Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of WIZnetInterface by
arch/ext/W5500.cpp
- Committer:
- hjjeon
- Date:
- 2015-07-01
- Revision:
- 19:d8773cd4edc5
- Parent:
- 14:2101ab5ee40f
- Child:
- 25:48abbe1d9bab
- Child:
- 27:1169973d836c
File content as of revision 19:d8773cd4edc5:
/* Copyright (C) 2012 mbed.org, MIT License * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without restriction, * including without limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "eth_arch.h" #if not defined(TARGET_WIZwiki_W7500) #include "mbed.h" #include "mbed_debug.h" #include "DNSClient.h" //Debug is disabled by default #if 0 #define DBG(...) do{debug("%p %d %s ", this,__LINE__,__PRETTY_FUNCTION__); debug(__VA_ARGS__); } while(0); //#define DBG(x, ...) debug("[W5500:DBG]"x"\r\n", ##__VA_ARGS__); #define WARN(x, ...) debug("[W5500:WARN]"x"\r\n", ##__VA_ARGS__); #define ERR(x, ...) debug("[W5500:ERR]"x"\r\n", ##__VA_ARGS__); #else #define DBG(x, ...) #define WARN(x, ...) #define ERR(x, ...) #endif #if 1 #define INFO(x, ...) debug("[W5500:INFO]"x"\r\n", ##__VA_ARGS__); #else #define INFO(x, ...) #endif #define DBG_SPI 0 WIZnet_Chip* WIZnet_Chip::inst; WIZnet_Chip::WIZnet_Chip(PinName mosi, PinName miso, PinName sclk, PinName _cs, PinName _reset): cs(_cs), reset_pin(_reset) { spi = new SPI(mosi, miso, sclk); cs = 1; reset_pin = 1; inst = this; sock_any_port = SOCK_ANY_PORT_NUM; } WIZnet_Chip::WIZnet_Chip(SPI* spi, PinName _cs, PinName _reset): cs(_cs), reset_pin(_reset) { this->spi = spi; cs = 1; reset_pin = 1; inst = this; sock_any_port = SOCK_ANY_PORT_NUM; } bool WIZnet_Chip::setmac() { for (int i =0; i < 6; i++) reg_wr<uint8_t>(SHAR+i, mac[i]); return true; } // Set the IP bool WIZnet_Chip::setip() { reg_wr<uint32_t>(SIPR, ip); reg_wr<uint32_t>(GAR, gateway); reg_wr<uint32_t>(SUBR, netmask); return true; } bool WIZnet_Chip::setProtocol(int socket, Protocol p) { if (socket < 0) { return false; } sreg<uint8_t>(socket, Sn_MR, p); return true; } bool WIZnet_Chip::connect(int socket, const char * host, int port, int timeout_ms) { if (socket < 0) { return false; } sreg<uint8_t>(socket, Sn_MR, TCP); scmd(socket, OPEN); sreg_ip(socket, Sn_DIPR, host); sreg<uint16_t>(socket, Sn_DPORT, port); sreg<uint16_t>(socket, Sn_PORT, new_port()); scmd(socket, CONNECT); Timer t; t.reset(); t.start(); while(!is_connected(socket)) { if (t.read_ms() > timeout_ms) { return false; } } return true; } bool WIZnet_Chip::gethostbyname(const char* host, uint32_t* ip) { uint32_t addr = str_to_ip(host); char buf[17]; snprintf(buf, sizeof(buf), "%d.%d.%d.%d", (addr>>24)&0xff, (addr>>16)&0xff, (addr>>8)&0xff, addr&0xff); if (strcmp(buf, host) == 0) { *ip = addr; return true; } DNSClient client; if(client.lookup(host)) { *ip = client.ip; return true; } return false; } bool WIZnet_Chip::disconnect() { return true; } bool WIZnet_Chip::is_connected(int socket) { /* if (sreg<uint8_t>(socket, Sn_SR) == SOCK_ESTABLISHED) { return true; } */ uint8_t tmpSn_SR; tmpSn_SR = sreg<uint8_t>(socket, Sn_SR); // packet sending is possible, when state is SOCK_CLOSE_WAIT. if ((tmpSn_SR == SOCK_ESTABLISHED) || (tmpSn_SR == SOCK_CLOSE_WAIT)) { return true; } return false; } // Reset the chip & set the buffer void WIZnet_Chip::reset() { #if defined(USE_WIZ550IO_MAC) //read the MAC address inside the module reg_rd_mac(SHAR, mac); #endif // hw reset reset_pin = 1; reset_pin = 0; wait_us(500); // 500us (w5500) reset_pin = 1; wait_ms(400); // 400ms (w5500) #if defined(USE_WIZ550IO_MAC) // write MAC address inside the WZTOE MAC address register reg_wr_mac(SHAR, mac); #endif // set RX and TX buffer size #if 0 for (int socket = 0; socket < MAX_SOCK_NUM; socket++) { sreg<uint8_t>(socket, Sn_RXBUF_SIZE, 2); sreg<uint8_t>(socket, Sn_TXBUF_SIZE, 2); } #endif } bool WIZnet_Chip::close(int socket) { if (socket < 0) { return false; } // if not connected, return if (sreg<uint8_t>(socket, Sn_SR) == SOCK_CLOSED) { return true; } if (sreg<uint8_t>(socket, Sn_MR) == TCP) { scmd(socket, DISCON); } scmd(socket, CLOSE); sreg<uint8_t>(socket, Sn_IR, 0xff); return true; } int WIZnet_Chip::wait_readable(int socket, int wait_time_ms, int req_size) { if (socket < 0) { return -1; } Timer t; t.reset(); t.start(); while(1) { //int size = sreg<uint16_t>(socket, Sn_RX_RSR); // during the reading Sn_RX_RXR, it has the possible change of this register. // so read twice and get same value then use size information. int size, size2; do { size = sreg<uint16_t>(socket, Sn_RX_RSR); size2 = sreg<uint16_t>(socket, Sn_RX_RSR); } while (size != size2); if (size > req_size) { return size; } if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) { break; } } return -1; } int WIZnet_Chip::wait_writeable(int socket, int wait_time_ms, int req_size) { if (socket < 0) { return -1; } Timer t; t.reset(); t.start(); while(1) { //int size = sreg<uint16_t>(socket, Sn_TX_FSR); // during the reading Sn_TX_FSR, it has the possible change of this register. // so read twice and get same value then use size information. int size, size2; do { size = sreg<uint16_t>(socket, Sn_TX_FSR); size2 = sreg<uint16_t>(socket, Sn_TX_FSR); } while (size != size2); if (size > req_size) { return size; } if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) { break; } } return -1; } int WIZnet_Chip::send(int socket, const char * str, int len) { if (socket < 0) { return -1; } uint16_t ptr = sreg<uint16_t>(socket, Sn_TX_WR); uint8_t cntl_byte = (0x14 + (socket << 5)); spi_write(ptr, cntl_byte, (uint8_t*)str, len); sreg<uint16_t>(socket, Sn_TX_WR, ptr + len); scmd(socket, SEND); uint8_t tmp_Sn_IR; while (( (tmp_Sn_IR = sreg<uint8_t>(socket, Sn_IR)) & INT_SEND_OK) != INT_SEND_OK) { // @Jul.10, 2014 fix contant name, and udp sendto function. switch (sreg<uint8_t>(socket, Sn_SR)) { case SOCK_CLOSED : close(socket); return 0; //break; case SOCK_UDP : // ARP timeout is possible. if ((tmp_Sn_IR & INT_TIMEOUT) == INT_TIMEOUT) { sreg<uint8_t>(socket, Sn_IR, INT_TIMEOUT); return 0; } break; default : break; } } /* while ((sreg<uint8_t>(socket, Sn_IR) & INT_SEND_OK) != INT_SEND_OK) { if (sreg<uint8_t>(socket, Sn_SR) == CLOSED) { close(socket); return 0; } } */ sreg<uint8_t>(socket, Sn_IR, INT_SEND_OK); return len; } int WIZnet_Chip::recv(int socket, char* buf, int len) { if (socket < 0) { return -1; } uint16_t ptr = sreg<uint16_t>(socket, Sn_RX_RD); uint8_t cntl_byte = (0x18 + (socket << 5)); spi_read(ptr, cntl_byte, (uint8_t*)buf, len); sreg<uint16_t>(socket, Sn_RX_RD, ptr + len); scmd(socket, RECV); return len; } int WIZnet_Chip::new_socket() { for(int s = 0; s < MAX_SOCK_NUM; s++) { if (sreg<uint8_t>(s, Sn_SR) == SOCK_CLOSED) { return s; } } return -1; } uint16_t WIZnet_Chip::new_port() { uint16_t port = rand(); port |= 49152; return port; } bool WIZnet_Chip::link(int wait_time_ms) { Timer t; t.reset(); t.start(); while(1) { int is_link = ethernet_link(); if (is_link) { return true; } if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) { break; } } return 0; } void WIZnet_Chip::set_link(PHYMode phymode) { int speed = -1; int duplex = 0; switch(phymode) { case AutoNegotiate : speed = -1; duplex = 0; break; case HalfDuplex10 : speed = 0; duplex = 0; break; case FullDuplex10 : speed = 0; duplex = 1; break; case HalfDuplex100 : speed = 1; duplex = 0; break; case FullDuplex100 : speed = 1; duplex = 1; break; } ethernet_set_link(speed, duplex); } void WIZnet_Chip::scmd(int socket, Command cmd) { sreg<uint8_t>(socket, Sn_CR, cmd); while(sreg<uint8_t>(socket, Sn_CR)); } void WIZnet_Chip::spi_write(uint16_t addr, uint8_t cb, const uint8_t *buf, uint16_t len) { cs = 0; spi->write(addr >> 8); spi->write(addr & 0xff); spi->write(cb); for(int i = 0; i < len; i++) { spi->write(buf[i]); } cs = 1; #if DBG_SPI debug("[SPI]W %04x(%02x %d)", addr, cb, len); for(int i = 0; i < len; i++) { debug(" %02x", buf[i]); if (i > 16) { debug(" ..."); break; } } debug("\r\n"); #endif } void WIZnet_Chip::spi_read(uint16_t addr, uint8_t cb, uint8_t *buf, uint16_t len) { cs = 0; spi->write(addr >> 8); spi->write(addr & 0xff); spi->write(cb); for(int i = 0; i < len; i++) { buf[i] = spi->write(0); } cs = 1; #if DBG_SPI debug("[SPI]R %04x(%02x %d)", addr, cb, len); for(int i = 0; i < len; i++) { debug(" %02x", buf[i]); if (i > 16) { debug(" ..."); break; } } debug("\r\n"); if ((addr&0xf0ff)==0x4026 || (addr&0xf0ff)==0x4003) { wait_ms(200); } #endif } uint32_t str_to_ip(const char* str) { uint32_t ip = 0; char* p = (char*)str; for(int i = 0; i < 4; i++) { ip |= atoi(p); p = strchr(p, '.'); if (p == NULL) { break; } ip <<= 8; p++; } return ip; } void printfBytes(char* str, uint8_t* buf, int len) { printf("%s %d:", str, len); for(int i = 0; i < len; i++) { printf(" %02x", buf[i]); } printf("\n"); } void printHex(uint8_t* buf, int len) { for(int i = 0; i < len; i++) { if ((i%16) == 0) { printf("%p", buf+i); } printf(" %02x", buf[i]); if ((i%16) == 15) { printf("\n"); } } printf("\n"); } void debug_hex(uint8_t* buf, int len) { for(int i = 0; i < len; i++) { if ((i%16) == 0) { debug("%p", buf+i); } debug(" %02x", buf[i]); if ((i%16) == 15) { debug("\n"); } } debug("\n"); } int WIZnet_Chip::ethernet_link(void) { int val = getPHYCFGR(); return (val&0x01); } void WIZnet_Chip::ethernet_set_link(int speed, int duplex) { uint32_t val=0; if((speed < 0) || (speed > 1)) { val = (PHYCFGR_OPMDC_ALLA)<<3; } else { val = (((speed&0x01)<<1)+ (duplex&0x01))<<3; } setPHYCFGR((uint8_t)(PHYCFGR_RST&(PHYCFGR_OPMD|val))); wait(0.2); setPHYCFGR((uint8_t)((~PHYCFGR_RST)|(PHYCFGR_OPMD|val))); wait(0.2); } void WIZnet_Chip::reg_rd_mac(uint16_t addr, uint8_t* data) { spi_read(addr, 0x00, data, 6); } void WIZnet_Chip::reg_wr_ip(uint16_t addr, uint8_t cb, const char* ip) { uint8_t buf[4]; char* p = (char*)ip; for(int i = 0; i < 4; i++) { buf[i] = atoi(p); p = strchr(p, '.'); if (p == NULL) { break; } p++; } spi_write(addr, cb, buf, sizeof(buf)); } void WIZnet_Chip::sreg_ip(int socket, uint16_t addr, const char* ip) { reg_wr_ip(addr, (0x0C + (socket << 5)), ip); } void WIZnet_Chip::reg_rd_ip_byte(uint16_t addr, uint8_t* data) { spi_read(addr, 0x00, data, 4); } void WIZnet_Chip::reg_wr_ip_byte(uint16_t addr, uint8_t* data) { spi_write(addr, 0x04, data, 4); } #endif