Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K24F/drivers/fsl_adc16.c
- Committer:
- AnnaBridge
- Date:
- 2017-05-26
- Revision:
- 165:e614a9f1c9e2
File content as of revision 165:e614a9f1c9e2:
/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_adc16.h" /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get instance number for ADC16 module. * * @param base ADC16 peripheral base address */ static uint32_t ADC16_GetInstance(ADC_Type *base); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to ADC16 bases for each instance. */ static ADC_Type *const s_adc16Bases[] = ADC_BASE_PTRS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to ADC16 clocks for each instance. */ static const clock_ip_name_t s_adc16Clocks[] = ADC16_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /******************************************************************************* * Code ******************************************************************************/ static uint32_t ADC16_GetInstance(ADC_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_adc16Bases); instance++) { if (s_adc16Bases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_adc16Bases)); return instance; } void ADC16_Init(ADC_Type *base, const adc16_config_t *config) { assert(NULL != config); uint32_t tmp32; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable the clock. */ CLOCK_EnableClock(s_adc16Clocks[ADC16_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* ADCx_CFG1. */ tmp32 = ADC_CFG1_ADICLK(config->clockSource) | ADC_CFG1_MODE(config->resolution); if (kADC16_LongSampleDisabled != config->longSampleMode) { tmp32 |= ADC_CFG1_ADLSMP_MASK; } tmp32 |= ADC_CFG1_ADIV(config->clockDivider); if (config->enableLowPower) { tmp32 |= ADC_CFG1_ADLPC_MASK; } base->CFG1 = tmp32; /* ADCx_CFG2. */ tmp32 = base->CFG2 & ~(ADC_CFG2_ADACKEN_MASK | ADC_CFG2_ADHSC_MASK | ADC_CFG2_ADLSTS_MASK); if (kADC16_LongSampleDisabled != config->longSampleMode) { tmp32 |= ADC_CFG2_ADLSTS(config->longSampleMode); } if (config->enableHighSpeed) { tmp32 |= ADC_CFG2_ADHSC_MASK; } if (config->enableAsynchronousClock) { tmp32 |= ADC_CFG2_ADACKEN_MASK; } base->CFG2 = tmp32; /* ADCx_SC2. */ tmp32 = base->SC2 & ~(ADC_SC2_REFSEL_MASK); tmp32 |= ADC_SC2_REFSEL(config->referenceVoltageSource); base->SC2 = tmp32; /* ADCx_SC3. */ if (config->enableContinuousConversion) { base->SC3 |= ADC_SC3_ADCO_MASK; } else { base->SC3 &= ~ADC_SC3_ADCO_MASK; } } void ADC16_Deinit(ADC_Type *base) { #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Disable the clock. */ CLOCK_DisableClock(s_adc16Clocks[ADC16_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } void ADC16_GetDefaultConfig(adc16_config_t *config) { assert(NULL != config); config->referenceVoltageSource = kADC16_ReferenceVoltageSourceVref; config->clockSource = kADC16_ClockSourceAsynchronousClock; config->enableAsynchronousClock = true; config->clockDivider = kADC16_ClockDivider8; config->resolution = kADC16_ResolutionSE12Bit; config->longSampleMode = kADC16_LongSampleDisabled; config->enableHighSpeed = false; config->enableLowPower = false; config->enableContinuousConversion = false; } #if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && FSL_FEATURE_ADC16_HAS_CALIBRATION status_t ADC16_DoAutoCalibration(ADC_Type *base) { bool bHWTrigger = false; volatile uint32_t tmp32; /* 'volatile' here is for the dummy read of ADCx_R[0] register. */ status_t status = kStatus_Success; /* The calibration would be failed when in hardwar mode. * Remember the hardware trigger state here and restore it later if the hardware trigger is enabled.*/ if (0U != (ADC_SC2_ADTRG_MASK & base->SC2)) { bHWTrigger = true; base->SC2 &= ~ADC_SC2_ADTRG_MASK; } /* Clear the CALF and launch the calibration. */ base->SC3 |= ADC_SC3_CAL_MASK | ADC_SC3_CALF_MASK; while (0U == (kADC16_ChannelConversionDoneFlag & ADC16_GetChannelStatusFlags(base, 0U))) { /* Check the CALF when the calibration is active. */ if (0U != (kADC16_CalibrationFailedFlag & ADC16_GetStatusFlags(base))) { status = kStatus_Fail; break; } } tmp32 = base->R[0]; /* Dummy read to clear COCO caused by calibration. */ /* Restore the hardware trigger setting if it was enabled before. */ if (bHWTrigger) { base->SC2 |= ADC_SC2_ADTRG_MASK; } /* Check the CALF at the end of calibration. */ if (0U != (kADC16_CalibrationFailedFlag & ADC16_GetStatusFlags(base))) { status = kStatus_Fail; } if (kStatus_Success != status) /* Check if the calibration process is succeed. */ { return status; } /* Calculate the calibration values. */ tmp32 = base->CLP0 + base->CLP1 + base->CLP2 + base->CLP3 + base->CLP4 + base->CLPS; tmp32 = 0x8000U | (tmp32 >> 1U); base->PG = tmp32; #if defined(FSL_FEATURE_ADC16_HAS_DIFF_MODE) && FSL_FEATURE_ADC16_HAS_DIFF_MODE tmp32 = base->CLM0 + base->CLM1 + base->CLM2 + base->CLM3 + base->CLM4 + base->CLMS; tmp32 = 0x8000U | (tmp32 >> 1U); base->MG = tmp32; #endif /* FSL_FEATURE_ADC16_HAS_DIFF_MODE */ return kStatus_Success; } #endif /* FSL_FEATURE_ADC16_HAS_CALIBRATION */ #if defined(FSL_FEATURE_ADC16_HAS_MUX_SELECT) && FSL_FEATURE_ADC16_HAS_MUX_SELECT void ADC16_SetChannelMuxMode(ADC_Type *base, adc16_channel_mux_mode_t mode) { if (kADC16_ChannelMuxA == mode) { base->CFG2 &= ~ADC_CFG2_MUXSEL_MASK; } else /* kADC16_ChannelMuxB. */ { base->CFG2 |= ADC_CFG2_MUXSEL_MASK; } } #endif /* FSL_FEATURE_ADC16_HAS_MUX_SELECT */ void ADC16_SetHardwareCompareConfig(ADC_Type *base, const adc16_hardware_compare_config_t *config) { uint32_t tmp32 = base->SC2 & ~(ADC_SC2_ACFE_MASK | ADC_SC2_ACFGT_MASK | ADC_SC2_ACREN_MASK); if (!config) /* Pass "NULL" to disable the feature. */ { base->SC2 = tmp32; return; } /* Enable the feature. */ tmp32 |= ADC_SC2_ACFE_MASK; /* Select the hardware compare working mode. */ switch (config->hardwareCompareMode) { case kADC16_HardwareCompareMode0: break; case kADC16_HardwareCompareMode1: tmp32 |= ADC_SC2_ACFGT_MASK; break; case kADC16_HardwareCompareMode2: tmp32 |= ADC_SC2_ACREN_MASK; break; case kADC16_HardwareCompareMode3: tmp32 |= ADC_SC2_ACFGT_MASK | ADC_SC2_ACREN_MASK; break; default: break; } base->SC2 = tmp32; /* Load the compare values. */ base->CV1 = ADC_CV1_CV(config->value1); base->CV2 = ADC_CV2_CV(config->value2); } #if defined(FSL_FEATURE_ADC16_HAS_HW_AVERAGE) && FSL_FEATURE_ADC16_HAS_HW_AVERAGE void ADC16_SetHardwareAverage(ADC_Type *base, adc16_hardware_average_mode_t mode) { uint32_t tmp32 = base->SC3 & ~(ADC_SC3_AVGE_MASK | ADC_SC3_AVGS_MASK); if (kADC16_HardwareAverageDisabled != mode) { tmp32 |= ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(mode); } base->SC3 = tmp32; } #endif /* FSL_FEATURE_ADC16_HAS_HW_AVERAGE */ #if defined(FSL_FEATURE_ADC16_HAS_PGA) && FSL_FEATURE_ADC16_HAS_PGA void ADC16_SetPGAConfig(ADC_Type *base, const adc16_pga_config_t *config) { uint32_t tmp32; if (!config) /* Passing "NULL" is to disable the feature. */ { base->PGA = 0U; return; } /* Enable the PGA and set the gain value. */ tmp32 = ADC_PGA_PGAEN_MASK | ADC_PGA_PGAG(config->pgaGain); /* Configure the misc features for PGA. */ if (config->enableRunInNormalMode) { tmp32 |= ADC_PGA_PGALPb_MASK; } #if defined(FSL_FEATURE_ADC16_HAS_PGA_CHOPPING) && FSL_FEATURE_ADC16_HAS_PGA_CHOPPING if (config->disablePgaChopping) { tmp32 |= ADC_PGA_PGACHPb_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_PGA_CHOPPING */ #if defined(FSL_FEATURE_ADC16_HAS_PGA_OFFSET_MEASUREMENT) && FSL_FEATURE_ADC16_HAS_PGA_OFFSET_MEASUREMENT if (config->enableRunInOffsetMeasurement) { tmp32 |= ADC_PGA_PGAOFSM_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_PGA_OFFSET_MEASUREMENT */ base->PGA = tmp32; } #endif /* FSL_FEATURE_ADC16_HAS_PGA */ uint32_t ADC16_GetStatusFlags(ADC_Type *base) { uint32_t ret = 0; if (0U != (base->SC2 & ADC_SC2_ADACT_MASK)) { ret |= kADC16_ActiveFlag; } #if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && FSL_FEATURE_ADC16_HAS_CALIBRATION if (0U != (base->SC3 & ADC_SC3_CALF_MASK)) { ret |= kADC16_CalibrationFailedFlag; } #endif /* FSL_FEATURE_ADC16_HAS_CALIBRATION */ return ret; } void ADC16_ClearStatusFlags(ADC_Type *base, uint32_t mask) { #if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && FSL_FEATURE_ADC16_HAS_CALIBRATION if (0U != (mask & kADC16_CalibrationFailedFlag)) { base->SC3 |= ADC_SC3_CALF_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_CALIBRATION */ } void ADC16_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc16_channel_config_t *config) { assert(channelGroup < ADC_SC1_COUNT); assert(NULL != config); uint32_t sc1 = ADC_SC1_ADCH(config->channelNumber); /* Set the channel number. */ #if defined(FSL_FEATURE_ADC16_HAS_DIFF_MODE) && FSL_FEATURE_ADC16_HAS_DIFF_MODE /* Enable the differential conversion. */ if (config->enableDifferentialConversion) { sc1 |= ADC_SC1_DIFF_MASK; } #endif /* FSL_FEATURE_ADC16_HAS_DIFF_MODE */ /* Enable the interrupt when the conversion is done. */ if (config->enableInterruptOnConversionCompleted) { sc1 |= ADC_SC1_AIEN_MASK; } base->SC1[channelGroup] = sc1; } uint32_t ADC16_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup) { assert(channelGroup < ADC_SC1_COUNT); uint32_t ret = 0U; if (0U != (base->SC1[channelGroup] & ADC_SC1_COCO_MASK)) { ret |= kADC16_ChannelConversionDoneFlag; } return ret; }