this program is designed for the CHITISAT's OBC, and is a prototype for the flight plan vs altitude

Dependencies:   ADS1015 BMP280 SDFileSystem SENSOR mbed

Committer:
FannyCalle
Date:
Fri Jun 08 21:35:41 2018 +0000
Revision:
0:642a7818292a
modo stanby

Who changed what in which revision?

UserRevisionLine numberNew contents of line
FannyCalle 0:642a7818292a 1 #ifndef MPU6050_H
FannyCalle 0:642a7818292a 2 #define MPU6050_H
FannyCalle 0:642a7818292a 3
FannyCalle 0:642a7818292a 4 #include "mbed.h"
FannyCalle 0:642a7818292a 5 #include "math.h"
FannyCalle 0:642a7818292a 6
FannyCalle 0:642a7818292a 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
FannyCalle 0:642a7818292a 8 // Invensense Inc., www.invensense.com
FannyCalle 0:642a7818292a 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
FannyCalle 0:642a7818292a 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
FannyCalle 0:642a7818292a 11 //
FannyCalle 0:642a7818292a 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
FannyCalle 0:642a7818292a 13 #define YGOFFS_TC 0x01
FannyCalle 0:642a7818292a 14 #define ZGOFFS_TC 0x02
FannyCalle 0:642a7818292a 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
FannyCalle 0:642a7818292a 16 #define Y_FINE_GAIN 0x04
FannyCalle 0:642a7818292a 17 #define Z_FINE_GAIN 0x05
FannyCalle 0:642a7818292a 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
FannyCalle 0:642a7818292a 19 #define XA_OFFSET_L_TC 0x07
FannyCalle 0:642a7818292a 20 #define YA_OFFSET_H 0x08
FannyCalle 0:642a7818292a 21 #define YA_OFFSET_L_TC 0x09
FannyCalle 0:642a7818292a 22 #define ZA_OFFSET_H 0x0A
FannyCalle 0:642a7818292a 23 #define ZA_OFFSET_L_TC 0x0B
FannyCalle 0:642a7818292a 24 #define SELF_TEST_X 0x0D
FannyCalle 0:642a7818292a 25 #define SELF_TEST_Y 0x0E
FannyCalle 0:642a7818292a 26 #define SELF_TEST_Z 0x0F
FannyCalle 0:642a7818292a 27 #define SELF_TEST_A 0x10
FannyCalle 0:642a7818292a 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
FannyCalle 0:642a7818292a 29 #define XG_OFFS_USRL 0x14
FannyCalle 0:642a7818292a 30 #define YG_OFFS_USRH 0x15
FannyCalle 0:642a7818292a 31 #define YG_OFFS_USRL 0x16
FannyCalle 0:642a7818292a 32 #define ZG_OFFS_USRH 0x17
FannyCalle 0:642a7818292a 33 #define ZG_OFFS_USRL 0x18
FannyCalle 0:642a7818292a 34 #define SMPLRT_DIV 0x19
FannyCalle 0:642a7818292a 35 #define CONFIG 0x1A
FannyCalle 0:642a7818292a 36 #define GYRO_CONFIG 0x1B
FannyCalle 0:642a7818292a 37 #define ACCEL_CONFIG 0x1C
FannyCalle 0:642a7818292a 38 #define FF_THR 0x1D // Free-fall
FannyCalle 0:642a7818292a 39 #define FF_DUR 0x1E // Free-fall
FannyCalle 0:642a7818292a 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
FannyCalle 0:642a7818292a 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
FannyCalle 0:642a7818292a 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
FannyCalle 0:642a7818292a 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
FannyCalle 0:642a7818292a 44 #define FIFO_EN 0x23
FannyCalle 0:642a7818292a 45 #define I2C_MST_CTRL 0x24
FannyCalle 0:642a7818292a 46 #define I2C_SLV0_ADDR 0x25
FannyCalle 0:642a7818292a 47 #define I2C_SLV0_REG 0x26
FannyCalle 0:642a7818292a 48 #define I2C_SLV0_CTRL 0x27
FannyCalle 0:642a7818292a 49 #define I2C_SLV1_ADDR 0x28
FannyCalle 0:642a7818292a 50 #define I2C_SLV1_REG 0x29
FannyCalle 0:642a7818292a 51 #define I2C_SLV1_CTRL 0x2A
FannyCalle 0:642a7818292a 52 #define I2C_SLV2_ADDR 0x2B
FannyCalle 0:642a7818292a 53 #define I2C_SLV2_REG 0x2C
FannyCalle 0:642a7818292a 54 #define I2C_SLV2_CTRL 0x2D
FannyCalle 0:642a7818292a 55 #define I2C_SLV3_ADDR 0x2E
FannyCalle 0:642a7818292a 56 #define I2C_SLV3_REG 0x2F
FannyCalle 0:642a7818292a 57 #define I2C_SLV3_CTRL 0x30
FannyCalle 0:642a7818292a 58 #define I2C_SLV4_ADDR 0x31
FannyCalle 0:642a7818292a 59 #define I2C_SLV4_REG 0x32
FannyCalle 0:642a7818292a 60 #define I2C_SLV4_DO 0x33
FannyCalle 0:642a7818292a 61 #define I2C_SLV4_CTRL 0x34
FannyCalle 0:642a7818292a 62 #define I2C_SLV4_DI 0x35
FannyCalle 0:642a7818292a 63 #define I2C_MST_STATUS 0x36
FannyCalle 0:642a7818292a 64 #define INT_PIN_CFG 0x37
FannyCalle 0:642a7818292a 65 #define INT_ENABLE 0x38
FannyCalle 0:642a7818292a 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
FannyCalle 0:642a7818292a 67 #define INT_STATUS 0x3A
FannyCalle 0:642a7818292a 68 #define ACCEL_XOUT_H 0x3B
FannyCalle 0:642a7818292a 69 #define ACCEL_XOUT_L 0x3C
FannyCalle 0:642a7818292a 70 #define ACCEL_YOUT_H 0x3D
FannyCalle 0:642a7818292a 71 #define ACCEL_YOUT_L 0x3E
FannyCalle 0:642a7818292a 72 #define ACCEL_ZOUT_H 0x3F
FannyCalle 0:642a7818292a 73 #define ACCEL_ZOUT_L 0x40
FannyCalle 0:642a7818292a 74 #define TEMP_OUT_H 0x41
FannyCalle 0:642a7818292a 75 #define TEMP_OUT_L 0x42
FannyCalle 0:642a7818292a 76 #define GYRO_XOUT_H 0x43
FannyCalle 0:642a7818292a 77 #define GYRO_XOUT_L 0x44
FannyCalle 0:642a7818292a 78 #define GYRO_YOUT_H 0x45
FannyCalle 0:642a7818292a 79 #define GYRO_YOUT_L 0x46
FannyCalle 0:642a7818292a 80 #define GYRO_ZOUT_H 0x47
FannyCalle 0:642a7818292a 81 #define GYRO_ZOUT_L 0x48
FannyCalle 0:642a7818292a 82 #define EXT_SENS_DATA_00 0x49
FannyCalle 0:642a7818292a 83 #define EXT_SENS_DATA_01 0x4A
FannyCalle 0:642a7818292a 84 #define EXT_SENS_DATA_02 0x4B
FannyCalle 0:642a7818292a 85 #define EXT_SENS_DATA_03 0x4C
FannyCalle 0:642a7818292a 86 #define EXT_SENS_DATA_04 0x4D
FannyCalle 0:642a7818292a 87 #define EXT_SENS_DATA_05 0x4E
FannyCalle 0:642a7818292a 88 #define EXT_SENS_DATA_06 0x4F
FannyCalle 0:642a7818292a 89 #define EXT_SENS_DATA_07 0x50
FannyCalle 0:642a7818292a 90 #define EXT_SENS_DATA_08 0x51
FannyCalle 0:642a7818292a 91 #define EXT_SENS_DATA_09 0x52
FannyCalle 0:642a7818292a 92 #define EXT_SENS_DATA_10 0x53
FannyCalle 0:642a7818292a 93 #define EXT_SENS_DATA_11 0x54
FannyCalle 0:642a7818292a 94 #define EXT_SENS_DATA_12 0x55
FannyCalle 0:642a7818292a 95 #define EXT_SENS_DATA_13 0x56
FannyCalle 0:642a7818292a 96 #define EXT_SENS_DATA_14 0x57
FannyCalle 0:642a7818292a 97 #define EXT_SENS_DATA_15 0x58
FannyCalle 0:642a7818292a 98 #define EXT_SENS_DATA_16 0x59
FannyCalle 0:642a7818292a 99 #define EXT_SENS_DATA_17 0x5A
FannyCalle 0:642a7818292a 100 #define EXT_SENS_DATA_18 0x5B
FannyCalle 0:642a7818292a 101 #define EXT_SENS_DATA_19 0x5C
FannyCalle 0:642a7818292a 102 #define EXT_SENS_DATA_20 0x5D
FannyCalle 0:642a7818292a 103 #define EXT_SENS_DATA_21 0x5E
FannyCalle 0:642a7818292a 104 #define EXT_SENS_DATA_22 0x5F
FannyCalle 0:642a7818292a 105 #define EXT_SENS_DATA_23 0x60
FannyCalle 0:642a7818292a 106 #define MOT_DETECT_STATUS 0x61
FannyCalle 0:642a7818292a 107 #define I2C_SLV0_DO 0x63
FannyCalle 0:642a7818292a 108 #define I2C_SLV1_DO 0x64
FannyCalle 0:642a7818292a 109 #define I2C_SLV2_DO 0x65
FannyCalle 0:642a7818292a 110 #define I2C_SLV3_DO 0x66
FannyCalle 0:642a7818292a 111 #define I2C_MST_DELAY_CTRL 0x67
FannyCalle 0:642a7818292a 112 #define SIGNAL_PATH_RESET 0x68
FannyCalle 0:642a7818292a 113 #define MOT_DETECT_CTRL 0x69
FannyCalle 0:642a7818292a 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
FannyCalle 0:642a7818292a 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
FannyCalle 0:642a7818292a 116 #define PWR_MGMT_2 0x6C
FannyCalle 0:642a7818292a 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
FannyCalle 0:642a7818292a 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
FannyCalle 0:642a7818292a 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
FannyCalle 0:642a7818292a 120 #define DMP_REG_1 0x70
FannyCalle 0:642a7818292a 121 #define DMP_REG_2 0x71
FannyCalle 0:642a7818292a 122 #define FIFO_COUNTH 0x72
FannyCalle 0:642a7818292a 123 #define FIFO_COUNTL 0x73
FannyCalle 0:642a7818292a 124 #define FIFO_R_W 0x74
FannyCalle 0:642a7818292a 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
FannyCalle 0:642a7818292a 126
FannyCalle 0:642a7818292a 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
FannyCalle 0:642a7818292a 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
FannyCalle 0:642a7818292a 129 #define ADO 0
FannyCalle 0:642a7818292a 130 #if ADO
FannyCalle 0:642a7818292a 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
FannyCalle 0:642a7818292a 132 #else
FannyCalle 0:642a7818292a 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
FannyCalle 0:642a7818292a 134 #endif
FannyCalle 0:642a7818292a 135
FannyCalle 0:642a7818292a 136 // Set initial input parameters
FannyCalle 0:642a7818292a 137 enum Ascale {
FannyCalle 0:642a7818292a 138 AFS_2G = 0,
FannyCalle 0:642a7818292a 139 AFS_4G,
FannyCalle 0:642a7818292a 140 AFS_8G,
FannyCalle 0:642a7818292a 141 AFS_16G
FannyCalle 0:642a7818292a 142 };
FannyCalle 0:642a7818292a 143
FannyCalle 0:642a7818292a 144 enum Gscale {
FannyCalle 0:642a7818292a 145 GFS_250DPS = 0,
FannyCalle 0:642a7818292a 146 GFS_500DPS,
FannyCalle 0:642a7818292a 147 GFS_1000DPS,
FannyCalle 0:642a7818292a 148 GFS_2000DPS
FannyCalle 0:642a7818292a 149 };
FannyCalle 0:642a7818292a 150
FannyCalle 0:642a7818292a 151 // Specify sensor full scale
FannyCalle 0:642a7818292a 152 int Gscale = GFS_250DPS;
FannyCalle 0:642a7818292a 153 int Ascale = AFS_2G;
FannyCalle 0:642a7818292a 154
FannyCalle 0:642a7818292a 155 //Set up I2C, (SDA,SCL)
FannyCalle 0:642a7818292a 156 I2C i2c(PB_4,PA_7);
FannyCalle 0:642a7818292a 157
FannyCalle 0:642a7818292a 158 DigitalOut myled(LED1);
FannyCalle 0:642a7818292a 159
FannyCalle 0:642a7818292a 160 float aRes, gRes; // scale resolutions per LSB for the sensors
FannyCalle 0:642a7818292a 161
FannyCalle 0:642a7818292a 162 // Pin definitions
FannyCalle 0:642a7818292a 163 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
FannyCalle 0:642a7818292a 164
FannyCalle 0:642a7818292a 165 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
FannyCalle 0:642a7818292a 166 float ax, ay, az; // Stores the real accel value in g's
FannyCalle 0:642a7818292a 167 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
FannyCalle 0:642a7818292a 168 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
FannyCalle 0:642a7818292a 169 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
FannyCalle 0:642a7818292a 170 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
FannyCalle 0:642a7818292a 171 float temperature;
FannyCalle 0:642a7818292a 172 float SelfTest[6];
FannyCalle 0:642a7818292a 173
FannyCalle 0:642a7818292a 174 int delt_t = 0; // used to control display output rate
FannyCalle 0:642a7818292a 175 int count = 0; // used to control display output rate
FannyCalle 0:642a7818292a 176
FannyCalle 0:642a7818292a 177 // parameters for 6 DoF sensor fusion calculations
FannyCalle 0:642a7818292a 178 float PI = 3.14159265358979323846f;
FannyCalle 0:642a7818292a 179 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
FannyCalle 0:642a7818292a 180 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
FannyCalle 0:642a7818292a 181 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
FannyCalle 0:642a7818292a 182 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
FannyCalle 0:642a7818292a 183 float pitch, yaw, roll;
FannyCalle 0:642a7818292a 184 float deltat = 0.0f; // integration interval for both filter schemes
FannyCalle 0:642a7818292a 185 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
FannyCalle 0:642a7818292a 186 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
FannyCalle 0:642a7818292a 187
FannyCalle 0:642a7818292a 188 class MPU6050 {
FannyCalle 0:642a7818292a 189
FannyCalle 0:642a7818292a 190 protected:
FannyCalle 0:642a7818292a 191
FannyCalle 0:642a7818292a 192 public:
FannyCalle 0:642a7818292a 193 //===================================================================================================================
FannyCalle 0:642a7818292a 194 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
FannyCalle 0:642a7818292a 195 //===================================================================================================================
FannyCalle 0:642a7818292a 196
FannyCalle 0:642a7818292a 197 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
FannyCalle 0:642a7818292a 198 {
FannyCalle 0:642a7818292a 199 char data_write[2];
FannyCalle 0:642a7818292a 200 data_write[0] = subAddress;
FannyCalle 0:642a7818292a 201 data_write[1] = data;
FannyCalle 0:642a7818292a 202 i2c.write(address, data_write, 2, 0);
FannyCalle 0:642a7818292a 203 }
FannyCalle 0:642a7818292a 204
FannyCalle 0:642a7818292a 205 char readByte(uint8_t address, uint8_t subAddress)
FannyCalle 0:642a7818292a 206 {
FannyCalle 0:642a7818292a 207 char data[1]; // `data` will store the register data
FannyCalle 0:642a7818292a 208 char data_write[1];
FannyCalle 0:642a7818292a 209 data_write[0] = subAddress;
FannyCalle 0:642a7818292a 210 i2c.write(address, data_write, 1, 1); // no stop
FannyCalle 0:642a7818292a 211 i2c.read(address, data, 1, 0);
FannyCalle 0:642a7818292a 212 return data[0];
FannyCalle 0:642a7818292a 213 }
FannyCalle 0:642a7818292a 214
FannyCalle 0:642a7818292a 215 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
FannyCalle 0:642a7818292a 216 {
FannyCalle 0:642a7818292a 217 char data[14];
FannyCalle 0:642a7818292a 218 char data_write[1];
FannyCalle 0:642a7818292a 219 data_write[0] = subAddress;
FannyCalle 0:642a7818292a 220 i2c.write(address, data_write, 1, 1); // no stop
FannyCalle 0:642a7818292a 221 i2c.read(address, data, count, 0);
FannyCalle 0:642a7818292a 222 for(int ii = 0; ii < count; ii++) {
FannyCalle 0:642a7818292a 223 dest[ii] = data[ii];
FannyCalle 0:642a7818292a 224 }
FannyCalle 0:642a7818292a 225 }
FannyCalle 0:642a7818292a 226
FannyCalle 0:642a7818292a 227
FannyCalle 0:642a7818292a 228 void getGres() {
FannyCalle 0:642a7818292a 229 switch (Gscale)
FannyCalle 0:642a7818292a 230 {
FannyCalle 0:642a7818292a 231 // Possible gyro scales (and their register bit settings) are:
FannyCalle 0:642a7818292a 232 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
FannyCalle 0:642a7818292a 233 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
FannyCalle 0:642a7818292a 234 case GFS_250DPS:
FannyCalle 0:642a7818292a 235 gRes = 250.0/32768.0;
FannyCalle 0:642a7818292a 236 break;
FannyCalle 0:642a7818292a 237 case GFS_500DPS:
FannyCalle 0:642a7818292a 238 gRes = 500.0/32768.0;
FannyCalle 0:642a7818292a 239 break;
FannyCalle 0:642a7818292a 240 case GFS_1000DPS:
FannyCalle 0:642a7818292a 241 gRes = 1000.0/32768.0;
FannyCalle 0:642a7818292a 242 break;
FannyCalle 0:642a7818292a 243 case GFS_2000DPS:
FannyCalle 0:642a7818292a 244 gRes = 2000.0/32768.0;
FannyCalle 0:642a7818292a 245 break;
FannyCalle 0:642a7818292a 246 }
FannyCalle 0:642a7818292a 247 }
FannyCalle 0:642a7818292a 248
FannyCalle 0:642a7818292a 249 void getAres() {
FannyCalle 0:642a7818292a 250 switch (Ascale)
FannyCalle 0:642a7818292a 251 {
FannyCalle 0:642a7818292a 252 // Possible accelerometer scales (and their register bit settings) are:
FannyCalle 0:642a7818292a 253 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
FannyCalle 0:642a7818292a 254 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
FannyCalle 0:642a7818292a 255 case AFS_2G:
FannyCalle 0:642a7818292a 256 aRes = 2.0/32768.0;
FannyCalle 0:642a7818292a 257 break;
FannyCalle 0:642a7818292a 258 case AFS_4G:
FannyCalle 0:642a7818292a 259 aRes = 4.0/32768.0;
FannyCalle 0:642a7818292a 260 break;
FannyCalle 0:642a7818292a 261 case AFS_8G:
FannyCalle 0:642a7818292a 262 aRes = 8.0/32768.0;
FannyCalle 0:642a7818292a 263 break;
FannyCalle 0:642a7818292a 264 case AFS_16G:
FannyCalle 0:642a7818292a 265 aRes = 16.0/32768.0;
FannyCalle 0:642a7818292a 266 break;
FannyCalle 0:642a7818292a 267 }
FannyCalle 0:642a7818292a 268 }
FannyCalle 0:642a7818292a 269
FannyCalle 0:642a7818292a 270
FannyCalle 0:642a7818292a 271 void readAccelData(int16_t * destination)
FannyCalle 0:642a7818292a 272 {
FannyCalle 0:642a7818292a 273 uint8_t rawData[6]; // x/y/z accel register data stored here
FannyCalle 0:642a7818292a 274 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
FannyCalle 0:642a7818292a 275 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
FannyCalle 0:642a7818292a 276 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
FannyCalle 0:642a7818292a 277 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
FannyCalle 0:642a7818292a 278 }
FannyCalle 0:642a7818292a 279
FannyCalle 0:642a7818292a 280 void readGyroData(int16_t * destination)
FannyCalle 0:642a7818292a 281 {
FannyCalle 0:642a7818292a 282 uint8_t rawData[6]; // x/y/z gyro register data stored here
FannyCalle 0:642a7818292a 283 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
FannyCalle 0:642a7818292a 284 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
FannyCalle 0:642a7818292a 285 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
FannyCalle 0:642a7818292a 286 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
FannyCalle 0:642a7818292a 287 }
FannyCalle 0:642a7818292a 288
FannyCalle 0:642a7818292a 289 int16_t readTempData()
FannyCalle 0:642a7818292a 290 {
FannyCalle 0:642a7818292a 291 uint8_t rawData[2]; // x/y/z gyro register data stored here
FannyCalle 0:642a7818292a 292 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
FannyCalle 0:642a7818292a 293 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
FannyCalle 0:642a7818292a 294 }
FannyCalle 0:642a7818292a 295
FannyCalle 0:642a7818292a 296
FannyCalle 0:642a7818292a 297
FannyCalle 0:642a7818292a 298 // Configure the motion detection control for low power accelerometer mode
FannyCalle 0:642a7818292a 299 void LowPowerAccelOnly()
FannyCalle 0:642a7818292a 300 {
FannyCalle 0:642a7818292a 301
FannyCalle 0:642a7818292a 302 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
FannyCalle 0:642a7818292a 303 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
FannyCalle 0:642a7818292a 304 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
FannyCalle 0:642a7818292a 305 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
FannyCalle 0:642a7818292a 306 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
FannyCalle 0:642a7818292a 307
FannyCalle 0:642a7818292a 308 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
FannyCalle 0:642a7818292a 309 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
FannyCalle 0:642a7818292a 310 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
FannyCalle 0:642a7818292a 311
FannyCalle 0:642a7818292a 312 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
FannyCalle 0:642a7818292a 313 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
FannyCalle 0:642a7818292a 314 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
FannyCalle 0:642a7818292a 315
FannyCalle 0:642a7818292a 316 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
FannyCalle 0:642a7818292a 317 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
FannyCalle 0:642a7818292a 318 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
FannyCalle 0:642a7818292a 319 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
FannyCalle 0:642a7818292a 320
FannyCalle 0:642a7818292a 321 c = readByte(MPU6050_ADDRESS, CONFIG);
FannyCalle 0:642a7818292a 322 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
FannyCalle 0:642a7818292a 323 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
FannyCalle 0:642a7818292a 324
FannyCalle 0:642a7818292a 325 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
FannyCalle 0:642a7818292a 326 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
FannyCalle 0:642a7818292a 327 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
FannyCalle 0:642a7818292a 328
FannyCalle 0:642a7818292a 329 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
FannyCalle 0:642a7818292a 330 // for at least the counter duration
FannyCalle 0:642a7818292a 331 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
FannyCalle 0:642a7818292a 332 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
FannyCalle 0:642a7818292a 333
FannyCalle 0:642a7818292a 334 wait_ms(10); // Add delay for accumulation of samples
FannyCalle 0:642a7818292a 335
FannyCalle 0:642a7818292a 336 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
FannyCalle 0:642a7818292a 337 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
FannyCalle 0:642a7818292a 338 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
FannyCalle 0:642a7818292a 339
FannyCalle 0:642a7818292a 340 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
FannyCalle 0:642a7818292a 341 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
FannyCalle 0:642a7818292a 342 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
FannyCalle 0:642a7818292a 343
FannyCalle 0:642a7818292a 344 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
FannyCalle 0:642a7818292a 345 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
FannyCalle 0:642a7818292a 346 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
FannyCalle 0:642a7818292a 347
FannyCalle 0:642a7818292a 348 }
FannyCalle 0:642a7818292a 349
FannyCalle 0:642a7818292a 350
FannyCalle 0:642a7818292a 351 void resetMPU6050() {
FannyCalle 0:642a7818292a 352 // reset device
FannyCalle 0:642a7818292a 353 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
FannyCalle 0:642a7818292a 354 wait_ms(10);
FannyCalle 0:642a7818292a 355 }
FannyCalle 0:642a7818292a 356
FannyCalle 0:642a7818292a 357
FannyCalle 0:642a7818292a 358 void initMPU6050()
FannyCalle 0:642a7818292a 359 {
FannyCalle 0:642a7818292a 360 // Initialize MPU6050 device
FannyCalle 0:642a7818292a 361 // wake up device
FannyCalle 0:642a7818292a 362 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
FannyCalle 0:642a7818292a 363 wait_ms(10); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
FannyCalle 0:642a7818292a 364
FannyCalle 0:642a7818292a 365 // get stable time source
FannyCalle 0:642a7818292a 366 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
FannyCalle 0:642a7818292a 367
FannyCalle 0:642a7818292a 368 // Configure Gyro and Accelerometer
FannyCalle 0:642a7818292a 369 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
FannyCalle 0:642a7818292a 370 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
FannyCalle 0:642a7818292a 371 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
FannyCalle 0:642a7818292a 372 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
FannyCalle 0:642a7818292a 373
FannyCalle 0:642a7818292a 374 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
FannyCalle 0:642a7818292a 375 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
FannyCalle 0:642a7818292a 376
FannyCalle 0:642a7818292a 377 // Set gyroscope full scale range
FannyCalle 0:642a7818292a 378 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
FannyCalle 0:642a7818292a 379 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
FannyCalle 0:642a7818292a 380 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
FannyCalle 0:642a7818292a 381 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
FannyCalle 0:642a7818292a 382 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
FannyCalle 0:642a7818292a 383
FannyCalle 0:642a7818292a 384 // Set accelerometer configuration
FannyCalle 0:642a7818292a 385 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
FannyCalle 0:642a7818292a 386 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
FannyCalle 0:642a7818292a 387 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
FannyCalle 0:642a7818292a 388 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
FannyCalle 0:642a7818292a 389
FannyCalle 0:642a7818292a 390 // Configure Interrupts and Bypass Enable
FannyCalle 0:642a7818292a 391 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
FannyCalle 0:642a7818292a 392 // can join the I2C bus and all can be controlled by the Arduino as master
FannyCalle 0:642a7818292a 393 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
FannyCalle 0:642a7818292a 394 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
FannyCalle 0:642a7818292a 395 }
FannyCalle 0:642a7818292a 396
FannyCalle 0:642a7818292a 397 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
FannyCalle 0:642a7818292a 398 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
FannyCalle 0:642a7818292a 399 void calibrateMPU6050(float * dest1, float * dest2)
FannyCalle 0:642a7818292a 400 {
FannyCalle 0:642a7818292a 401 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
FannyCalle 0:642a7818292a 402 uint16_t ii, packet_count, fifo_count;
FannyCalle 0:642a7818292a 403 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
FannyCalle 0:642a7818292a 404
FannyCalle 0:642a7818292a 405 // reset device, reset all registers, clear gyro and accelerometer bias registers
FannyCalle 0:642a7818292a 406 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
FannyCalle 0:642a7818292a 407 wait_ms(10);
FannyCalle 0:642a7818292a 408
FannyCalle 0:642a7818292a 409 // get stable time source
FannyCalle 0:642a7818292a 410 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
FannyCalle 0:642a7818292a 411 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
FannyCalle 0:642a7818292a 412 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
FannyCalle 0:642a7818292a 413 wait_ms(20);
FannyCalle 0:642a7818292a 414
FannyCalle 0:642a7818292a 415 // Configure device for bias calculation
FannyCalle 0:642a7818292a 416 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
FannyCalle 0:642a7818292a 417 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
FannyCalle 0:642a7818292a 418 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
FannyCalle 0:642a7818292a 419 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
FannyCalle 0:642a7818292a 420 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
FannyCalle 0:642a7818292a 421 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
FannyCalle 0:642a7818292a 422 wait_ms(1.5);
FannyCalle 0:642a7818292a 423
FannyCalle 0:642a7818292a 424 // Configure MPU6050 gyro and accelerometer for bias calculation
FannyCalle 0:642a7818292a 425 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
FannyCalle 0:642a7818292a 426 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
FannyCalle 0:642a7818292a 427 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
FannyCalle 0:642a7818292a 428 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
FannyCalle 0:642a7818292a 429
FannyCalle 0:642a7818292a 430 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
FannyCalle 0:642a7818292a 431 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
FannyCalle 0:642a7818292a 432
FannyCalle 0:642a7818292a 433 // Configure FIFO to capture accelerometer and gyro data for bias calculation
FannyCalle 0:642a7818292a 434 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
FannyCalle 0:642a7818292a 435 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
FannyCalle 0:642a7818292a 436 wait_ms(8); // accumulate 80 samples in 80 milliseconds = 960 bytes
FannyCalle 0:642a7818292a 437
FannyCalle 0:642a7818292a 438 // At end of sample accumulation, turn off FIFO sensor read
FannyCalle 0:642a7818292a 439 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
FannyCalle 0:642a7818292a 440 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
FannyCalle 0:642a7818292a 441 fifo_count = ((uint16_t)data[0] << 8) | data[1];
FannyCalle 0:642a7818292a 442 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
FannyCalle 0:642a7818292a 443
FannyCalle 0:642a7818292a 444 for (ii = 0; ii < packet_count; ii++) {
FannyCalle 0:642a7818292a 445 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
FannyCalle 0:642a7818292a 446 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
FannyCalle 0:642a7818292a 447 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
FannyCalle 0:642a7818292a 448 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
FannyCalle 0:642a7818292a 449 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
FannyCalle 0:642a7818292a 450 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
FannyCalle 0:642a7818292a 451 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
FannyCalle 0:642a7818292a 452 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
FannyCalle 0:642a7818292a 453
FannyCalle 0:642a7818292a 454 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
FannyCalle 0:642a7818292a 455 accel_bias[1] += (int32_t) accel_temp[1];
FannyCalle 0:642a7818292a 456 accel_bias[2] += (int32_t) accel_temp[2];
FannyCalle 0:642a7818292a 457 gyro_bias[0] += (int32_t) gyro_temp[0];
FannyCalle 0:642a7818292a 458 gyro_bias[1] += (int32_t) gyro_temp[1];
FannyCalle 0:642a7818292a 459 gyro_bias[2] += (int32_t) gyro_temp[2];
FannyCalle 0:642a7818292a 460
FannyCalle 0:642a7818292a 461 }
FannyCalle 0:642a7818292a 462 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
FannyCalle 0:642a7818292a 463 accel_bias[1] /= (int32_t) packet_count;
FannyCalle 0:642a7818292a 464 accel_bias[2] /= (int32_t) packet_count;
FannyCalle 0:642a7818292a 465 gyro_bias[0] /= (int32_t) packet_count;
FannyCalle 0:642a7818292a 466 gyro_bias[1] /= (int32_t) packet_count;
FannyCalle 0:642a7818292a 467 gyro_bias[2] /= (int32_t) packet_count;
FannyCalle 0:642a7818292a 468
FannyCalle 0:642a7818292a 469 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
FannyCalle 0:642a7818292a 470 else {accel_bias[2] += (int32_t) accelsensitivity;}
FannyCalle 0:642a7818292a 471
FannyCalle 0:642a7818292a 472 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
FannyCalle 0:642a7818292a 473 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
FannyCalle 0:642a7818292a 474 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
FannyCalle 0:642a7818292a 475 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
FannyCalle 0:642a7818292a 476 data[3] = (-gyro_bias[1]/4) & 0xFF;
FannyCalle 0:642a7818292a 477 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
FannyCalle 0:642a7818292a 478 data[5] = (-gyro_bias[2]/4) & 0xFF;
FannyCalle 0:642a7818292a 479
FannyCalle 0:642a7818292a 480 // Push gyro biases to hardware registers
FannyCalle 0:642a7818292a 481 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
FannyCalle 0:642a7818292a 482 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
FannyCalle 0:642a7818292a 483 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
FannyCalle 0:642a7818292a 484 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
FannyCalle 0:642a7818292a 485 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
FannyCalle 0:642a7818292a 486 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
FannyCalle 0:642a7818292a 487
FannyCalle 0:642a7818292a 488 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
FannyCalle 0:642a7818292a 489 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
FannyCalle 0:642a7818292a 490 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
FannyCalle 0:642a7818292a 491
FannyCalle 0:642a7818292a 492 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
FannyCalle 0:642a7818292a 493 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
FannyCalle 0:642a7818292a 494 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
FannyCalle 0:642a7818292a 495 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
FannyCalle 0:642a7818292a 496 // the accelerometer biases calculated above must be divided by 8.
FannyCalle 0:642a7818292a 497
FannyCalle 0:642a7818292a 498 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
FannyCalle 0:642a7818292a 499 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
FannyCalle 0:642a7818292a 500 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
FannyCalle 0:642a7818292a 501 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
FannyCalle 0:642a7818292a 502 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
FannyCalle 0:642a7818292a 503 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
FannyCalle 0:642a7818292a 504 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
FannyCalle 0:642a7818292a 505
FannyCalle 0:642a7818292a 506 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
FannyCalle 0:642a7818292a 507 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
FannyCalle 0:642a7818292a 508
FannyCalle 0:642a7818292a 509 for(ii = 0; ii < 3; ii++) {
FannyCalle 0:642a7818292a 510 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
FannyCalle 0:642a7818292a 511 }
FannyCalle 0:642a7818292a 512
FannyCalle 0:642a7818292a 513 // Construct total accelerometer bias, including calculated average accelerometer bias from above
FannyCalle 0:642a7818292a 514 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
FannyCalle 0:642a7818292a 515 accel_bias_reg[1] -= (accel_bias[1]/8);
FannyCalle 0:642a7818292a 516 accel_bias_reg[2] -= (accel_bias[2]/8);
FannyCalle 0:642a7818292a 517
FannyCalle 0:642a7818292a 518 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
FannyCalle 0:642a7818292a 519 data[1] = (accel_bias_reg[0]) & 0xFF;
FannyCalle 0:642a7818292a 520 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
FannyCalle 0:642a7818292a 521 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
FannyCalle 0:642a7818292a 522 data[3] = (accel_bias_reg[1]) & 0xFF;
FannyCalle 0:642a7818292a 523 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
FannyCalle 0:642a7818292a 524 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
FannyCalle 0:642a7818292a 525 data[5] = (accel_bias_reg[2]) & 0xFF;
FannyCalle 0:642a7818292a 526 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
FannyCalle 0:642a7818292a 527
FannyCalle 0:642a7818292a 528 // Push accelerometer biases to hardware registers
FannyCalle 0:642a7818292a 529 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
FannyCalle 0:642a7818292a 530 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
FannyCalle 0:642a7818292a 531 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
FannyCalle 0:642a7818292a 532 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
FannyCalle 0:642a7818292a 533 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
FannyCalle 0:642a7818292a 534 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
FannyCalle 0:642a7818292a 535
FannyCalle 0:642a7818292a 536 // Output scaled accelerometer biases for manual subtraction in the main program
FannyCalle 0:642a7818292a 537 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
FannyCalle 0:642a7818292a 538 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
FannyCalle 0:642a7818292a 539 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
FannyCalle 0:642a7818292a 540 }
FannyCalle 0:642a7818292a 541
FannyCalle 0:642a7818292a 542
FannyCalle 0:642a7818292a 543 // Accelerometer and gyroscope self test; check calibration wrt factory settings
FannyCalle 0:642a7818292a 544 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
FannyCalle 0:642a7818292a 545 {
FannyCalle 0:642a7818292a 546 uint8_t rawData[4] = {0, 0, 0, 0};
FannyCalle 0:642a7818292a 547 uint8_t selfTest[6];
FannyCalle 0:642a7818292a 548 float factoryTrim[6];
FannyCalle 0:642a7818292a 549
FannyCalle 0:642a7818292a 550 // Configure the accelerometer for self-test
FannyCalle 0:642a7818292a 551 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
FannyCalle 0:642a7818292a 552 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
FannyCalle 0:642a7818292a 553 wait_ms(0.25); // Delay a while to let the device execute the self-test
FannyCalle 0:642a7818292a 554 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
FannyCalle 0:642a7818292a 555 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
FannyCalle 0:642a7818292a 556 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
FannyCalle 0:642a7818292a 557 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
FannyCalle 0:642a7818292a 558 // Extract the acceleration test results first
FannyCalle 0:642a7818292a 559 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
FannyCalle 0:642a7818292a 560 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
FannyCalle 0:642a7818292a 561 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
FannyCalle 0:642a7818292a 562 // Extract the gyration test results first
FannyCalle 0:642a7818292a 563 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
FannyCalle 0:642a7818292a 564 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
FannyCalle 0:642a7818292a 565 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
FannyCalle 0:642a7818292a 566 // Process results to allow final comparison with factory set values
FannyCalle 0:642a7818292a 567 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
FannyCalle 0:642a7818292a 568 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
FannyCalle 0:642a7818292a 569 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
FannyCalle 0:642a7818292a 570 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
FannyCalle 0:642a7818292a 571 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
FannyCalle 0:642a7818292a 572 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
FannyCalle 0:642a7818292a 573
FannyCalle 0:642a7818292a 574 // Output self-test results and factory trim calculation if desired
FannyCalle 0:642a7818292a 575 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
FannyCalle 0:642a7818292a 576 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
FannyCalle 0:642a7818292a 577 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
FannyCalle 0:642a7818292a 578 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
FannyCalle 0:642a7818292a 579
FannyCalle 0:642a7818292a 580 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
FannyCalle 0:642a7818292a 581 // To get to percent, must multiply by 100 and subtract result from 100
FannyCalle 0:642a7818292a 582 for (int i = 0; i < 6; i++) {
FannyCalle 0:642a7818292a 583 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
FannyCalle 0:642a7818292a 584 }
FannyCalle 0:642a7818292a 585
FannyCalle 0:642a7818292a 586 }
FannyCalle 0:642a7818292a 587
FannyCalle 0:642a7818292a 588
FannyCalle 0:642a7818292a 589 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
FannyCalle 0:642a7818292a 590 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
FannyCalle 0:642a7818292a 591 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
FannyCalle 0:642a7818292a 592 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
FannyCalle 0:642a7818292a 593 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
FannyCalle 0:642a7818292a 594 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
FannyCalle 0:642a7818292a 595 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
FannyCalle 0:642a7818292a 596 {
FannyCalle 0:642a7818292a 597 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
FannyCalle 0:642a7818292a 598 float norm; // vector norm
FannyCalle 0:642a7818292a 599 float f1, f2, f3; // objective funcyion elements
FannyCalle 0:642a7818292a 600 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
FannyCalle 0:642a7818292a 601 float qDot1, qDot2, qDot3, qDot4;
FannyCalle 0:642a7818292a 602 float hatDot1, hatDot2, hatDot3, hatDot4;
FannyCalle 0:642a7818292a 603 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
FannyCalle 0:642a7818292a 604
FannyCalle 0:642a7818292a 605 // Auxiliary variables to avoid repeated arithmetic
FannyCalle 0:642a7818292a 606 float _halfq1 = 0.5f * q1;
FannyCalle 0:642a7818292a 607 float _halfq2 = 0.5f * q2;
FannyCalle 0:642a7818292a 608 float _halfq3 = 0.5f * q3;
FannyCalle 0:642a7818292a 609 float _halfq4 = 0.5f * q4;
FannyCalle 0:642a7818292a 610 float _2q1 = 2.0f * q1;
FannyCalle 0:642a7818292a 611 float _2q2 = 2.0f * q2;
FannyCalle 0:642a7818292a 612 float _2q3 = 2.0f * q3;
FannyCalle 0:642a7818292a 613 float _2q4 = 2.0f * q4;
FannyCalle 0:642a7818292a 614 // float _2q1q3 = 2.0f * q1 * q3;
FannyCalle 0:642a7818292a 615 // float _2q3q4 = 2.0f * q3 * q4;
FannyCalle 0:642a7818292a 616
FannyCalle 0:642a7818292a 617 // Normalise accelerometer measurement
FannyCalle 0:642a7818292a 618 norm = sqrt(ax * ax + ay * ay + az * az);
FannyCalle 0:642a7818292a 619 if (norm == 0.0f) return; // handle NaN
FannyCalle 0:642a7818292a 620 norm = 1.0f/norm;
FannyCalle 0:642a7818292a 621 ax *= norm;
FannyCalle 0:642a7818292a 622 ay *= norm;
FannyCalle 0:642a7818292a 623 az *= norm;
FannyCalle 0:642a7818292a 624
FannyCalle 0:642a7818292a 625 // Compute the objective function and Jacobian
FannyCalle 0:642a7818292a 626 f1 = _2q2 * q4 - _2q1 * q3 - ax;
FannyCalle 0:642a7818292a 627 f2 = _2q1 * q2 + _2q3 * q4 - ay;
FannyCalle 0:642a7818292a 628 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
FannyCalle 0:642a7818292a 629 J_11or24 = _2q3;
FannyCalle 0:642a7818292a 630 J_12or23 = _2q4;
FannyCalle 0:642a7818292a 631 J_13or22 = _2q1;
FannyCalle 0:642a7818292a 632 J_14or21 = _2q2;
FannyCalle 0:642a7818292a 633 J_32 = 2.0f * J_14or21;
FannyCalle 0:642a7818292a 634 J_33 = 2.0f * J_11or24;
FannyCalle 0:642a7818292a 635
FannyCalle 0:642a7818292a 636 // Compute the gradient (matrix multiplication)
FannyCalle 0:642a7818292a 637 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
FannyCalle 0:642a7818292a 638 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
FannyCalle 0:642a7818292a 639 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
FannyCalle 0:642a7818292a 640 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
FannyCalle 0:642a7818292a 641
FannyCalle 0:642a7818292a 642 // Normalize the gradient
FannyCalle 0:642a7818292a 643 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
FannyCalle 0:642a7818292a 644 hatDot1 /= norm;
FannyCalle 0:642a7818292a 645 hatDot2 /= norm;
FannyCalle 0:642a7818292a 646 hatDot3 /= norm;
FannyCalle 0:642a7818292a 647 hatDot4 /= norm;
FannyCalle 0:642a7818292a 648
FannyCalle 0:642a7818292a 649 // Compute estimated gyroscope biases
FannyCalle 0:642a7818292a 650 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
FannyCalle 0:642a7818292a 651 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
FannyCalle 0:642a7818292a 652 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
FannyCalle 0:642a7818292a 653
FannyCalle 0:642a7818292a 654 // Compute and remove gyroscope biases
FannyCalle 0:642a7818292a 655 gbiasx += gerrx * deltat * zeta;
FannyCalle 0:642a7818292a 656 gbiasy += gerry * deltat * zeta;
FannyCalle 0:642a7818292a 657 gbiasz += gerrz * deltat * zeta;
FannyCalle 0:642a7818292a 658 // gx -= gbiasx;
FannyCalle 0:642a7818292a 659 // gy -= gbiasy;
FannyCalle 0:642a7818292a 660 // gz -= gbiasz;
FannyCalle 0:642a7818292a 661
FannyCalle 0:642a7818292a 662 // Compute the quaternion derivative
FannyCalle 0:642a7818292a 663 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
FannyCalle 0:642a7818292a 664 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
FannyCalle 0:642a7818292a 665 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
FannyCalle 0:642a7818292a 666 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
FannyCalle 0:642a7818292a 667
FannyCalle 0:642a7818292a 668 // Compute then integrate estimated quaternion derivative
FannyCalle 0:642a7818292a 669 q1 += (qDot1 -(beta * hatDot1)) * deltat;
FannyCalle 0:642a7818292a 670 q2 += (qDot2 -(beta * hatDot2)) * deltat;
FannyCalle 0:642a7818292a 671 q3 += (qDot3 -(beta * hatDot3)) * deltat;
FannyCalle 0:642a7818292a 672 q4 += (qDot4 -(beta * hatDot4)) * deltat;
FannyCalle 0:642a7818292a 673
FannyCalle 0:642a7818292a 674 // Normalize the quaternion
FannyCalle 0:642a7818292a 675 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
FannyCalle 0:642a7818292a 676 norm = 1.0f/norm;
FannyCalle 0:642a7818292a 677 q[0] = q1 * norm;
FannyCalle 0:642a7818292a 678 q[1] = q2 * norm;
FannyCalle 0:642a7818292a 679 q[2] = q3 * norm;
FannyCalle 0:642a7818292a 680 q[3] = q4 * norm;
FannyCalle 0:642a7818292a 681
FannyCalle 0:642a7818292a 682 }
FannyCalle 0:642a7818292a 683
FannyCalle 0:642a7818292a 684
FannyCalle 0:642a7818292a 685 };
FannyCalle 0:642a7818292a 686 #endif