mbed

Fork of mbed-dev by mbed official

Revision:
149:156823d33999
Child:
150:02e0a0aed4ec
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_ONSEMI/TARGET_NCS36510/rfAna.c	Fri Oct 28 11:17:30 2016 +0100
@@ -0,0 +1,291 @@
+/**
+******************************************************************************
+* @file rfAna.c
+* @brief Implementation of rfAna hw module functions
+* @internal
+* @author ON Semiconductor
+* $Rev: 3445 $
+* $Date: 2015-06-22 13:51:24 +0530 (Mon, 22 Jun 2015) $
+******************************************************************************
+ * Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
+ * All rights reserved.  This software and/or documentation is licensed by ON Semiconductor
+ * under limited terms and conditions.  The terms and conditions pertaining to the software
+ * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
+ * (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
+ * if applicable the software license agreement.  Do not use this software and/or
+ * documentation unless you have carefully read and you agree to the limited terms and
+ * conditions.  By using this software and/or documentation, you agree to the limited
+ * terms and conditions.
+*
+* THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
+* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
+* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
+* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
+* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
+* @endinternal
+*
+* @ingroup rfAna
+*
+* @details
+*
+* <h1> Reference document(s) </h1>
+*/
+
+/*************************************************************************************************
+*                                                                                                *
+*  Header files                                                                                  *
+*                                                                                                *
+*************************************************************************************************/
+
+#include "memory_map.h"
+#include "rfAna.h"
+#include "clock.h"
+
+#ifdef REVA
+#include "test.h"
+#endif
+
+/*************************************************************************************************
+*                                                                                                *
+*  Global variables                                                                              *
+*                                                                                                *
+*************************************************************************************************/
+
+/** Rf channel and tx power lookup tables (constant)
+ * @details
+ *
+ * The rf channel table is used to program internal hardware register for different 15.4 rf channels.
+ * It has 16 entries corresponding to 16 15.4 channels.
+ *    Entry 1 <-> Channel 11
+ *    ...
+ *    Entry 16 <-> Channel 26
+ *
+ * Each entry is compound of 4 items.
+ *       Item 0: Rx Frequency integer divide portion
+ *       Item 1: Rx Frequency fractional divide portion
+ *       Item 2: Tx Frequency integer divide portion
+ *       Item 3: Tx Frequency fractional divide portion
+ *
+ * The tx power table is used to program internal hardware register for different 15.4 tx power levels.
+ * It has 43 entries corresponding to tx power levels from -32dBm to +10dBm.
+ *    Entry 1 <-> -32dB
+ *    Entry 2 <-> -31dB
+ *    ...
+ *    Entry 2 <-> 9dB
+ *    Entry 43 <-> +10dB
+ *
+ * Each entry is compound of 1 byte.
+ */
+
+// RR: Making high side injection changes to RevD
+#ifdef REVD
+
+/** This rf LUT is built for high side injection, using low side injection
+ * would requiere to change this LUT. */
+const uint32_t rfLut[16][4] =  {{0x50,0x00D4A7,0x4B,0x00A000},
+    {0x50,0x017F52,0x4B,0x014001},
+    {0x51,0xFE29FB,0x4B,0x01E001},
+    {0x51,0xFED4A6,0x4C,0xFE7FFF},
+    {0x51,0xFF7F51,0x4C,0xFF1FFF},
+    {0x51,0x0029FC,0x4C,0xFFC000},
+    {0x51,0x00D4A7,0x4C,0x006000},
+    {0x51,0x017F52,0x4C,0x010001},
+    {0x52,0xFE29FB,0x4C,0x01A001},
+    {0x52,0xFED4A6,0x4D,0xFE3FFF},
+    {0x52,0xFF7F51,0x4D,0xFEDFFF},
+    {0x52,0x0029FC,0x4D,0xFF8000},
+    {0x52,0x00D4A7,0x4D,0x002000},
+    {0x52,0x017F52,0x4D,0x00C001},
+    {0x53,0xFE29FB,0x4D,0x016001},
+    {0x53,0xFED4A6,0x4E,0xFDFFFE}
+};
+
+const uint8_t txPowerLut[43]  =  {0,0,0, // -32dBm to -30dBm
+                                  0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
+                                  0,0,0,0,0,0,0,0,1,2, // -19dBm to -10dBm
+                                  3,4,5,6,7,8,9,10,11,12, // -9dBm to 0dBm
+                                  13,14,15,16,17,18,19,20,20,20
+                                 }; // +1dBm to +10 dBm
+
+#endif /* REVD */
+
+#ifdef REVC
+/** This rf LUT is built for low side injection, using high side injection
+ * would requiere to change this LUT. */
+const uint32_t rfLut[16][4] =  {{0x47,0xFF15FC,0x4B,0x00A000},
+    {0x47,0xFFAC93,0x4B,0x014001},
+    {0x47,0x00432A,0x4B,0x01E001},
+    {0x47,0x00D9C1,0x4C,0xFE7FFF},
+    {0x47,0x017058,0x4C,0xFF1FFF},
+    {0x48,0xFE06EC,0x4C,0xFFC000},
+    {0x48,0xFE9D83,0x4C,0x006000},
+    {0x48,0xFF341A,0x4C,0x010001},
+    {0x48,0xFFCAB1,0x4C,0x01A001},
+    {0x48,0x006148,0x4D,0xFE3FFF},
+    {0x48,0x00F7DF,0x4D,0xFEDFFF},
+    {0x48,0x018E76,0x4D,0xFF8000},
+    {0x49,0xFE250A,0x4D,0x002000},
+    {0x49,0xFEBBA1,0x4D,0x00C001},
+    {0x49,0xFF5238,0x4D,0x016001},
+    {0x49,0xFFE8CF,0x4E,0xFDFFFE}
+};
+
+const uint8_t txPowerLut[43]  =  {0,0,0, // -32dBm to -30dBm
+                                  0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
+                                  0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB)
+                                  3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm
+                                  17,19,20,20,20,20,20,20,20,20
+                                 }; // +1dBm to +10 dBm (clamp high at +3dB)
+#endif /* REVC */
+
+#ifdef REVB
+/** This rf LUT is built for low side injection, using high side injection
+ * would requiere to change this LUT. */
+const uint32_t rfLut[16][4] =  {{0x47,0xFF15FC,0x4B,0x00A000},
+    {0x47,0xFFAC93,0x4B,0x014001},
+    {0x47,0x00432A,0x4B,0x01E001},
+    {0x47,0x00D9C1,0x4C,0xFE7FFF},
+    {0x47,0x017058,0x4C,0xFF1FFF},
+    {0x48,0xFE06EC,0x4C,0xFFC000},
+    {0x48,0xFE9D83,0x4C,0x006000},
+    {0x48,0xFF341A,0x4C,0x010001},
+    {0x48,0xFFCAB1,0x4C,0x01A001},
+    {0x48,0x006148,0x4D,0xFE3FFF},
+    {0x48,0x00F7DF,0x4D,0xFEDFFF},
+    {0x48,0x018E76,0x4D,0xFF8000},
+    {0x49,0xFE250A,0x4D,0x002000},
+    {0x49,0xFEBBA1,0x4D,0x00C001},
+    {0x49,0xFF5238,0x4D,0x016001},
+    {0x49,0xFFE8CF,0x4E,0xFDFFFE}
+};
+
+const uint8_t txPowerLut[43]  =  {0,0,0, // -32dBm to -30dBm
+                                  0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
+                                  0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB)
+                                  3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm
+                                  17,19,20,20,20,20,20,20,20,20
+                                 }; // +1dBm to +10 dBm (clamp high at +3dB)
+#endif
+
+#ifdef REVA
+const uint32_t rfLut[16][4] =  {{0x57,0xFF5D2F,0x51,0x018001},
+    {0x57,0x0007DA,0x52,0xFE1FFF},
+    {0x57,0x00B285,0x52,0xFEBFFF},
+    {0x57,0x015D30,0x52,0xFF6000},
+    {0x58,0xFE07D8,0x52,0x000000},
+    {0x58,0xFEB283,0x52,0x00A000},
+    {0x58,0xFF5D2F,0x52,0x014001},
+    {0x58,0x0007DA,0x52,0x01E001},
+    {0x58,0x00B285,0x53,0xFE7FFF},
+    {0x58,0x015D30,0x53,0xFF1FFF},
+    {0x59,0xFE07D8,0x53,0xFFC000},
+    {0x59,0xFEB283,0x53,0x006000},
+    {0x59,0xFF5D2F,0x53,0x010001},
+    {0x59,0x0007DA,0x53,0x01A001},
+    {0x59,0x00B285,0x53,0xFE3FFF},
+    {0x59,0x015D30,0x53,0xFEDFFF}
+};
+
+const uint8_t txPowerLut[43]  =  {1,2,3, // -32dBm to -30dBm
+                                  4,5,5,5,5,5,5,5,5,5, // -29dBm to -20dBm (clamp at -28dB)
+                                  5,5,5,5,5,5,5,5,5,5, // -19dBm to -10dBm
+                                  5,5,5,5,5,5,5,5,5,5, // -9dBm to 0dBm
+                                  5,5,5,5,5,5,5,5,5,5
+                                 }; // +1dBm to +10 dBm
+#endif
+
+/*************************************************************************************************
+*                                                                                                *
+*  Functions                                                                                     *
+*                                                                                                *
+*************************************************************************************************/
+
+void fRfAnaInit()
+{
+    // Enable rfana clock
+    CLOCK_ENABLE(CLOCK_RFANA);
+
+#ifdef REVA
+    // Force Pll lock (it shouldn't be needed for either silicon if the part is configured/trimmed properly)
+    fTestForcePllLock();
+    // Bypass Pll regulator
+    fTestBypassPllReg();
+#endif
+
+    // Set PLL timing
+    RFANAREG->PLL_TIMING.BITS.PLL_RESET_TIME = 0x1E; // 30us
+    RFANAREG->PLL_TIMING.BITS.PLL_LOCK_TIME = 0x2F; // 47us
+
+    // Set other parameters
+    RFANAREG->RX_CONTROL.BITS.LNA_GAIN_MODE = 0x1; // High Gain mode
+    RFANAREG->RX_CONTROL.BITS.ADC_DITHER_MODE = 0x0; // Dither mode disabled
+}
+
+boolean fRfAnaIoctl (uint32_t request, void *argument)
+{
+    uint8_t channel, txPower;
+
+    // Enable rfana clock (in case fRfAnaIoctl is used before call of fRfAnaInit)
+    CLOCK_ENABLE(CLOCK_RFANA);
+
+    switch(request) {
+        case SET_RF_CHANNEL:
+            channel = *(uint8_t*)argument;
+
+            // Set tx/rx integer/fractional divide portions
+            RFANAREG->TX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][3];
+            RFANAREG->TX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][2];
+            RFANAREG->RX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][1];
+            RFANAREG->RX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][0];
+
+            // Set tx/rx vco trims
+#ifdef REVB
+            /** REVB is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
+             * from trims stored in flash A, it has the drawback that it is not workable when flash A is not accessible.*/
+            if (channel < 19) {
+                RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT1.WORD) >> ((channel - 11) * 4);
+                RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT1.WORD) >> ((channel - 11) * 4);
+            } else {
+                RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT2.WORD) >> ((channel - 19) * 4);
+                RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT2.WORD) >> ((channel - 19) * 4);
+            }
+#endif /* REVB */
+#ifdef REVC
+            /** REVC is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
+             * from trims stored in dedicated registers available in digital.*/
+            if (channel < 19) {
+                RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
+                RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
+            } else {
+                RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
+                RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
+            }
+#endif /* REVC */
+#ifdef REVD
+            /** REVD is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
+             * from trims stored in dedicated registers available in digital.*/
+            if (channel < 19) {
+                RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
+                RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
+            } else {
+                RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
+                RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
+            }
+#endif /* REVD */
+            break;
+        case SET_TX_POWER:
+            txPower = *(uint8_t*)argument;
+
+            // Set tx power register
+            if ((txPower & 0x20) == 0) {
+                RFANAREG->TX_POWER = (txPowerLut[txPower + 32] & 0xFF);
+            } else {
+                RFANAREG->TX_POWER = (txPowerLut[txPower - 32] & 0xFF);
+            }
+
+            break;
+        default:
+            return False;
+    }
+    return True;
+}