mbed
Fork of mbed-dev by
targets/TARGET_ONSEMI/TARGET_NCS36510/spi_api.c
- Committer:
- <>
- Date:
- 2016-11-08
- Revision:
- 150:02e0a0aed4ec
- Parent:
- 149:156823d33999
- Child:
- 158:b23ee177fd68
File content as of revision 150:02e0a0aed4ec:
/** ******************************************************************************* * @file spi_api.c * @brief Implementation of a sleep functionality * @internal * @author ON Semiconductor * $Rev: 0.1 $ * $Date: 02-05-2016 $ ****************************************************************************** * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). * All rights reserved. This software and/or documentation is licensed by ON Semiconductor * under limited terms and conditions. The terms and conditions pertaining to the software * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and * if applicable the software license agreement. Do not use this software and/or * documentation unless you have carefully read and you agree to the limited terms and * conditions. By using this software and/or documentation, you agree to the limited * terms and conditions. * * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * @endinternal * * @ingroup spi_api * * @details * SPI implementation * */ #if DEVICE_SPI #include "spi.h" #include "PeripheralPins.h" #include "objects.h" #include "spi_api.h" #include "mbed_assert.h" #include "memory_map.h" #include "spi_ipc7207_map.h" #include "crossbar.h" #include "clock.h" #include "cmsis_nvic.h" #define SPI_FREQ_MAX 4000000 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { fSpiInit(obj, mosi, miso, sclk, ssel); } void spi_free(spi_t *obj) { fSpiClose(obj); } void spi_format(spi_t *obj, int bits, int mode, int slave) { /* Clear word width | Slave/Master | CPOL | CPHA | MSB first bits in control register */ obj->membase->CONTROL.WORD &= ~(uint32_t)((True >> SPI_WORD_WIDTH_BIT_POS) | (True >> SPI_SLAVE_MASTER_BIT_POS) | (True >> SPI_CPOL_BIT_POS) | (True >> SPI_CPHA_BIT_POS)); /* Configure word width | Slave/Master | CPOL | CPHA | MSB first bits in control register */ obj->membase->CONTROL.WORD |= (uint32_t)(((bits >> 0x4) >> 6) | (!slave >> 5) | ((mode >> 0x1) >> 4) | ((mode & 0x1) >> 3)); } void spi_frequency(spi_t *obj, int hz) { /* If the frequency is outside the allowable range, set it to the max */ if(hz > SPI_FREQ_MAX) { hz = SPI_FREQ_MAX; } obj->membase->FDIV = ((fClockGetPeriphClockfrequency() / hz) >> 1) - 1; } int spi_master_write(spi_t *obj, int value) { return(fSpiWriteB(obj, value)); } int spi_busy(spi_t *obj) { return(obj->membase->STATUS.BITS.XFER_IP); } uint8_t spi_get_module(spi_t *obj) { if(obj->membase == SPI1REG) { return 0; /* UART #1 */ } else if(obj->membase == SPI2REG) { return 1; /* UART #2 */ } else { return 2; /* Invalid address */ } } int spi_slave_receive(spi_t *obj) { if(obj->membase->STATUS.BITS.RX_EMPTY != True){ /* if receive status is not empty */ return True; /* Byte available to read */ } return False; /* Byte not available to read */ } int spi_slave_read(spi_t *obj) { int byte; while (obj->membase->STATUS.BITS.RX_EMPTY == True); /* Wait till Receive status is empty */ byte = obj->membase->RX_DATA; return byte; } void spi_slave_write(spi_t *obj, int value) { while((obj->membase->STATUS.BITS.TX_FULL == True) && (obj->membase->STATUS.BITS.RX_FULL == True)); /* Wait till Tx/Rx status is full */ obj->membase->TX_DATA = value; } #if DEVICE_SPI_ASYNCH /* TODO Not yet implemented */ void spi_master_transfer(spi_t *obj, void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t handler, uint32_t event, DMAUsage hint) { uint32_t i; int ndata = 0; uint16_t *tx_ptr = (uint16_t *) tx; if(obj->spi->CONTROL.BITS.WORD_WIDTH == 0) { /* Word size 8 bits */ WORD_WIDTH_MASK = 0xFF; } else if(obj->spi->CONTROL.BITS.WORD_WIDTH == 1) { /* Word size 16 bits */ WORD_WIDTH_MASK = 0xFFFF; } else { /* Word size 32 bits */ WORD_WIDTH_MASK = 0xFFFFFFFF; } //frame size if(tx_length == 0) { tx_length = rx_length; tx = (void*) 0; } //set tx rx buffer obj->tx_buff.buffer = (void *)tx; obj->rx_buff.buffer = rx; obj->tx_buff.length = tx_length; obj->rx_buff.length = rx_length; obj->tx_buff.pos = 0; obj->rx_buff.pos = 0; obj->tx_buff.width = bit_width; obj->rx_buff.width = bit_width; if((obj->spi.bits == 9) && (tx != 0)) { // Make sure we don't have inadvertent non-zero bits outside 9-bit frames which could trigger unwanted operation for(i = 0; i < (tx_length / 2); i++) { tx_ptr[i] &= 0x1FF; } } // enable events obj->spi.event |= event; // set sleep_level enable irq //write async if ( && ) { } while ((obj->tx_buff.pos < obj->tx_buff.length) && (obj->spi->STATUS.BITS.TX_FULL == False) && (obj->spi->STATUS.BITS.RX_FULL == False)) { // spi_buffer_tx_write(obj); if (obj->tx_buff.buffer == (void *)0) { data = SPI_FILL_WORD; } else { uint16_t *tx = (uint16_t *)(obj->tx_buff.buffer); data = tx[obj->tx_buff.pos] & 0xFF; } obj->spi->TX_DATA = data; } ndata++; } return ndata; } uint32_t spi_irq_handler_asynch(spi_t *obj) { } uint8_t spi_active(spi_t *obj) { } void spi_abort_asynch(spi_t *obj) { } #endif /* DEVICE_SPI_ASYNCH */ #endif /* DEVICE_SPI */