
Good Jacobian and code Not been tested
Dependencies: MODSERIAL biquadFilter mbed
Fork of Kinematics by
main.cpp.orig@24:e166f8119dbb, 2018-11-01 (annotated)
- Committer:
- EvaKrolis
- Date:
- Thu Nov 01 08:46:57 2018 +0000
- Revision:
- 24:e166f8119dbb
- Parent:
- 20:11fe0aa7f111
Good version with good Jacobian.; Not been tested yet.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
EvaKrolis | 20:11fe0aa7f111 | 1 | #include "mbed.h" |
EvaKrolis | 20:11fe0aa7f111 | 2 | #include <math.h> |
EvaKrolis | 20:11fe0aa7f111 | 3 | #include <cmath> |
EvaKrolis | 20:11fe0aa7f111 | 4 | #include "MODSERIAL.h" |
EvaKrolis | 20:11fe0aa7f111 | 5 | #define PI 3.14159265 |
EvaKrolis | 20:11fe0aa7f111 | 6 | |
EvaKrolis | 20:11fe0aa7f111 | 7 | MODSERIAL pc(USBTX, USBRX); // connecting to pc |
EvaKrolis | 20:11fe0aa7f111 | 8 | DigitalIn button1(SW3); // defining testbutton NEEDS TO BE REMOVED |
EvaKrolis | 20:11fe0aa7f111 | 9 | DigitalOut ledr(LED1); // Only for testing |
EvaKrolis | 20:11fe0aa7f111 | 10 | //DigitalOut led2(LED2); // Only for testing |
EvaKrolis | 20:11fe0aa7f111 | 11 | InterruptIn button2(SW2); //Only for testing |
EvaKrolis | 20:11fe0aa7f111 | 12 | |
EvaKrolis | 20:11fe0aa7f111 | 13 | // nog te verwijderen/ aan te passen, zijn dubbel gedefinieerd |
EvaKrolis | 20:11fe0aa7f111 | 14 | |
EvaKrolis | 20:11fe0aa7f111 | 15 | |
EvaKrolis | 20:11fe0aa7f111 | 16 | //Joe dit zijn de inputsignalen (en tussenvariabelen) |
EvaKrolis | 20:11fe0aa7f111 | 17 | //vorige theta |
EvaKrolis | 20:11fe0aa7f111 | 18 | float theta1 = PI*0.49; // huidige/nieuwe theta |
EvaKrolis | 20:11fe0aa7f111 | 19 | float theta4 = PI*0.49; |
EvaKrolis | 20:11fe0aa7f111 | 20 | bool emg1; |
EvaKrolis | 20:11fe0aa7f111 | 21 | bool emg2; |
EvaKrolis | 20:11fe0aa7f111 | 22 | bool emg3; |
EvaKrolis | 20:11fe0aa7f111 | 23 | float thetaflip = 0; |
EvaKrolis | 20:11fe0aa7f111 | 24 | float omega1; |
EvaKrolis | 20:11fe0aa7f111 | 25 | float omega4; |
EvaKrolis | 20:11fe0aa7f111 | 26 | float prefx; |
EvaKrolis | 20:11fe0aa7f111 | 27 | float prefy; |
EvaKrolis | 20:11fe0aa7f111 | 28 | float deltat = 0.01; |
EvaKrolis | 20:11fe0aa7f111 | 29 | //Joe dit zijn de constantes |
EvaKrolis | 20:11fe0aa7f111 | 30 | float ll = 200.0; |
EvaKrolis | 20:11fe0aa7f111 | 31 | float lu = 170.0; |
EvaKrolis | 20:11fe0aa7f111 | 32 | float lb = 10.0; |
EvaKrolis | 20:11fe0aa7f111 | 33 | float le = 79.0; |
EvaKrolis | 20:11fe0aa7f111 | 34 | float xbase = 340; |
EvaKrolis | 20:11fe0aa7f111 | 35 | |
EvaKrolis | 20:11fe0aa7f111 | 36 | |
EvaKrolis | 20:11fe0aa7f111 | 37 | //forward kinematics, Check mathematica! Omdat mbed in paniek raakt met meerdere wortels, hebben we de vergelijking opgedeeld in 3 stukken |
EvaKrolis | 20:11fe0aa7f111 | 38 | //check void forward voor de berekeningen |
EvaKrolis | 20:11fe0aa7f111 | 39 | //First define the position equation of x |
EvaKrolis | 20:11fe0aa7f111 | 40 | float xendsum; |
EvaKrolis | 20:11fe0aa7f111 | 41 | float xendsqrt1; |
EvaKrolis | 20:11fe0aa7f111 | 42 | float xendsqrt2; |
EvaKrolis | 20:11fe0aa7f111 | 43 | float xend; |
EvaKrolis | 20:11fe0aa7f111 | 44 | float jacobiana; |
EvaKrolis | 20:11fe0aa7f111 | 45 | float jacobianc; |
EvaKrolis | 20:11fe0aa7f111 | 46 | //Now define the pos. eq. of y |
EvaKrolis | 20:11fe0aa7f111 | 47 | float yendsum; |
EvaKrolis | 20:11fe0aa7f111 | 48 | float yendsqrt1; |
EvaKrolis | 20:11fe0aa7f111 | 49 | float yendsqrt2; |
EvaKrolis | 20:11fe0aa7f111 | 50 | float yend; |
EvaKrolis | 20:11fe0aa7f111 | 51 | float jacobianb; |
EvaKrolis | 20:11fe0aa7f111 | 52 | float jacobiand; |
EvaKrolis | 20:11fe0aa7f111 | 53 | |
EvaKrolis | 20:11fe0aa7f111 | 54 | |
EvaKrolis | 20:11fe0aa7f111 | 55 | //Hier definieren we de functies en tickers |
EvaKrolis | 20:11fe0aa7f111 | 56 | Ticker emgcheck; |
EvaKrolis | 20:11fe0aa7f111 | 57 | Ticker emgcheck2; |
EvaKrolis | 20:11fe0aa7f111 | 58 | Ticker rekenen; |
EvaKrolis | 20:11fe0aa7f111 | 59 | |
EvaKrolis | 20:11fe0aa7f111 | 60 | |
EvaKrolis | 20:11fe0aa7f111 | 61 | //dit wordt aangeroepen in de tickerfunctie |
EvaKrolis | 20:11fe0aa7f111 | 62 | void inverse(float prex, float prey){ |
EvaKrolis | 20:11fe0aa7f111 | 63 | /* |
EvaKrolis | 20:11fe0aa7f111 | 64 | qn = qn-1 + (jacobian^-1)*dPref/dt *deltaT |
EvaKrolis | 20:11fe0aa7f111 | 65 | ofwel |
EvaKrolis | 20:11fe0aa7f111 | 66 | thetai+1 = thetai +(jacobian)^-1*vector(deltaX, DeltaY) |
EvaKrolis | 20:11fe0aa7f111 | 67 | waar Pref = emg signaal |
EvaKrolis | 20:11fe0aa7f111 | 68 | */ //achtergrondinfo hierboven... |
EvaKrolis | 20:11fe0aa7f111 | 69 | // |
EvaKrolis | 20:11fe0aa7f111 | 70 | |
EvaKrolis | 20:11fe0aa7f111 | 71 | theta1 += (prefx*jacobiana+jacobianb*prey)*deltat; //theta 1 is zichzelf plus wat hier staat (is kinematics) |
EvaKrolis | 20:11fe0aa7f111 | 72 | theta4 += (prefx*jacobianc+jacobiand*prey)*deltat;//" " |
EvaKrolis | 20:11fe0aa7f111 | 73 | //Hier worden xend en yend doorgerekend, die formules kan je overslaan |
EvaKrolis | 20:11fe0aa7f111 | 74 | xendsum = lb + xbase +ll*(cos(theta1) - cos(theta4)); |
EvaKrolis | 20:11fe0aa7f111 | 75 | xendsqrt1 = 2*sqrt(-xbase*xbase/4 + lu*lu + ll*(xbase*(cos(theta1)+cos(theta4))/2) -ll*(1+ cos(theta1+theta4)))*(-sin(theta1)+sin(theta4)); |
EvaKrolis | 20:11fe0aa7f111 | 76 | xendsqrt2 = sqrt(pow((-xbase/ll+cos(theta1)+cos(theta4)),2)+ pow(sin(theta1) - sin(theta4),2)); |
EvaKrolis | 20:11fe0aa7f111 | 77 | xend = (xendsum + xendsqrt1/xendsqrt2)/2; |
EvaKrolis | 20:11fe0aa7f111 | 78 | //hieronder rekenen we yendeffector door; |
EvaKrolis | 20:11fe0aa7f111 | 79 | yendsum = -le + ll/2*(sin(theta1)+sin(theta4)); |
EvaKrolis | 20:11fe0aa7f111 | 80 | yendsqrt1 = (-xbase/ll + cos(theta1)+cos(theta4))*sqrt(-xbase*xbase/4 + lu*lu + ll/2*(xbase*(cos(theta1)+cos(theta4))- ll*(1+cos(theta1+theta4)))); |
EvaKrolis | 20:11fe0aa7f111 | 81 | yendsqrt2 = sqrt(pow((-xbase/ll + cos(theta1)+ cos(theta4)),2)+ pow((sin(theta1)-sin(theta4)),2)); |
EvaKrolis | 20:11fe0aa7f111 | 82 | yend = (yendsum + yendsqrt1/yendsqrt2); |
EvaKrolis | 20:11fe0aa7f111 | 83 | |
EvaKrolis | 20:11fe0aa7f111 | 84 | } |
EvaKrolis | 20:11fe0aa7f111 | 85 | //deze onderstaande tickerfunctie wordt aangeroepen |
EvaKrolis | 20:11fe0aa7f111 | 86 | void kinematics() |
EvaKrolis | 20:11fe0aa7f111 | 87 | { |
EvaKrolis | 20:11fe0aa7f111 | 88 | |
EvaKrolis | 20:11fe0aa7f111 | 89 | //Hieronder rekenen we eerst de aparte dingen van de jacobiaan uit. (sla maar over) |
EvaKrolis | 20:11fe0aa7f111 | 90 | |
EvaKrolis | 20:11fe0aa7f111 | 91 | jacobiana = (500*(-100*(sin(theta1) - sin(0.001 - theta4)) - ((-1.7 + cos(theta1) + cos(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 92 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) + |
EvaKrolis | 20:11fe0aa7f111 | 93 | ((-340 + 200*(cos(theta1) + cos(0.001 + theta4)))*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 94 | (20.*sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + 100*(sin(theta1) + sin(0.001 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 95 | (250000*((350 + 200*(cos(0.001 + theta1) - cos(theta4)) + (20*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(0.001 + theta1) + sin(theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 96 | sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 97 | (-350 - 200*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 98 | sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)* |
EvaKrolis | 20:11fe0aa7f111 | 99 | (-100*(sin(theta1) - sin(0.001 - theta4)) - ((-1.7 + cos(theta1) + cos(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 100 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) + |
EvaKrolis | 20:11fe0aa7f111 | 101 | ((-340 + 200*(cos(theta1) + cos(0.001 + theta4)))*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 102 | (20.*sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + 100*(sin(theta1) + sin(0.001 + theta4))) - |
EvaKrolis | 20:11fe0aa7f111 | 103 | 250000*(((-340 + 200*(cos(0.001 + theta1) + cos(theta4)))*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 104 | (20.*sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - 100*(-sin(0.001 - theta1) + sin(theta4)) + 100*(sin(0.001 + theta1) + sin(theta4)) - |
EvaKrolis | 20:11fe0aa7f111 | 105 | ((-340 + 200*(cos(0.001 - theta1) + cos(theta4)))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 106 | (200.*sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))* |
EvaKrolis | 20:11fe0aa7f111 | 107 | ((-350 - 200*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 108 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 109 | (350 + 200*(cos(theta1) - cos(0.001 + theta4)) + (20*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(theta1) + sin(0.001 + theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 110 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.)); |
EvaKrolis | 20:11fe0aa7f111 | 111 | |
EvaKrolis | 20:11fe0aa7f111 | 112 | jacobianb = (-500*((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))* |
EvaKrolis | 20:11fe0aa7f111 | 113 | sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/ |
EvaKrolis | 20:11fe0aa7f111 | 114 | sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 115 | (lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 116 | sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.))/ |
EvaKrolis | 20:11fe0aa7f111 | 117 | (250000*((lb + xbase + ll*(cos(0.001 + theta1) - cos(theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)* |
EvaKrolis | 20:11fe0aa7f111 | 118 | (-sin(0.001 + theta1) + sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 119 | (-lb - xbase - ll*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))* |
EvaKrolis | 20:11fe0aa7f111 | 120 | sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/ |
EvaKrolis | 20:11fe0aa7f111 | 121 | sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)* |
EvaKrolis | 20:11fe0aa7f111 | 122 | (-(ll*(sin(theta1) - sin(0.001 - theta4)))/2. - ((-(xbase/ll) + cos(theta1) + cos(0.001 - theta4))* |
EvaKrolis | 20:11fe0aa7f111 | 123 | sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/ |
EvaKrolis | 20:11fe0aa7f111 | 124 | sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) + |
EvaKrolis | 20:11fe0aa7f111 | 125 | ((-xbase + ll*(cos(theta1) + cos(0.001 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/ |
EvaKrolis | 20:11fe0aa7f111 | 126 | (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + (ll*(sin(theta1) + sin(0.001 + theta4)))/2.) - |
EvaKrolis | 20:11fe0aa7f111 | 127 | 250000*(((-xbase + ll*(cos(0.001 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/ |
EvaKrolis | 20:11fe0aa7f111 | 128 | (ll*sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - (ll*(-sin(0.001 - theta1) + sin(theta4)))/2. + (ll*(sin(0.001 + theta1) + sin(theta4)))/2. - |
EvaKrolis | 20:11fe0aa7f111 | 129 | ((-xbase + ll*(cos(0.001 - theta1) + cos(theta4)))*sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/ |
EvaKrolis | 20:11fe0aa7f111 | 130 | (ll*sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))* |
EvaKrolis | 20:11fe0aa7f111 | 131 | ((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))* |
EvaKrolis | 20:11fe0aa7f111 | 132 | sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/ |
EvaKrolis | 20:11fe0aa7f111 | 133 | sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 134 | (lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 135 | sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.)); |
EvaKrolis | 20:11fe0aa7f111 | 136 | |
EvaKrolis | 20:11fe0aa7f111 | 137 | jacobianc = (-500*(((-340 + 200*(cos(0.001 + theta1) + cos(theta4)))*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 138 | (20.*sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - 100*(-sin(0.001 - theta1) + sin(theta4)) + 100*(sin(0.001 + theta1) + sin(theta4)) - |
EvaKrolis | 20:11fe0aa7f111 | 139 | ((-340 + 200*(cos(0.001 - theta1) + cos(theta4)))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 140 | (200.*sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))))/ |
EvaKrolis | 20:11fe0aa7f111 | 141 | (250000*((350 + 200*(cos(0.001 + theta1) - cos(theta4)) + (20*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(0.001 + theta1) + sin(theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 142 | sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 143 | (-350 - 200*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 144 | sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)* |
EvaKrolis | 20:11fe0aa7f111 | 145 | (-100*(sin(theta1) - sin(0.001 - theta4)) - ((-1.7 + cos(theta1) + cos(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 146 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) + |
EvaKrolis | 20:11fe0aa7f111 | 147 | ((-340 + 200*(cos(theta1) + cos(0.001 + theta4)))*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 148 | (20.*sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + 100*(sin(theta1) + sin(0.001 + theta4))) - |
EvaKrolis | 20:11fe0aa7f111 | 149 | 250000*(((-340 + 200*(cos(0.001 + theta1) + cos(theta4)))*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 150 | (20.*sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - 100*(-sin(0.001 - theta1) + sin(theta4)) + 100*(sin(0.001 + theta1) + sin(theta4)) - |
EvaKrolis | 20:11fe0aa7f111 | 151 | ((-340 + 200*(cos(0.001 - theta1) + cos(theta4)))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 152 | (200.*sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))* |
EvaKrolis | 20:11fe0aa7f111 | 153 | ((-350 - 200*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 154 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 155 | (350 + 200*(cos(theta1) - cos(0.001 + theta4)) + (20*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(theta1) + sin(0.001 + theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 156 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.)); |
EvaKrolis | 20:11fe0aa7f111 | 157 | |
EvaKrolis | 20:11fe0aa7f111 | 158 | jacobiand = (500*((350 + 200*(cos(0.001 + theta1) - cos(theta4)) + (20*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(0.001 + theta1) + sin(theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 159 | sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 160 | (-350 - 200*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 161 | sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.))/ |
EvaKrolis | 20:11fe0aa7f111 | 162 | (250000*((350 + 200*(cos(0.001 + theta1) - cos(theta4)) + (20*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(0.001 + theta1) + sin(theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 163 | sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 164 | (-350 - 200*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 165 | sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)* |
EvaKrolis | 20:11fe0aa7f111 | 166 | (-100*(sin(theta1) - sin(0.001 - theta4)) - ((-1.7 + cos(theta1) + cos(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 167 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) + |
EvaKrolis | 20:11fe0aa7f111 | 168 | ((-340 + 200*(cos(theta1) + cos(0.001 + theta4)))*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 169 | (20.*sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + 100*(sin(theta1) + sin(0.001 + theta4))) - |
EvaKrolis | 20:11fe0aa7f111 | 170 | 250000*(((-340 + 200*(cos(0.001 + theta1) + cos(theta4)))*sqrt(340*(cos(0.001 + theta1) + cos(theta4)) - 200*(1 + cos(0.001 + theta1 + theta4))))/ |
EvaKrolis | 20:11fe0aa7f111 | 171 | (20.*sqrt(pow(-1.7 + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - 100*(-sin(0.001 - theta1) + sin(theta4)) + 100*(sin(0.001 + theta1) + sin(theta4)) - |
EvaKrolis | 20:11fe0aa7f111 | 172 | ((-340 + 200*(cos(0.001 - theta1) + cos(theta4)))*sqrt(28900 - 10000*(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 173 | (200.*sqrt(pow(-1.7 + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))* |
EvaKrolis | 20:11fe0aa7f111 | 174 | ((-350 - 200*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*sqrt(28900 - 10000*(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2))))/ |
EvaKrolis | 20:11fe0aa7f111 | 175 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. + |
EvaKrolis | 20:11fe0aa7f111 | 176 | (350 + 200*(cos(theta1) - cos(0.001 + theta4)) + (20*sqrt(340*(cos(theta1) + cos(0.001 + theta4)) - 200*(1 + cos(0.001 + theta1 + theta4)))*(-sin(theta1) + sin(0.001 + theta4)))/ |
EvaKrolis | 20:11fe0aa7f111 | 177 | sqrt(pow(-1.7 + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.)); |
EvaKrolis | 20:11fe0aa7f111 | 178 | //vanaf hier weer door met lezen! |
EvaKrolis | 20:11fe0aa7f111 | 179 | prefx = 1*(!button1); //sw3, dit is belangrijk! prefx staat voor P_(reference) en het is de snelheid van de endeffector als |
EvaKrolis | 20:11fe0aa7f111 | 180 | // de button ingedrukt wordt (als emg = boven treshold) is de prefx 1 (da's de rode 1) |
EvaKrolis | 20:11fe0aa7f111 | 181 | prefy = 1*(!button2); //sw2, |
EvaKrolis | 20:11fe0aa7f111 | 182 | inverse(prefx, prefy); |
EvaKrolis | 20:11fe0aa7f111 | 183 | |
EvaKrolis | 20:11fe0aa7f111 | 184 | ledr=!ledr; |
EvaKrolis | 20:11fe0aa7f111 | 185 | } |
EvaKrolis | 20:11fe0aa7f111 | 186 | |
EvaKrolis | 20:11fe0aa7f111 | 187 | |
EvaKrolis | 20:11fe0aa7f111 | 188 | |
EvaKrolis | 20:11fe0aa7f111 | 189 | |
EvaKrolis | 20:11fe0aa7f111 | 190 | |
EvaKrolis | 20:11fe0aa7f111 | 191 | |
EvaKrolis | 20:11fe0aa7f111 | 192 | /*In de nieuwe versie hieronder is forward overbodig geworden, sla maar over |
EvaKrolis | 20:11fe0aa7f111 | 193 | |
EvaKrolis | 20:11fe0aa7f111 | 194 | Joe, hieronder staan de functies die door de tickers aangeroepen worden |
EvaKrolis | 20:11fe0aa7f111 | 195 | void forward(){ dit is de ticker die zegt, als button=0, theta 1 wordt groter. dan worden x en y doorgerekend |
EvaKrolis | 20:11fe0aa7f111 | 196 | hieronder moet veranderd worden naar if button1 == 0, x = x+eenbeetje |
EvaKrolis | 20:11fe0aa7f111 | 197 | maar daar moet eerst inverse kinematics voor gebeuren. |
EvaKrolis | 20:11fe0aa7f111 | 198 | if (button1 == 0){ als emg1==voorbij treshold, komt waarschijnlijk in de inverse functie |
EvaKrolis | 20:11fe0aa7f111 | 199 | theta1 = PI*(theta1/PI + 0.1); |
EvaKrolis | 20:11fe0aa7f111 | 200 | hij is geblokt omdat ik de knop nodig heb |
EvaKrolis | 20:11fe0aa7f111 | 201 | default = als x = xbase/2... break, okee dit moet hier niet, maar weet niet waar wel... |
EvaKrolis | 20:11fe0aa7f111 | 202 | } |
EvaKrolis | 20:11fe0aa7f111 | 203 | else {theta1 = theta1;} |
EvaKrolis | 20:11fe0aa7f111 | 204 | hieronder komen de doorrekeningen van de hoeken naar de coordinaten, check de mathematicafile voor de afleiding*/ |
EvaKrolis | 20:11fe0aa7f111 | 205 | |
EvaKrolis | 20:11fe0aa7f111 | 206 | /*void demomode(){} //Komt nog... |
EvaKrolis | 20:11fe0aa7f111 | 207 | |
EvaKrolis | 20:11fe0aa7f111 | 208 | als emg2 == voorbij treshold, |
EvaKrolis | 20:11fe0aa7f111 | 209 | float theta1 -> plus counts (emg*richting) |
EvaKrolis | 20:11fe0aa7f111 | 210 | float theta4 -> plus counts (emg*richting) |
EvaKrolis | 20:11fe0aa7f111 | 211 | reken y door |
EvaKrolis | 20:11fe0aa7f111 | 212 | |
EvaKrolis | 20:11fe0aa7f111 | 213 | void flip(){ |
EvaKrolis | 20:11fe0aa7f111 | 214 | if(button2==0){thetaflip = PI*(thetaflip/PI+0.5);} // button2==0 moet veranderd naar emg3>= treshold |
EvaKrolis | 20:11fe0aa7f111 | 215 | }suppressed omdat ik button 2 nodig heb...*/ |
EvaKrolis | 20:11fe0aa7f111 | 216 | |
EvaKrolis | 20:11fe0aa7f111 | 217 | |
EvaKrolis | 20:11fe0aa7f111 | 218 | // de beweging voor de xcoordinaat! |
EvaKrolis | 20:11fe0aa7f111 | 219 | |
EvaKrolis | 20:11fe0aa7f111 | 220 | |
EvaKrolis | 20:11fe0aa7f111 | 221 | //tot aan hier overslaan |
EvaKrolis | 20:11fe0aa7f111 | 222 | |
EvaKrolis | 20:11fe0aa7f111 | 223 | |
EvaKrolis | 20:11fe0aa7f111 | 224 | |
EvaKrolis | 20:11fe0aa7f111 | 225 | int main() |
EvaKrolis | 20:11fe0aa7f111 | 226 | { |
EvaKrolis | 20:11fe0aa7f111 | 227 | //Initial conditions |
EvaKrolis | 20:11fe0aa7f111 | 228 | |
EvaKrolis | 20:11fe0aa7f111 | 229 | theta1 = PI*0.49; |
EvaKrolis | 20:11fe0aa7f111 | 230 | theta4 = PI*0.49; |
EvaKrolis | 20:11fe0aa7f111 | 231 | pc.baud(115200); |
EvaKrolis | 20:11fe0aa7f111 | 232 | //default = theta1 = theta4 = pi/2, |
EvaKrolis | 20:11fe0aa7f111 | 233 | emgcheck.attach(kinematics, 0.008); // roep de ticker aan ( |
EvaKrolis | 20:11fe0aa7f111 | 234 | ledr = 1; |
EvaKrolis | 20:11fe0aa7f111 | 235 | pc.printf("%f", theta1); |
EvaKrolis | 20:11fe0aa7f111 | 236 | while(true) { |
EvaKrolis | 20:11fe0aa7f111 | 237 | |
EvaKrolis | 20:11fe0aa7f111 | 238 | |
EvaKrolis | 20:11fe0aa7f111 | 239 | pc.printf("\n\r %f %f \n\r %f %f", theta4,theta1, xend, yend); // in teraterm zijn de bovenste twee waardes hoeken, de onderste twee zijn de x en y coordinaat |
EvaKrolis | 20:11fe0aa7f111 | 240 | wait(1);//anders krijg je DOEZEND waardes... |
EvaKrolis | 20:11fe0aa7f111 | 241 | |
EvaKrolis | 20:11fe0aa7f111 | 242 | |
EvaKrolis | 20:11fe0aa7f111 | 243 | } |
EvaKrolis | 20:11fe0aa7f111 | 244 | } |