Filter for 9250

Dependencies:   mbed

Committer:
Edrum_x
Date:
Tue Aug 06 18:37:41 2019 +0000
Revision:
1:c9547742263c
Parent:
0:ccea261dce7a
to export into mbed studio

Who changed what in which revision?

UserRevisionLine numberNew contents of line
imanyonok 0:ccea261dce7a 1 #ifndef MPU9250_H
imanyonok 0:ccea261dce7a 2 #define MPU9250_H
imanyonok 0:ccea261dce7a 3
imanyonok 0:ccea261dce7a 4 #include "mbed.h"
imanyonok 0:ccea261dce7a 5 #include "math.h"
imanyonok 0:ccea261dce7a 6
imanyonok 0:ccea261dce7a 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
imanyonok 0:ccea261dce7a 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
imanyonok 0:ccea261dce7a 9 //
imanyonok 0:ccea261dce7a 10 //Magnetometer Registers
imanyonok 0:ccea261dce7a 11 #define AK8963_ADDRESS 0x0C<<1
imanyonok 0:ccea261dce7a 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
imanyonok 0:ccea261dce7a 13 #define INFO 0x01
imanyonok 0:ccea261dce7a 14 #define AK8963_ST1 0x02 // data ready status bit 0
imanyonok 0:ccea261dce7a 15 #define AK8963_XOUT_L 0x03 // data
imanyonok 0:ccea261dce7a 16 #define AK8963_XOUT_H 0x04
imanyonok 0:ccea261dce7a 17 #define AK8963_YOUT_L 0x05
imanyonok 0:ccea261dce7a 18 #define AK8963_YOUT_H 0x06
imanyonok 0:ccea261dce7a 19 #define AK8963_ZOUT_L 0x07
imanyonok 0:ccea261dce7a 20 #define AK8963_ZOUT_H 0x08
imanyonok 0:ccea261dce7a 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
imanyonok 0:ccea261dce7a 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
imanyonok 0:ccea261dce7a 23 #define AK8963_ASTC 0x0C // Self test control
imanyonok 0:ccea261dce7a 24 #define AK8963_I2CDIS 0x0F // I2C disable
imanyonok 0:ccea261dce7a 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
imanyonok 0:ccea261dce7a 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
imanyonok 0:ccea261dce7a 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
imanyonok 0:ccea261dce7a 28
imanyonok 0:ccea261dce7a 29 #define SELF_TEST_X_GYRO 0x00
imanyonok 0:ccea261dce7a 30 #define SELF_TEST_Y_GYRO 0x01
imanyonok 0:ccea261dce7a 31 #define SELF_TEST_Z_GYRO 0x02
imanyonok 0:ccea261dce7a 32
imanyonok 0:ccea261dce7a 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
imanyonok 0:ccea261dce7a 34 #define Y_FINE_GAIN 0x04
imanyonok 0:ccea261dce7a 35 #define Z_FINE_GAIN 0x05
imanyonok 0:ccea261dce7a 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
imanyonok 0:ccea261dce7a 37 #define XA_OFFSET_L_TC 0x07
imanyonok 0:ccea261dce7a 38 #define YA_OFFSET_H 0x08
imanyonok 0:ccea261dce7a 39 #define YA_OFFSET_L_TC 0x09
imanyonok 0:ccea261dce7a 40 #define ZA_OFFSET_H 0x0A
imanyonok 0:ccea261dce7a 41 #define ZA_OFFSET_L_TC 0x0B */
imanyonok 0:ccea261dce7a 42
imanyonok 0:ccea261dce7a 43 #define SELF_TEST_X_ACCEL 0x0D
imanyonok 0:ccea261dce7a 44 #define SELF_TEST_Y_ACCEL 0x0E
imanyonok 0:ccea261dce7a 45 #define SELF_TEST_Z_ACCEL 0x0F
imanyonok 0:ccea261dce7a 46
imanyonok 0:ccea261dce7a 47 #define SELF_TEST_A 0x10
imanyonok 0:ccea261dce7a 48
imanyonok 0:ccea261dce7a 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
imanyonok 0:ccea261dce7a 50 #define XG_OFFSET_L 0x14
imanyonok 0:ccea261dce7a 51 #define YG_OFFSET_H 0x15
imanyonok 0:ccea261dce7a 52 #define YG_OFFSET_L 0x16
imanyonok 0:ccea261dce7a 53 #define ZG_OFFSET_H 0x17
imanyonok 0:ccea261dce7a 54 #define ZG_OFFSET_L 0x18
imanyonok 0:ccea261dce7a 55 #define SMPLRT_DIV 0x19
imanyonok 0:ccea261dce7a 56 #define CONFIG 0x1A
imanyonok 0:ccea261dce7a 57 #define GYRO_CONFIG 0x1B
imanyonok 0:ccea261dce7a 58 #define ACCEL_CONFIG 0x1C
imanyonok 0:ccea261dce7a 59 #define ACCEL_CONFIG2 0x1D
imanyonok 0:ccea261dce7a 60 #define LP_ACCEL_ODR 0x1E
imanyonok 0:ccea261dce7a 61 #define WOM_THR 0x1F
imanyonok 0:ccea261dce7a 62
imanyonok 0:ccea261dce7a 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
imanyonok 0:ccea261dce7a 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
imanyonok 0:ccea261dce7a 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
imanyonok 0:ccea261dce7a 66
imanyonok 0:ccea261dce7a 67 #define FIFO_EN 0x23
imanyonok 0:ccea261dce7a 68 #define I2C_MST_CTRL 0x24
imanyonok 0:ccea261dce7a 69 #define I2C_SLV0_ADDR 0x25
imanyonok 0:ccea261dce7a 70 #define I2C_SLV0_REG 0x26
imanyonok 0:ccea261dce7a 71 #define I2C_SLV0_CTRL 0x27
imanyonok 0:ccea261dce7a 72 #define I2C_SLV1_ADDR 0x28
imanyonok 0:ccea261dce7a 73 #define I2C_SLV1_REG 0x29
imanyonok 0:ccea261dce7a 74 #define I2C_SLV1_CTRL 0x2A
imanyonok 0:ccea261dce7a 75 #define I2C_SLV2_ADDR 0x2B
imanyonok 0:ccea261dce7a 76 #define I2C_SLV2_REG 0x2C
imanyonok 0:ccea261dce7a 77 #define I2C_SLV2_CTRL 0x2D
imanyonok 0:ccea261dce7a 78 #define I2C_SLV3_ADDR 0x2E
imanyonok 0:ccea261dce7a 79 #define I2C_SLV3_REG 0x2F
imanyonok 0:ccea261dce7a 80 #define I2C_SLV3_CTRL 0x30
imanyonok 0:ccea261dce7a 81 #define I2C_SLV4_ADDR 0x31
imanyonok 0:ccea261dce7a 82 #define I2C_SLV4_REG 0x32
imanyonok 0:ccea261dce7a 83 #define I2C_SLV4_DO 0x33
imanyonok 0:ccea261dce7a 84 #define I2C_SLV4_CTRL 0x34
imanyonok 0:ccea261dce7a 85 #define I2C_SLV4_DI 0x35
imanyonok 0:ccea261dce7a 86 #define I2C_MST_STATUS 0x36
imanyonok 0:ccea261dce7a 87 #define INT_PIN_CFG 0x37
imanyonok 0:ccea261dce7a 88 #define INT_ENABLE 0x38
imanyonok 0:ccea261dce7a 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
imanyonok 0:ccea261dce7a 90 #define INT_STATUS 0x3A
imanyonok 0:ccea261dce7a 91 #define ACCEL_XOUT_H 0x3B
imanyonok 0:ccea261dce7a 92 #define ACCEL_XOUT_L 0x3C
imanyonok 0:ccea261dce7a 93 #define ACCEL_YOUT_H 0x3D
imanyonok 0:ccea261dce7a 94 #define ACCEL_YOUT_L 0x3E
imanyonok 0:ccea261dce7a 95 #define ACCEL_ZOUT_H 0x3F
imanyonok 0:ccea261dce7a 96 #define ACCEL_ZOUT_L 0x40
imanyonok 0:ccea261dce7a 97 #define TEMP_OUT_H 0x41
imanyonok 0:ccea261dce7a 98 #define TEMP_OUT_L 0x42
imanyonok 0:ccea261dce7a 99 #define GYRO_XOUT_H 0x43
imanyonok 0:ccea261dce7a 100 #define GYRO_XOUT_L 0x44
imanyonok 0:ccea261dce7a 101 #define GYRO_YOUT_H 0x45
imanyonok 0:ccea261dce7a 102 #define GYRO_YOUT_L 0x46
imanyonok 0:ccea261dce7a 103 #define GYRO_ZOUT_H 0x47
imanyonok 0:ccea261dce7a 104 #define GYRO_ZOUT_L 0x48
imanyonok 0:ccea261dce7a 105 #define EXT_SENS_DATA_00 0x49
imanyonok 0:ccea261dce7a 106 #define EXT_SENS_DATA_01 0x4A
imanyonok 0:ccea261dce7a 107 #define EXT_SENS_DATA_02 0x4B
imanyonok 0:ccea261dce7a 108 #define EXT_SENS_DATA_03 0x4C
imanyonok 0:ccea261dce7a 109 #define EXT_SENS_DATA_04 0x4D
imanyonok 0:ccea261dce7a 110 #define EXT_SENS_DATA_05 0x4E
imanyonok 0:ccea261dce7a 111 #define EXT_SENS_DATA_06 0x4F
imanyonok 0:ccea261dce7a 112 #define EXT_SENS_DATA_07 0x50
imanyonok 0:ccea261dce7a 113 #define EXT_SENS_DATA_08 0x51
imanyonok 0:ccea261dce7a 114 #define EXT_SENS_DATA_09 0x52
imanyonok 0:ccea261dce7a 115 #define EXT_SENS_DATA_10 0x53
imanyonok 0:ccea261dce7a 116 #define EXT_SENS_DATA_11 0x54
imanyonok 0:ccea261dce7a 117 #define EXT_SENS_DATA_12 0x55
imanyonok 0:ccea261dce7a 118 #define EXT_SENS_DATA_13 0x56
imanyonok 0:ccea261dce7a 119 #define EXT_SENS_DATA_14 0x57
imanyonok 0:ccea261dce7a 120 #define EXT_SENS_DATA_15 0x58
imanyonok 0:ccea261dce7a 121 #define EXT_SENS_DATA_16 0x59
imanyonok 0:ccea261dce7a 122 #define EXT_SENS_DATA_17 0x5A
imanyonok 0:ccea261dce7a 123 #define EXT_SENS_DATA_18 0x5B
imanyonok 0:ccea261dce7a 124 #define EXT_SENS_DATA_19 0x5C
imanyonok 0:ccea261dce7a 125 #define EXT_SENS_DATA_20 0x5D
imanyonok 0:ccea261dce7a 126 #define EXT_SENS_DATA_21 0x5E
imanyonok 0:ccea261dce7a 127 #define EXT_SENS_DATA_22 0x5F
imanyonok 0:ccea261dce7a 128 #define EXT_SENS_DATA_23 0x60
imanyonok 0:ccea261dce7a 129 #define MOT_DETECT_STATUS 0x61
imanyonok 0:ccea261dce7a 130 #define I2C_SLV0_DO 0x63
imanyonok 0:ccea261dce7a 131 #define I2C_SLV1_DO 0x64
imanyonok 0:ccea261dce7a 132 #define I2C_SLV2_DO 0x65
imanyonok 0:ccea261dce7a 133 #define I2C_SLV3_DO 0x66
imanyonok 0:ccea261dce7a 134 #define I2C_MST_DELAY_CTRL 0x67
imanyonok 0:ccea261dce7a 135 #define SIGNAL_PATH_RESET 0x68
imanyonok 0:ccea261dce7a 136 #define MOT_DETECT_CTRL 0x69
imanyonok 0:ccea261dce7a 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
imanyonok 0:ccea261dce7a 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
imanyonok 0:ccea261dce7a 139 #define PWR_MGMT_2 0x6C
imanyonok 0:ccea261dce7a 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
imanyonok 0:ccea261dce7a 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
imanyonok 0:ccea261dce7a 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
imanyonok 0:ccea261dce7a 143 #define DMP_REG_1 0x70
imanyonok 0:ccea261dce7a 144 #define DMP_REG_2 0x71
imanyonok 0:ccea261dce7a 145 #define FIFO_COUNTH 0x72
imanyonok 0:ccea261dce7a 146 #define FIFO_COUNTL 0x73
imanyonok 0:ccea261dce7a 147 #define FIFO_R_W 0x74
imanyonok 0:ccea261dce7a 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
imanyonok 0:ccea261dce7a 149 #define XA_OFFSET_H 0x77
imanyonok 0:ccea261dce7a 150 #define XA_OFFSET_L 0x78
imanyonok 0:ccea261dce7a 151 #define YA_OFFSET_H 0x7A
imanyonok 0:ccea261dce7a 152 #define YA_OFFSET_L 0x7B
imanyonok 0:ccea261dce7a 153 #define ZA_OFFSET_H 0x7D
imanyonok 0:ccea261dce7a 154 #define ZA_OFFSET_L 0x7E
imanyonok 0:ccea261dce7a 155
imanyonok 0:ccea261dce7a 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
imanyonok 0:ccea261dce7a 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
imanyonok 0:ccea261dce7a 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
imanyonok 0:ccea261dce7a 159 #define ADO 0
imanyonok 0:ccea261dce7a 160 #if ADO
imanyonok 0:ccea261dce7a 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
imanyonok 0:ccea261dce7a 162 #else
imanyonok 0:ccea261dce7a 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
imanyonok 0:ccea261dce7a 164 #endif
imanyonok 0:ccea261dce7a 165
imanyonok 0:ccea261dce7a 166 // Set initial input parameters
imanyonok 0:ccea261dce7a 167 enum Ascale {
imanyonok 0:ccea261dce7a 168 AFS_2G = 0,
imanyonok 0:ccea261dce7a 169 AFS_4G,
imanyonok 0:ccea261dce7a 170 AFS_8G,
imanyonok 0:ccea261dce7a 171 AFS_16G
imanyonok 0:ccea261dce7a 172 };
imanyonok 0:ccea261dce7a 173
imanyonok 0:ccea261dce7a 174 enum Gscale {
imanyonok 0:ccea261dce7a 175 GFS_250DPS = 0,
imanyonok 0:ccea261dce7a 176 GFS_500DPS,
imanyonok 0:ccea261dce7a 177 GFS_1000DPS,
imanyonok 0:ccea261dce7a 178 GFS_2000DPS
imanyonok 0:ccea261dce7a 179 };
imanyonok 0:ccea261dce7a 180
imanyonok 0:ccea261dce7a 181 enum Mscale {
imanyonok 0:ccea261dce7a 182 MFS_14BITS = 0, // 0.6 mG per LSB
imanyonok 0:ccea261dce7a 183 MFS_16BITS // 0.15 mG per LSB
imanyonok 0:ccea261dce7a 184 };
imanyonok 0:ccea261dce7a 185
imanyonok 0:ccea261dce7a 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
imanyonok 0:ccea261dce7a 187 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
imanyonok 0:ccea261dce7a 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
imanyonok 0:ccea261dce7a 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
imanyonok 0:ccea261dce7a 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
imanyonok 0:ccea261dce7a 191
imanyonok 0:ccea261dce7a 192 //Set up I2C, (SDA,SCL)
imanyonok 0:ccea261dce7a 193 I2C i2c(I2C_SDA, I2C_SCL);
imanyonok 0:ccea261dce7a 194
imanyonok 0:ccea261dce7a 195 DigitalOut myled(LED1);
imanyonok 0:ccea261dce7a 196
imanyonok 0:ccea261dce7a 197 // Pin definitions
imanyonok 0:ccea261dce7a 198 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
imanyonok 0:ccea261dce7a 199
imanyonok 0:ccea261dce7a 200 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
imanyonok 0:ccea261dce7a 201 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
imanyonok 0:ccea261dce7a 202 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
imanyonok 0:ccea261dce7a 203 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
imanyonok 0:ccea261dce7a 204 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
imanyonok 0:ccea261dce7a 205 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
imanyonok 0:ccea261dce7a 206 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
imanyonok 0:ccea261dce7a 207 float temperature;
imanyonok 0:ccea261dce7a 208 float SelfTest[6];
imanyonok 0:ccea261dce7a 209
imanyonok 0:ccea261dce7a 210 int delt_t = 0; // used to control display output rate
imanyonok 0:ccea261dce7a 211 int count = 0; // used to control display output rate
imanyonok 0:ccea261dce7a 212
imanyonok 0:ccea261dce7a 213 // parameters for 6 DoF sensor fusion calculations
imanyonok 0:ccea261dce7a 214 float PI = 3.14159265358979323846f;
imanyonok 0:ccea261dce7a 215 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
imanyonok 0:ccea261dce7a 216 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
imanyonok 0:ccea261dce7a 217 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
imanyonok 0:ccea261dce7a 218 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
imanyonok 0:ccea261dce7a 219 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
imanyonok 0:ccea261dce7a 220 #define Ki 0.0f
imanyonok 0:ccea261dce7a 221
imanyonok 0:ccea261dce7a 222 float pitch, yaw, roll;
imanyonok 0:ccea261dce7a 223 float deltat = 0.0f; // integration interval for both filter schemes
imanyonok 0:ccea261dce7a 224 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
imanyonok 0:ccea261dce7a 225 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
imanyonok 0:ccea261dce7a 226 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
imanyonok 0:ccea261dce7a 227
imanyonok 0:ccea261dce7a 228 class MPU9250 {
imanyonok 0:ccea261dce7a 229
imanyonok 0:ccea261dce7a 230 protected:
imanyonok 0:ccea261dce7a 231
imanyonok 0:ccea261dce7a 232 public:
imanyonok 0:ccea261dce7a 233 //===================================================================================================================
imanyonok 0:ccea261dce7a 234 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
imanyonok 0:ccea261dce7a 235 //===================================================================================================================
imanyonok 0:ccea261dce7a 236
imanyonok 0:ccea261dce7a 237 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
imanyonok 0:ccea261dce7a 238 {
imanyonok 0:ccea261dce7a 239 char data_write[2];
imanyonok 0:ccea261dce7a 240 data_write[0] = subAddress;
imanyonok 0:ccea261dce7a 241 data_write[1] = data;
imanyonok 0:ccea261dce7a 242 i2c.write(address, data_write, 2, 0);
imanyonok 0:ccea261dce7a 243 }
imanyonok 0:ccea261dce7a 244
imanyonok 0:ccea261dce7a 245 char readByte(uint8_t address, uint8_t subAddress)
imanyonok 0:ccea261dce7a 246 {
imanyonok 0:ccea261dce7a 247 char data[1]; // `data` will store the register data
imanyonok 0:ccea261dce7a 248 char data_write[1];
imanyonok 0:ccea261dce7a 249 data_write[0] = subAddress;
imanyonok 0:ccea261dce7a 250 i2c.write(address, data_write, 1, 1); // no stop
imanyonok 0:ccea261dce7a 251 i2c.read(address, data, 1, 0);
imanyonok 0:ccea261dce7a 252 return data[0];
imanyonok 0:ccea261dce7a 253 }
imanyonok 0:ccea261dce7a 254
imanyonok 0:ccea261dce7a 255 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
imanyonok 0:ccea261dce7a 256 {
imanyonok 0:ccea261dce7a 257 char data[14];
imanyonok 0:ccea261dce7a 258 char data_write[1];
imanyonok 0:ccea261dce7a 259 data_write[0] = subAddress;
imanyonok 0:ccea261dce7a 260 i2c.write(address, data_write, 1, 1); // no stop
imanyonok 0:ccea261dce7a 261 i2c.read(address, data, count, 0);
imanyonok 0:ccea261dce7a 262 for(int ii = 0; ii < count; ii++) {
imanyonok 0:ccea261dce7a 263 dest[ii] = data[ii];
imanyonok 0:ccea261dce7a 264 }
imanyonok 0:ccea261dce7a 265 }
imanyonok 0:ccea261dce7a 266
imanyonok 0:ccea261dce7a 267
imanyonok 0:ccea261dce7a 268 void getMres() {
imanyonok 0:ccea261dce7a 269 switch (Mscale)
imanyonok 0:ccea261dce7a 270 {
imanyonok 0:ccea261dce7a 271 // Possible magnetometer scales (and their register bit settings) are:
imanyonok 0:ccea261dce7a 272 // 14 bit resolution (0) and 16 bit resolution (1)
imanyonok 0:ccea261dce7a 273 case MFS_14BITS:
imanyonok 0:ccea261dce7a 274 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
imanyonok 0:ccea261dce7a 275 break;
imanyonok 0:ccea261dce7a 276 case MFS_16BITS:
imanyonok 0:ccea261dce7a 277 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
imanyonok 0:ccea261dce7a 278 break;
imanyonok 0:ccea261dce7a 279 }
imanyonok 0:ccea261dce7a 280 }
imanyonok 0:ccea261dce7a 281
imanyonok 0:ccea261dce7a 282
imanyonok 0:ccea261dce7a 283 void getGres() {
imanyonok 0:ccea261dce7a 284 switch (Gscale)
imanyonok 0:ccea261dce7a 285 {
imanyonok 0:ccea261dce7a 286 // Possible gyro scales (and their register bit settings) are:
imanyonok 0:ccea261dce7a 287 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
imanyonok 0:ccea261dce7a 288 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
imanyonok 0:ccea261dce7a 289 case GFS_250DPS:
imanyonok 0:ccea261dce7a 290 gRes = 250.0/32768.0;
imanyonok 0:ccea261dce7a 291 break;
imanyonok 0:ccea261dce7a 292 case GFS_500DPS:
imanyonok 0:ccea261dce7a 293 gRes = 500.0/32768.0;
imanyonok 0:ccea261dce7a 294 break;
imanyonok 0:ccea261dce7a 295 case GFS_1000DPS:
imanyonok 0:ccea261dce7a 296 gRes = 1000.0/32768.0;
imanyonok 0:ccea261dce7a 297 break;
imanyonok 0:ccea261dce7a 298 case GFS_2000DPS:
imanyonok 0:ccea261dce7a 299 gRes = 2000.0/32768.0;
imanyonok 0:ccea261dce7a 300 break;
imanyonok 0:ccea261dce7a 301 }
imanyonok 0:ccea261dce7a 302 }
imanyonok 0:ccea261dce7a 303
imanyonok 0:ccea261dce7a 304
imanyonok 0:ccea261dce7a 305 void getAres() {
imanyonok 0:ccea261dce7a 306 switch (Ascale)
imanyonok 0:ccea261dce7a 307 {
imanyonok 0:ccea261dce7a 308 // Possible accelerometer scales (and their register bit settings) are:
imanyonok 0:ccea261dce7a 309 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
imanyonok 0:ccea261dce7a 310 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
imanyonok 0:ccea261dce7a 311 case AFS_2G:
imanyonok 0:ccea261dce7a 312 aRes = 2.0/32768.0;
imanyonok 0:ccea261dce7a 313 break;
imanyonok 0:ccea261dce7a 314 case AFS_4G:
imanyonok 0:ccea261dce7a 315 aRes = 4.0/32768.0;
imanyonok 0:ccea261dce7a 316 break;
imanyonok 0:ccea261dce7a 317 case AFS_8G:
imanyonok 0:ccea261dce7a 318 aRes = 8.0/32768.0;
imanyonok 0:ccea261dce7a 319 break;
imanyonok 0:ccea261dce7a 320 case AFS_16G:
imanyonok 0:ccea261dce7a 321 aRes = 16.0/32768.0;
imanyonok 0:ccea261dce7a 322 break;
imanyonok 0:ccea261dce7a 323 }
imanyonok 0:ccea261dce7a 324 }
imanyonok 0:ccea261dce7a 325
imanyonok 0:ccea261dce7a 326
imanyonok 0:ccea261dce7a 327 void readAccelData(int16_t * destination)
imanyonok 0:ccea261dce7a 328 {
imanyonok 0:ccea261dce7a 329 uint8_t rawData[6]; // x/y/z accel register data stored here
imanyonok 0:ccea261dce7a 330 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
imanyonok 0:ccea261dce7a 331 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 332 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
imanyonok 0:ccea261dce7a 333 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
imanyonok 0:ccea261dce7a 334 }
imanyonok 0:ccea261dce7a 335
imanyonok 0:ccea261dce7a 336 void readGyroData(int16_t * destination)
imanyonok 0:ccea261dce7a 337 {
imanyonok 0:ccea261dce7a 338 uint8_t rawData[6]; // x/y/z gyro register data stored here
imanyonok 0:ccea261dce7a 339 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
imanyonok 0:ccea261dce7a 340 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 341 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
imanyonok 0:ccea261dce7a 342 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
imanyonok 0:ccea261dce7a 343 }
imanyonok 0:ccea261dce7a 344
imanyonok 0:ccea261dce7a 345 void readMagData(int16_t * destination)
imanyonok 0:ccea261dce7a 346 {
imanyonok 0:ccea261dce7a 347 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
imanyonok 0:ccea261dce7a 348 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
imanyonok 0:ccea261dce7a 349 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
imanyonok 0:ccea261dce7a 350 uint8_t c = rawData[6]; // End data read by reading ST2 register
imanyonok 0:ccea261dce7a 351 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
imanyonok 0:ccea261dce7a 352 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 353 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
imanyonok 0:ccea261dce7a 354 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
imanyonok 0:ccea261dce7a 355 }
imanyonok 0:ccea261dce7a 356 }
imanyonok 0:ccea261dce7a 357 }
imanyonok 0:ccea261dce7a 358
imanyonok 0:ccea261dce7a 359 int16_t readTempData()
imanyonok 0:ccea261dce7a 360 {
imanyonok 0:ccea261dce7a 361 uint8_t rawData[2]; // x/y/z gyro register data stored here
imanyonok 0:ccea261dce7a 362 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
imanyonok 0:ccea261dce7a 363 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
imanyonok 0:ccea261dce7a 364 }
imanyonok 0:ccea261dce7a 365
imanyonok 0:ccea261dce7a 366
imanyonok 0:ccea261dce7a 367 void resetMPU9250() {
imanyonok 0:ccea261dce7a 368 // reset device
imanyonok 0:ccea261dce7a 369 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
imanyonok 0:ccea261dce7a 370 wait(0.1);
imanyonok 0:ccea261dce7a 371 }
imanyonok 0:ccea261dce7a 372
imanyonok 0:ccea261dce7a 373 void initAK8963(float * destination)
imanyonok 0:ccea261dce7a 374 {
imanyonok 0:ccea261dce7a 375 // First extract the factory calibration for each magnetometer axis
imanyonok 0:ccea261dce7a 376 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
imanyonok 0:ccea261dce7a 377 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
imanyonok 0:ccea261dce7a 378 wait(0.01);
imanyonok 0:ccea261dce7a 379 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
imanyonok 0:ccea261dce7a 380 wait(0.01);
imanyonok 0:ccea261dce7a 381 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
imanyonok 0:ccea261dce7a 382 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
imanyonok 0:ccea261dce7a 383 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
imanyonok 0:ccea261dce7a 384 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
imanyonok 0:ccea261dce7a 385 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
imanyonok 0:ccea261dce7a 386 wait(0.01);
imanyonok 0:ccea261dce7a 387 // Configure the magnetometer for continuous read and highest resolution
imanyonok 0:ccea261dce7a 388 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
imanyonok 0:ccea261dce7a 389 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
imanyonok 0:ccea261dce7a 390 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
imanyonok 0:ccea261dce7a 391 wait(0.01);
imanyonok 0:ccea261dce7a 392 }
imanyonok 0:ccea261dce7a 393
imanyonok 0:ccea261dce7a 394
imanyonok 0:ccea261dce7a 395 void initMPU9250()
imanyonok 0:ccea261dce7a 396 {
imanyonok 0:ccea261dce7a 397 // Initialize MPU9250 device
imanyonok 0:ccea261dce7a 398 // wake up device
imanyonok 0:ccea261dce7a 399 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
imanyonok 0:ccea261dce7a 400 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
imanyonok 0:ccea261dce7a 401
imanyonok 0:ccea261dce7a 402 // get stable time source
imanyonok 0:ccea261dce7a 403 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
imanyonok 0:ccea261dce7a 404
imanyonok 0:ccea261dce7a 405 // Configure Gyro and Accelerometer
imanyonok 0:ccea261dce7a 406 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
imanyonok 0:ccea261dce7a 407 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
imanyonok 0:ccea261dce7a 408 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
imanyonok 0:ccea261dce7a 409 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
imanyonok 0:ccea261dce7a 410
imanyonok 0:ccea261dce7a 411 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
imanyonok 0:ccea261dce7a 412 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
imanyonok 0:ccea261dce7a 413
imanyonok 0:ccea261dce7a 414 // Set gyroscope full scale range
imanyonok 0:ccea261dce7a 415 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
imanyonok 0:ccea261dce7a 416 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
imanyonok 0:ccea261dce7a 417 // c = c & ~0xE0; // Clear self-test bits [7:5]
imanyonok 0:ccea261dce7a 418 c = c & ~0x02; // Clear Fchoice bits [1:0]
imanyonok 0:ccea261dce7a 419 c = c & ~0x18; // Clear AFS bits [4:3]
imanyonok 0:ccea261dce7a 420 c = c | Gscale << 3; // Set full scale range for the gyro
imanyonok 0:ccea261dce7a 421 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
imanyonok 0:ccea261dce7a 422 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
imanyonok 0:ccea261dce7a 423
imanyonok 0:ccea261dce7a 424 // Set accelerometer full-scale range configuration
imanyonok 0:ccea261dce7a 425 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
imanyonok 0:ccea261dce7a 426 // c = c & ~0xE0; // Clear self-test bits [7:5]
imanyonok 0:ccea261dce7a 427 c = c & ~0x18; // Clear AFS bits [4:3]
imanyonok 0:ccea261dce7a 428 c = c | Ascale << 3; // Set full scale range for the accelerometer
imanyonok 0:ccea261dce7a 429 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
imanyonok 0:ccea261dce7a 430
imanyonok 0:ccea261dce7a 431 // Set accelerometer sample rate configuration
imanyonok 0:ccea261dce7a 432 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
imanyonok 0:ccea261dce7a 433 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
imanyonok 0:ccea261dce7a 434 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
imanyonok 0:ccea261dce7a 435 c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
imanyonok 0:ccea261dce7a 436 c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
imanyonok 0:ccea261dce7a 437 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
imanyonok 0:ccea261dce7a 438
imanyonok 0:ccea261dce7a 439 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
imanyonok 0:ccea261dce7a 440 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
imanyonok 0:ccea261dce7a 441
imanyonok 0:ccea261dce7a 442 // Configure Interrupts and Bypass Enable
imanyonok 0:ccea261dce7a 443 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
imanyonok 0:ccea261dce7a 444 // can join the I2C bus and all can be controlled by the Arduino as master
imanyonok 0:ccea261dce7a 445 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
imanyonok 0:ccea261dce7a 446 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
imanyonok 0:ccea261dce7a 447 }
imanyonok 0:ccea261dce7a 448
imanyonok 0:ccea261dce7a 449 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
imanyonok 0:ccea261dce7a 450 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
imanyonok 0:ccea261dce7a 451 void calibrateMPU9250(float * dest1, float * dest2)
imanyonok 0:ccea261dce7a 452 {
imanyonok 0:ccea261dce7a 453 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
imanyonok 0:ccea261dce7a 454 uint16_t ii, packet_count, fifo_count;
imanyonok 0:ccea261dce7a 455 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
imanyonok 0:ccea261dce7a 456
imanyonok 0:ccea261dce7a 457 // reset device, reset all registers, clear gyro and accelerometer bias registers
imanyonok 0:ccea261dce7a 458 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
imanyonok 0:ccea261dce7a 459 wait(0.1);
imanyonok 0:ccea261dce7a 460
imanyonok 0:ccea261dce7a 461 // get stable time source
imanyonok 0:ccea261dce7a 462 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
imanyonok 0:ccea261dce7a 463 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
imanyonok 0:ccea261dce7a 464 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
imanyonok 0:ccea261dce7a 465 wait(0.2);
imanyonok 0:ccea261dce7a 466
imanyonok 0:ccea261dce7a 467 // Configure device for bias calculation
imanyonok 0:ccea261dce7a 468 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
imanyonok 0:ccea261dce7a 469 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
imanyonok 0:ccea261dce7a 470 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
imanyonok 0:ccea261dce7a 471 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
imanyonok 0:ccea261dce7a 472 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
imanyonok 0:ccea261dce7a 473 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
imanyonok 0:ccea261dce7a 474 wait(0.015);
imanyonok 0:ccea261dce7a 475
imanyonok 0:ccea261dce7a 476 // Configure MPU9250 gyro and accelerometer for bias calculation
imanyonok 0:ccea261dce7a 477 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
imanyonok 0:ccea261dce7a 478 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
imanyonok 0:ccea261dce7a 479 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
imanyonok 0:ccea261dce7a 480 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
imanyonok 0:ccea261dce7a 481
imanyonok 0:ccea261dce7a 482 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
imanyonok 0:ccea261dce7a 483 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
imanyonok 0:ccea261dce7a 484
imanyonok 0:ccea261dce7a 485 // Configure FIFO to capture accelerometer and gyro data for bias calculation
imanyonok 0:ccea261dce7a 486 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
imanyonok 0:ccea261dce7a 487 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
imanyonok 0:ccea261dce7a 488 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
imanyonok 0:ccea261dce7a 489
imanyonok 0:ccea261dce7a 490 // At end of sample accumulation, turn off FIFO sensor read
imanyonok 0:ccea261dce7a 491 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
imanyonok 0:ccea261dce7a 492 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
imanyonok 0:ccea261dce7a 493 fifo_count = ((uint16_t)data[0] << 8) | data[1];
imanyonok 0:ccea261dce7a 494 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
imanyonok 0:ccea261dce7a 495
imanyonok 0:ccea261dce7a 496 for (ii = 0; ii < packet_count; ii++) {
imanyonok 0:ccea261dce7a 497 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
imanyonok 0:ccea261dce7a 498 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
imanyonok 0:ccea261dce7a 499 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
imanyonok 0:ccea261dce7a 500 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
imanyonok 0:ccea261dce7a 501 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
imanyonok 0:ccea261dce7a 502 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
imanyonok 0:ccea261dce7a 503 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
imanyonok 0:ccea261dce7a 504 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
imanyonok 0:ccea261dce7a 505
imanyonok 0:ccea261dce7a 506 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
imanyonok 0:ccea261dce7a 507 accel_bias[1] += (int32_t) accel_temp[1];
imanyonok 0:ccea261dce7a 508 accel_bias[2] += (int32_t) accel_temp[2];
imanyonok 0:ccea261dce7a 509 gyro_bias[0] += (int32_t) gyro_temp[0];
imanyonok 0:ccea261dce7a 510 gyro_bias[1] += (int32_t) gyro_temp[1];
imanyonok 0:ccea261dce7a 511 gyro_bias[2] += (int32_t) gyro_temp[2];
imanyonok 0:ccea261dce7a 512
imanyonok 0:ccea261dce7a 513 }
imanyonok 0:ccea261dce7a 514 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
imanyonok 0:ccea261dce7a 515 accel_bias[1] /= (int32_t) packet_count;
imanyonok 0:ccea261dce7a 516 accel_bias[2] /= (int32_t) packet_count;
imanyonok 0:ccea261dce7a 517 gyro_bias[0] /= (int32_t) packet_count;
imanyonok 0:ccea261dce7a 518 gyro_bias[1] /= (int32_t) packet_count;
imanyonok 0:ccea261dce7a 519 gyro_bias[2] /= (int32_t) packet_count;
imanyonok 0:ccea261dce7a 520
imanyonok 0:ccea261dce7a 521 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
imanyonok 0:ccea261dce7a 522 else {accel_bias[2] += (int32_t) accelsensitivity;}
imanyonok 0:ccea261dce7a 523
imanyonok 0:ccea261dce7a 524 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
imanyonok 0:ccea261dce7a 525 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
imanyonok 0:ccea261dce7a 526 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
imanyonok 0:ccea261dce7a 527 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
imanyonok 0:ccea261dce7a 528 data[3] = (-gyro_bias[1]/4) & 0xFF;
imanyonok 0:ccea261dce7a 529 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
imanyonok 0:ccea261dce7a 530 data[5] = (-gyro_bias[2]/4) & 0xFF;
imanyonok 0:ccea261dce7a 531
imanyonok 0:ccea261dce7a 532 /// Push gyro biases to hardware registers
imanyonok 0:ccea261dce7a 533 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
imanyonok 0:ccea261dce7a 534 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
imanyonok 0:ccea261dce7a 535 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
imanyonok 0:ccea261dce7a 536 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
imanyonok 0:ccea261dce7a 537 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
imanyonok 0:ccea261dce7a 538 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
imanyonok 0:ccea261dce7a 539 */
imanyonok 0:ccea261dce7a 540 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
imanyonok 0:ccea261dce7a 541 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
imanyonok 0:ccea261dce7a 542 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
imanyonok 0:ccea261dce7a 543
imanyonok 0:ccea261dce7a 544 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
imanyonok 0:ccea261dce7a 545 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
imanyonok 0:ccea261dce7a 546 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
imanyonok 0:ccea261dce7a 547 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
imanyonok 0:ccea261dce7a 548 // the accelerometer biases calculated above must be divided by 8.
imanyonok 0:ccea261dce7a 549
imanyonok 0:ccea261dce7a 550 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
imanyonok 0:ccea261dce7a 551 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
imanyonok 0:ccea261dce7a 552 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
imanyonok 0:ccea261dce7a 553 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
imanyonok 0:ccea261dce7a 554 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
imanyonok 0:ccea261dce7a 555 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
imanyonok 0:ccea261dce7a 556 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
imanyonok 0:ccea261dce7a 557
imanyonok 0:ccea261dce7a 558 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
imanyonok 0:ccea261dce7a 559 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
imanyonok 0:ccea261dce7a 560
imanyonok 0:ccea261dce7a 561 for(ii = 0; ii < 3; ii++) {
imanyonok 0:ccea261dce7a 562 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
imanyonok 0:ccea261dce7a 563 }
imanyonok 0:ccea261dce7a 564
imanyonok 0:ccea261dce7a 565 // Construct total accelerometer bias, including calculated average accelerometer bias from above
imanyonok 0:ccea261dce7a 566 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
imanyonok 0:ccea261dce7a 567 accel_bias_reg[1] -= (accel_bias[1]/8);
imanyonok 0:ccea261dce7a 568 accel_bias_reg[2] -= (accel_bias[2]/8);
imanyonok 0:ccea261dce7a 569
imanyonok 0:ccea261dce7a 570 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
imanyonok 0:ccea261dce7a 571 data[1] = (accel_bias_reg[0]) & 0xFF;
imanyonok 0:ccea261dce7a 572 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
imanyonok 0:ccea261dce7a 573 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
imanyonok 0:ccea261dce7a 574 data[3] = (accel_bias_reg[1]) & 0xFF;
imanyonok 0:ccea261dce7a 575 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
imanyonok 0:ccea261dce7a 576 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
imanyonok 0:ccea261dce7a 577 data[5] = (accel_bias_reg[2]) & 0xFF;
imanyonok 0:ccea261dce7a 578 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
imanyonok 0:ccea261dce7a 579
imanyonok 0:ccea261dce7a 580 // Apparently this is not working for the acceleration biases in the MPU-9250
imanyonok 0:ccea261dce7a 581 // Are we handling the temperature correction bit properly?
imanyonok 0:ccea261dce7a 582 // Push accelerometer biases to hardware registers
imanyonok 0:ccea261dce7a 583 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
imanyonok 0:ccea261dce7a 584 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
imanyonok 0:ccea261dce7a 585 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
imanyonok 0:ccea261dce7a 586 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
imanyonok 0:ccea261dce7a 587 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
imanyonok 0:ccea261dce7a 588 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
imanyonok 0:ccea261dce7a 589 */
imanyonok 0:ccea261dce7a 590 // Output scaled accelerometer biases for manual subtraction in the main program
imanyonok 0:ccea261dce7a 591 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
imanyonok 0:ccea261dce7a 592 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
imanyonok 0:ccea261dce7a 593 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
imanyonok 0:ccea261dce7a 594 }
imanyonok 0:ccea261dce7a 595
imanyonok 0:ccea261dce7a 596
imanyonok 0:ccea261dce7a 597 // Accelerometer and gyroscope self test; check calibration wrt factory settings
imanyonok 0:ccea261dce7a 598 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
imanyonok 0:ccea261dce7a 599 {
imanyonok 0:ccea261dce7a 600 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
imanyonok 0:ccea261dce7a 601 uint8_t selfTest[6];
imanyonok 0:ccea261dce7a 602 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
imanyonok 0:ccea261dce7a 603 float factoryTrim[6];
imanyonok 0:ccea261dce7a 604 uint8_t FS = 0;
imanyonok 0:ccea261dce7a 605
imanyonok 0:ccea261dce7a 606 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
imanyonok 0:ccea261dce7a 607 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
imanyonok 0:ccea261dce7a 608 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
imanyonok 0:ccea261dce7a 609 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
imanyonok 0:ccea261dce7a 610 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
imanyonok 0:ccea261dce7a 611
imanyonok 0:ccea261dce7a 612 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
imanyonok 0:ccea261dce7a 613
imanyonok 0:ccea261dce7a 614 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
imanyonok 0:ccea261dce7a 615 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 616 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
imanyonok 0:ccea261dce7a 617 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
imanyonok 0:ccea261dce7a 618
imanyonok 0:ccea261dce7a 619 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
imanyonok 0:ccea261dce7a 620 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 621 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
imanyonok 0:ccea261dce7a 622 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
imanyonok 0:ccea261dce7a 623 }
imanyonok 0:ccea261dce7a 624
imanyonok 0:ccea261dce7a 625 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
imanyonok 0:ccea261dce7a 626 aAvg[ii] /= 200;
imanyonok 0:ccea261dce7a 627 gAvg[ii] /= 200;
imanyonok 0:ccea261dce7a 628 }
imanyonok 0:ccea261dce7a 629
imanyonok 0:ccea261dce7a 630 // Configure the accelerometer for self-test
imanyonok 0:ccea261dce7a 631 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
imanyonok 0:ccea261dce7a 632 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
imanyonok 0:ccea261dce7a 633 //delay(55); // Delay a while to let the device stabilize
imanyonok 0:ccea261dce7a 634
imanyonok 0:ccea261dce7a 635 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
imanyonok 0:ccea261dce7a 636
imanyonok 0:ccea261dce7a 637 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
imanyonok 0:ccea261dce7a 638 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 639 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
imanyonok 0:ccea261dce7a 640 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
imanyonok 0:ccea261dce7a 641
imanyonok 0:ccea261dce7a 642 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
imanyonok 0:ccea261dce7a 643 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
imanyonok 0:ccea261dce7a 644 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
imanyonok 0:ccea261dce7a 645 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
imanyonok 0:ccea261dce7a 646 }
imanyonok 0:ccea261dce7a 647
imanyonok 0:ccea261dce7a 648 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
imanyonok 0:ccea261dce7a 649 aSTAvg[ii] /= 200;
imanyonok 0:ccea261dce7a 650 gSTAvg[ii] /= 200;
imanyonok 0:ccea261dce7a 651 }
imanyonok 0:ccea261dce7a 652
imanyonok 0:ccea261dce7a 653 // Configure the gyro and accelerometer for normal operation
imanyonok 0:ccea261dce7a 654 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
imanyonok 0:ccea261dce7a 655 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
imanyonok 0:ccea261dce7a 656 //delay(45); // Delay a while to let the device stabilize
imanyonok 0:ccea261dce7a 657
imanyonok 0:ccea261dce7a 658 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
imanyonok 0:ccea261dce7a 659 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
imanyonok 0:ccea261dce7a 660 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
imanyonok 0:ccea261dce7a 661 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
imanyonok 0:ccea261dce7a 662 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
imanyonok 0:ccea261dce7a 663 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
imanyonok 0:ccea261dce7a 664 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
imanyonok 0:ccea261dce7a 665
imanyonok 0:ccea261dce7a 666 // Retrieve factory self-test value from self-test code reads
imanyonok 0:ccea261dce7a 667 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
imanyonok 0:ccea261dce7a 668 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
imanyonok 0:ccea261dce7a 669 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
imanyonok 0:ccea261dce7a 670 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
imanyonok 0:ccea261dce7a 671 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
imanyonok 0:ccea261dce7a 672 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
imanyonok 0:ccea261dce7a 673
imanyonok 0:ccea261dce7a 674 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
imanyonok 0:ccea261dce7a 675 // To get percent, must multiply by 100
imanyonok 0:ccea261dce7a 676 for (int i = 0; i < 3; i++) {
imanyonok 0:ccea261dce7a 677 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
imanyonok 0:ccea261dce7a 678 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
imanyonok 0:ccea261dce7a 679 }
imanyonok 0:ccea261dce7a 680
imanyonok 0:ccea261dce7a 681 }
imanyonok 0:ccea261dce7a 682
imanyonok 0:ccea261dce7a 683
imanyonok 0:ccea261dce7a 684
imanyonok 0:ccea261dce7a 685 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
imanyonok 0:ccea261dce7a 686 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
imanyonok 0:ccea261dce7a 687 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
imanyonok 0:ccea261dce7a 688 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
imanyonok 0:ccea261dce7a 689 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
imanyonok 0:ccea261dce7a 690 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
imanyonok 0:ccea261dce7a 691 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
imanyonok 0:ccea261dce7a 692 {
imanyonok 0:ccea261dce7a 693 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
imanyonok 0:ccea261dce7a 694 float norm;
imanyonok 0:ccea261dce7a 695 float hx, hy, _2bx, _2bz;
imanyonok 0:ccea261dce7a 696 float s1, s2, s3, s4;
imanyonok 0:ccea261dce7a 697 float qDot1, qDot2, qDot3, qDot4;
imanyonok 0:ccea261dce7a 698
imanyonok 0:ccea261dce7a 699 // Auxiliary variables to avoid repeated arithmetic
imanyonok 0:ccea261dce7a 700 float _2q1mx;
imanyonok 0:ccea261dce7a 701 float _2q1my;
imanyonok 0:ccea261dce7a 702 float _2q1mz;
imanyonok 0:ccea261dce7a 703 float _2q2mx;
imanyonok 0:ccea261dce7a 704 float _4bx;
imanyonok 0:ccea261dce7a 705 float _4bz;
imanyonok 0:ccea261dce7a 706 float _2q1 = 2.0f * q1;
imanyonok 0:ccea261dce7a 707 float _2q2 = 2.0f * q2;
imanyonok 0:ccea261dce7a 708 float _2q3 = 2.0f * q3;
imanyonok 0:ccea261dce7a 709 float _2q4 = 2.0f * q4;
imanyonok 0:ccea261dce7a 710 float _2q1q3 = 2.0f * q1 * q3;
imanyonok 0:ccea261dce7a 711 float _2q3q4 = 2.0f * q3 * q4;
imanyonok 0:ccea261dce7a 712 float q1q1 = q1 * q1;
imanyonok 0:ccea261dce7a 713 float q1q2 = q1 * q2;
imanyonok 0:ccea261dce7a 714 float q1q3 = q1 * q3;
imanyonok 0:ccea261dce7a 715 float q1q4 = q1 * q4;
imanyonok 0:ccea261dce7a 716 float q2q2 = q2 * q2;
imanyonok 0:ccea261dce7a 717 float q2q3 = q2 * q3;
imanyonok 0:ccea261dce7a 718 float q2q4 = q2 * q4;
imanyonok 0:ccea261dce7a 719 float q3q3 = q3 * q3;
imanyonok 0:ccea261dce7a 720 float q3q4 = q3 * q4;
imanyonok 0:ccea261dce7a 721 float q4q4 = q4 * q4;
imanyonok 0:ccea261dce7a 722
imanyonok 0:ccea261dce7a 723 // Normalise accelerometer measurement
imanyonok 0:ccea261dce7a 724 norm = sqrt(ax * ax + ay * ay + az * az);
imanyonok 0:ccea261dce7a 725 if (norm == 0.0f) return; // handle NaN
imanyonok 0:ccea261dce7a 726 norm = 1.0f/norm;
imanyonok 0:ccea261dce7a 727 ax *= norm;
imanyonok 0:ccea261dce7a 728 ay *= norm;
imanyonok 0:ccea261dce7a 729 az *= norm;
imanyonok 0:ccea261dce7a 730
imanyonok 0:ccea261dce7a 731 // Normalise magnetometer measurement
imanyonok 0:ccea261dce7a 732 norm = sqrt(mx * mx + my * my + mz * mz);
imanyonok 0:ccea261dce7a 733 if (norm == 0.0f) return; // handle NaN
imanyonok 0:ccea261dce7a 734 norm = 1.0f/norm;
imanyonok 0:ccea261dce7a 735 mx *= norm;
imanyonok 0:ccea261dce7a 736 my *= norm;
imanyonok 0:ccea261dce7a 737 mz *= norm;
imanyonok 0:ccea261dce7a 738
imanyonok 0:ccea261dce7a 739 // Reference direction of Earth's magnetic field
imanyonok 0:ccea261dce7a 740 _2q1mx = 2.0f * q1 * mx;
imanyonok 0:ccea261dce7a 741 _2q1my = 2.0f * q1 * my;
imanyonok 0:ccea261dce7a 742 _2q1mz = 2.0f * q1 * mz;
imanyonok 0:ccea261dce7a 743 _2q2mx = 2.0f * q2 * mx;
imanyonok 0:ccea261dce7a 744 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
imanyonok 0:ccea261dce7a 745 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
imanyonok 0:ccea261dce7a 746 _2bx = sqrt(hx * hx + hy * hy);
imanyonok 0:ccea261dce7a 747 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
imanyonok 0:ccea261dce7a 748 _4bx = 2.0f * _2bx;
imanyonok 0:ccea261dce7a 749 _4bz = 2.0f * _2bz;
imanyonok 0:ccea261dce7a 750
imanyonok 0:ccea261dce7a 751 // Gradient decent algorithm corrective step
imanyonok 0:ccea261dce7a 752 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
imanyonok 0:ccea261dce7a 753 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
imanyonok 0:ccea261dce7a 754 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
imanyonok 0:ccea261dce7a 755 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
imanyonok 0:ccea261dce7a 756 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
imanyonok 0:ccea261dce7a 757 norm = 1.0f/norm;
imanyonok 0:ccea261dce7a 758 s1 *= norm;
imanyonok 0:ccea261dce7a 759 s2 *= norm;
imanyonok 0:ccea261dce7a 760 s3 *= norm;
imanyonok 0:ccea261dce7a 761 s4 *= norm;
imanyonok 0:ccea261dce7a 762
imanyonok 0:ccea261dce7a 763 // Compute rate of change of quaternion
imanyonok 0:ccea261dce7a 764 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
imanyonok 0:ccea261dce7a 765 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
imanyonok 0:ccea261dce7a 766 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
imanyonok 0:ccea261dce7a 767 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
imanyonok 0:ccea261dce7a 768
imanyonok 0:ccea261dce7a 769 // Integrate to yield quaternion
imanyonok 0:ccea261dce7a 770 q1 += qDot1 * deltat;
imanyonok 0:ccea261dce7a 771 q2 += qDot2 * deltat;
imanyonok 0:ccea261dce7a 772 q3 += qDot3 * deltat;
imanyonok 0:ccea261dce7a 773 q4 += qDot4 * deltat;
imanyonok 0:ccea261dce7a 774 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
imanyonok 0:ccea261dce7a 775 norm = 1.0f/norm;
imanyonok 0:ccea261dce7a 776 q[0] = q1 * norm;
imanyonok 0:ccea261dce7a 777 q[1] = q2 * norm;
imanyonok 0:ccea261dce7a 778 q[2] = q3 * norm;
imanyonok 0:ccea261dce7a 779 q[3] = q4 * norm;
imanyonok 0:ccea261dce7a 780
imanyonok 0:ccea261dce7a 781 }
imanyonok 0:ccea261dce7a 782
imanyonok 0:ccea261dce7a 783
imanyonok 0:ccea261dce7a 784
imanyonok 0:ccea261dce7a 785 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
imanyonok 0:ccea261dce7a 786 // measured ones.
imanyonok 0:ccea261dce7a 787 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
imanyonok 0:ccea261dce7a 788 {
imanyonok 0:ccea261dce7a 789 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
imanyonok 0:ccea261dce7a 790 float norm;
imanyonok 0:ccea261dce7a 791 float hx, hy, bx, bz;
imanyonok 0:ccea261dce7a 792 float vx, vy, vz, wx, wy, wz;
imanyonok 0:ccea261dce7a 793 float ex, ey, ez;
imanyonok 0:ccea261dce7a 794 float pa, pb, pc;
imanyonok 0:ccea261dce7a 795
imanyonok 0:ccea261dce7a 796 // Auxiliary variables to avoid repeated arithmetic
imanyonok 0:ccea261dce7a 797 float q1q1 = q1 * q1;
imanyonok 0:ccea261dce7a 798 float q1q2 = q1 * q2;
imanyonok 0:ccea261dce7a 799 float q1q3 = q1 * q3;
imanyonok 0:ccea261dce7a 800 float q1q4 = q1 * q4;
imanyonok 0:ccea261dce7a 801 float q2q2 = q2 * q2;
imanyonok 0:ccea261dce7a 802 float q2q3 = q2 * q3;
imanyonok 0:ccea261dce7a 803 float q2q4 = q2 * q4;
imanyonok 0:ccea261dce7a 804 float q3q3 = q3 * q3;
imanyonok 0:ccea261dce7a 805 float q3q4 = q3 * q4;
imanyonok 0:ccea261dce7a 806 float q4q4 = q4 * q4;
imanyonok 0:ccea261dce7a 807
imanyonok 0:ccea261dce7a 808 // Normalise accelerometer measurement
imanyonok 0:ccea261dce7a 809 norm = sqrt(ax * ax + ay * ay + az * az);
imanyonok 0:ccea261dce7a 810 if (norm == 0.0f) return; // handle NaN
imanyonok 0:ccea261dce7a 811 norm = 1.0f / norm; // use reciprocal for division
imanyonok 0:ccea261dce7a 812 ax *= norm;
imanyonok 0:ccea261dce7a 813 ay *= norm;
imanyonok 0:ccea261dce7a 814 az *= norm;
imanyonok 0:ccea261dce7a 815
imanyonok 0:ccea261dce7a 816 // Normalise magnetometer measurement
imanyonok 0:ccea261dce7a 817 norm = sqrt(mx * mx + my * my + mz * mz);
imanyonok 0:ccea261dce7a 818 if (norm == 0.0f) return; // handle NaN
imanyonok 0:ccea261dce7a 819 norm = 1.0f / norm; // use reciprocal for division
imanyonok 0:ccea261dce7a 820 mx *= norm;
imanyonok 0:ccea261dce7a 821 my *= norm;
imanyonok 0:ccea261dce7a 822 mz *= norm;
imanyonok 0:ccea261dce7a 823
imanyonok 0:ccea261dce7a 824 // Reference direction of Earth's magnetic field
imanyonok 0:ccea261dce7a 825 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
imanyonok 0:ccea261dce7a 826 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
imanyonok 0:ccea261dce7a 827 bx = sqrt((hx * hx) + (hy * hy));
imanyonok 0:ccea261dce7a 828 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
imanyonok 0:ccea261dce7a 829
imanyonok 0:ccea261dce7a 830 // Estimated direction of gravity and magnetic field
imanyonok 0:ccea261dce7a 831 vx = 2.0f * (q2q4 - q1q3);
imanyonok 0:ccea261dce7a 832 vy = 2.0f * (q1q2 + q3q4);
imanyonok 0:ccea261dce7a 833 vz = q1q1 - q2q2 - q3q3 + q4q4;
imanyonok 0:ccea261dce7a 834 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
imanyonok 0:ccea261dce7a 835 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
imanyonok 0:ccea261dce7a 836 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
imanyonok 0:ccea261dce7a 837
imanyonok 0:ccea261dce7a 838 // Error is cross product between estimated direction and measured direction of gravity
imanyonok 0:ccea261dce7a 839 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
imanyonok 0:ccea261dce7a 840 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
imanyonok 0:ccea261dce7a 841 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
imanyonok 0:ccea261dce7a 842 if (Ki > 0.0f)
imanyonok 0:ccea261dce7a 843 {
imanyonok 0:ccea261dce7a 844 eInt[0] += ex; // accumulate integral error
imanyonok 0:ccea261dce7a 845 eInt[1] += ey;
imanyonok 0:ccea261dce7a 846 eInt[2] += ez;
imanyonok 0:ccea261dce7a 847 }
imanyonok 0:ccea261dce7a 848 else
imanyonok 0:ccea261dce7a 849 {
imanyonok 0:ccea261dce7a 850 eInt[0] = 0.0f; // prevent integral wind up
imanyonok 0:ccea261dce7a 851 eInt[1] = 0.0f;
imanyonok 0:ccea261dce7a 852 eInt[2] = 0.0f;
imanyonok 0:ccea261dce7a 853 }
imanyonok 0:ccea261dce7a 854
imanyonok 0:ccea261dce7a 855 // Apply feedback terms
imanyonok 0:ccea261dce7a 856 gx = gx + Kp * ex + Ki * eInt[0];
imanyonok 0:ccea261dce7a 857 gy = gy + Kp * ey + Ki * eInt[1];
imanyonok 0:ccea261dce7a 858 gz = gz + Kp * ez + Ki * eInt[2];
imanyonok 0:ccea261dce7a 859
imanyonok 0:ccea261dce7a 860 // Integrate rate of change of quaternion
imanyonok 0:ccea261dce7a 861 pa = q2;
imanyonok 0:ccea261dce7a 862 pb = q3;
imanyonok 0:ccea261dce7a 863 pc = q4;
imanyonok 0:ccea261dce7a 864 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
imanyonok 0:ccea261dce7a 865 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
imanyonok 0:ccea261dce7a 866 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
imanyonok 0:ccea261dce7a 867 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
imanyonok 0:ccea261dce7a 868
imanyonok 0:ccea261dce7a 869 // Normalise quaternion
imanyonok 0:ccea261dce7a 870 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
imanyonok 0:ccea261dce7a 871 norm = 1.0f / norm;
imanyonok 0:ccea261dce7a 872 q[0] = q1 * norm;
imanyonok 0:ccea261dce7a 873 q[1] = q2 * norm;
imanyonok 0:ccea261dce7a 874 q[2] = q3 * norm;
imanyonok 0:ccea261dce7a 875 q[3] = q4 * norm;
imanyonok 0:ccea261dce7a 876
imanyonok 0:ccea261dce7a 877 }
imanyonok 0:ccea261dce7a 878 };
imanyonok 0:ccea261dce7a 879 #endif