldtheta3 = theta3;
            
char cc = pc.getc();

                        
if (cc=='a') {
            pc.printf("\n\rleft");
            z0=z0-1.0f;
            
            theta1 = delta_calcinverse(x0,y0,z0);
            theta1 = delta_calcangleyz(x0,y0,z0); 
            
            theta1 = theta1 - oldtheta1;
            theta2 = theta2 - oldtheta2;
            theta3 = theta3 - oldtheta3;                     
            
             steps1 = anglestep(theta1);
             steps2 = anglestep(theta2);
             steps3 = anglestep(theta3);
            
            int frequency_pwm = 10000; //10 kHz PWM
            motor1_pwm.period(1.0/(double)frequency_pwm); // T=1/f
            motor1_dir.write(1); // positief
            motor1_pwm.write(0.7); // write Duty Cycle  
            
            motor2_pwm.period(1.0/(double)frequency_pwm); // T=1/f
            motor2_dir.write(0); // positief
            motor2_pwm.write(0.7); // write Duty Cycle  
            
            motor3_pwm.period(1.0/(double)frequency_pwm); // T=1/f
            motor3_dir.write(1); // positief
            motor3_pwm.write(0.7); // write Duty Cycle  
            
        
}                
if (cc=='d') {
            pc.printf("\n\rright");
                        
            z0=z0-10.0f;
             
            theta1 = delta_calcinverse(x0,y0,z0);
            theta1 = delta_calcangleyz(x0,y0,z0); 
            
            theta1 = theta1 - oldtheta1;
            theta2 = theta2 - oldtheta2;
            theta3 = theta3 - oldtheta3;                     
            
            float steps1 = anglestep(theta1);
            float steps2 = anglestep(theta2);
            float steps3 = anglestep(theta3);
            
            pc.printf("\n\r the difference in angles are (%f, %f, %f)", theta1, theta2, theta3);
            pc.printf("\n\r the steps are (%f, %f, %f)", steps1, steps2, steps3);
            
            motor1_dir.write(0); // positief
            motor2_dir.write(1); // positief
            motor3_dir.write(0); // positief
            
            if (steps1<0) {
            motor1_dir.write(1); // positief
            }
            
            if (steps1<0) {
            motor2_dir.write(0); // positief

            }
            
            if (steps1<0) {
            motor3_dir.write(1); // positief
            }
            
            int frequency_pwm = 10000; //10 kHz PWM
            motor1_pwm.period(1.0/(double)frequency_pwm); // T=1/f
            motor1_pwm.write(0.7); // write Duty Cycle  
            
            motor2_pwm.period(1.0/(double)frequency_pwm); // T=1/f
            motor2_pwm.write(0.7); // write Duty Cycle  
            
            motor3_pwm.period(1.0/(double)frequency_pwm); // T=1/f
            motor3_pwm.write(0.7); // write Duty Cycle  
            
        while (abs(counts1)<=abs(steps1) || abs(counts2)<=abs(steps2) || abs(counts3)<=abs(steps3)) {
             pc.printf("while");
             if(abs(counts1)>=abs(steps1)) {
                  motor1_pwm.write(0);
                }
                if (abs(counts2)>=abs(steps2))   {
                    motor2_pwm.write(0);
                    }
                        if (abs(counts3)>=abs(steps3))  {
                            motor3_pwm.write(0);
                            }
        }

}                
               
            
            wait(1.0/100);
            }
}