mbed
Fork of mbed-dev by
targets/TARGET_NUVOTON/TARGET_NANO100/lp_ticker.c
- Committer:
- AnnaBridge
- Date:
- 2017-10-25
- Revision:
- 177:447f873cad2f
- Parent:
- 175:b96e65c34a4d
File content as of revision 177:447f873cad2f:
/* mbed Microcontroller Library * Copyright (c) 2015-2017 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lp_ticker_api.h" #if DEVICE_LOWPOWERTIMER #include "sleep_api.h" #include "nu_modutil.h" #include "nu_miscutil.h" #include "mbed_critical.h" #include "mbed_wait_api.h" // lp_ticker tick = us = timestamp #define US_PER_TICK (1) #define US_PER_SEC (1000 * 1000) #define US_PER_TMR2_INT (US_PER_SEC * 10) #define TMR2_CLK_PER_SEC (__LXT) #define TMR2_CLK_PER_TMR2_INT ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC)) #define TMR3_CLK_PER_SEC (__LXT) void TMR2_IRQHandler(void); void TMR3_IRQHandler(void); static void lp_ticker_arm_cd(void); static int lp_ticker_inited = 0; static volatile uint32_t counter_major = 0; static volatile uint32_t cd_major_minor_clks = 0; static volatile uint32_t cd_minor_clks = 0; static volatile uint32_t wakeup_tick = (uint32_t) -1; // NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. // NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL2_TMR2_S_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) TMR2_IRQHandler}; static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL2_TMR3_S_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) TMR3_IRQHandler}; #define TMR_CMP_MIN 2 #define TMR_CMP_MAX 0xFFFFFFu void lp_ticker_init(void) { if (lp_ticker_inited) { return; } lp_ticker_inited = 1; counter_major = 0; cd_major_minor_clks = 0; cd_minor_clks = 0; wakeup_tick = (uint32_t) -1; // Reset module SYS_ResetModule(timer2_modinit.rsetidx); SYS_ResetModule(timer3_modinit.rsetidx); // Select IP clock source CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv); CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv); // Enable IP clock CLK_EnableModuleClock(timer2_modinit.clkidx); CLK_EnableModuleClock(timer3_modinit.clkidx); // Configure clock uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname)); uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1; MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127); MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0); uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT; MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX); // Continuous mode ((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE; ((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->PRECNT = prescale_timer2; ((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMPR = cmp_timer2; // Set vector NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var); NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var); NVIC_EnableIRQ(timer2_modinit.irq_n); NVIC_EnableIRQ(timer3_modinit.irq_n); TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname)); TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname)); // NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because // timer is not running. // Wait 3 cycles of engine clock to ensure previous CTL write action is finish nu_nop(SystemCoreClock / __LXT * 3); // Start timer TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname)); // Schedule wakeup to match semantics of lp_ticker_get_compare_match() lp_ticker_set_interrupt(wakeup_tick); } timestamp_t lp_ticker_read() { if (! lp_ticker_inited) { lp_ticker_init(); } TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname); do { uint64_t major_minor_clks; uint32_t minor_clks; // NOTE: As TIMER_DR = TIMER_CMPR and counter_major has increased by one, TIMER_DR doesn't change to 0 for one tick time. // NOTE: As TIMER_DR = TIMER_CMPR or TIMER_DR = 0, counter_major (ISR) may not sync with TIMER_DR. So skip and fetch stable one at the cost of 1 clock delay on this read. do { core_util_critical_section_enter(); // NOTE: Order of reading minor_us/carry here is significant. minor_clks = TIMER_GetCounter(timer2_base); uint32_t carry = (timer2_base->ISR & TIMER_ISR_TMR_IS_Msk) ? 1 : 0; // When TIMER_DR approaches TIMER_CMPR and will wrap soon, we may get carry but TIMER_DR not wrapped. Hanlde carefully carry == 1 && TIMER_DR is near TIMER_CMPR. if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) { major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT; } else { major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks; } core_util_critical_section_exit(); } while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT); // Add power-down compensation return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK); } while (0); } void lp_ticker_set_interrupt(timestamp_t timestamp) { uint32_t delta = timestamp - lp_ticker_read(); wakeup_tick = timestamp; TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC; lp_ticker_arm_cd(); } void lp_ticker_fire_interrupt(void) { cd_major_minor_clks = cd_minor_clks = 0; /** * This event was in the past. Set the interrupt as pending, but don't process it here. * This prevents a recurive loop under heavy load which can lead to a stack overflow. */ NVIC_SetPendingIRQ(timer3_modinit.irq_n); } void lp_ticker_disable_interrupt(void) { TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); } void lp_ticker_clear_interrupt(void) { TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); } void TMR2_IRQHandler(void) { TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname)); TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname)); counter_major ++; } void TMR3_IRQHandler(void) { TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0; if (cd_major_minor_clks == 0) { // NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler(); lp_ticker_irq_handler(); } else { lp_ticker_arm_cd(); } } static void lp_ticker_arm_cd(void) { TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname); // Reset Timer's pre-scale counter, internal 24-bit up-counter and TMR_CTL [TMR_EN] bit timer3_base->CTL |= TIMER_CTL_SW_RST_Msk; // One-shot mode, Clock = 1 KHz uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1; MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127); MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0); uint32_t ctl_timer3 = timer3_base->CTL; ctl_timer3 &= ~TIMER_CTL_MODE_SEL_Msk; ctl_timer3 |= TIMER_ONESHOT_MODE; timer3_base->PRECNT = prescale_timer3; cd_minor_clks = cd_major_minor_clks; cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX); timer3_base->CMPR = cd_minor_clks; TIMER_EnableInt(timer3_base); TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname)); // Wait 2 cycles of engine clock to ensure previous CTL write action is finish wait_us(30 * 2); timer3_base->CTL |= ctl_timer3 | TIMER_CTL_TMR_EN_Msk; } #endif