mbed

Fork of mbed-dev by mbed official

Committer:
AnnaBridge
Date:
Wed Jun 21 17:46:44 2017 +0100
Revision:
167:e84263d55307
Parent:
150:02e0a0aed4ec
Child:
175:b96e65c34a4d
This updates the lib to the mbed lib v 145

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 149:156823d33999 1 /**
<> 149:156823d33999 2 *******************************************************************************
<> 149:156823d33999 3 * @file rtc.c
<> 149:156823d33999 4 * @brief Implementation of a Rtc driver
<> 149:156823d33999 5 * @internal
<> 149:156823d33999 6 * @author ON Semiconductor
<> 149:156823d33999 7 * $Rev: 3525 $
<> 149:156823d33999 8 * $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $
<> 149:156823d33999 9 ******************************************************************************
AnnaBridge 167:e84263d55307 10 * Copyright 2016 Semiconductor Components Industries LLC (d/b/a �ON Semiconductor�).
<> 149:156823d33999 11 * All rights reserved. This software and/or documentation is licensed by ON Semiconductor
<> 149:156823d33999 12 * under limited terms and conditions. The terms and conditions pertaining to the software
<> 149:156823d33999 13 * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
AnnaBridge 167:e84263d55307 14 * (�ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software�) and
<> 149:156823d33999 15 * if applicable the software license agreement. Do not use this software and/or
<> 149:156823d33999 16 * documentation unless you have carefully read and you agree to the limited terms and
<> 149:156823d33999 17 * conditions. By using this software and/or documentation, you agree to the limited
<> 149:156823d33999 18 * terms and conditions.
<> 149:156823d33999 19 *
<> 149:156823d33999 20 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
<> 149:156823d33999 21 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
<> 149:156823d33999 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
<> 149:156823d33999 23 * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
<> 149:156823d33999 24 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
<> 149:156823d33999 25 * @endinternal
<> 149:156823d33999 26 *
<> 149:156823d33999 27 * @ingroup rtc
<> 149:156823d33999 28 *
<> 149:156823d33999 29 * @details
<> 149:156823d33999 30 * A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of
<> 149:156823d33999 31 * freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of
<> 149:156823d33999 32 * the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours
<> 149:156823d33999 33 * enable pulse, etc.Note that all Counter registers are in an undefined state on power-up.
<> 149:156823d33999 34 * Use the Reset bit in the Control Register to reset the counters to their default values.
<> 149:156823d33999 35 * DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used
<> 149:156823d33999 36 * internally to time the incrementing of the Seconds Counter.
<> 149:156823d33999 37 * There is a set of register to set the values in the counter for each time unit.from where time is start to increment.
<> 149:156823d33999 38 * There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that
<> 149:156823d33999 39 * is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match.
<> 149:156823d33999 40 * There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or
<> 149:156823d33999 41 * if the alarm occurs upon a Counter increment condition.
<> 149:156823d33999 42 *
<> 149:156823d33999 43 */
<> 149:156823d33999 44 #include "rtc.h"
<> 149:156823d33999 45 #include "mbed_assert.h"
<> 150:02e0a0aed4ec 46 #include "lp_ticker_api.h"
<> 149:156823d33999 47
AnnaBridge 167:e84263d55307 48 static volatile uint64_t last_time_read;
AnnaBridge 167:e84263d55307 49
AnnaBridge 167:e84263d55307 50 /**
AnnaBridge 167:e84263d55307 51 * Convert sub seconds ticks to micro seconds.
AnnaBridge 167:e84263d55307 52 * The clock running at 32kHz, a tick is 1/32768 of a second.
AnnaBridge 167:e84263d55307 53 */
AnnaBridge 167:e84263d55307 54 static inline uint32_t ticks_to_us(uint16_t ticks) {
AnnaBridge 167:e84263d55307 55 return (((uint64_t)ticks * RTC_SEC_TO_US) / RTC_CLOCK_HZ);
AnnaBridge 167:e84263d55307 56 }
AnnaBridge 167:e84263d55307 57
AnnaBridge 167:e84263d55307 58 /**
AnnaBridge 167:e84263d55307 59 * Convert us into sub seconds ticks.
AnnaBridge 167:e84263d55307 60 * @note result might be troncated to be in the range [0 - RTC_SUB_SEC_MASK].
AnnaBridge 167:e84263d55307 61 */
AnnaBridge 167:e84263d55307 62 static inline uint16_t us_to_ticks(uint32_t us) {
AnnaBridge 167:e84263d55307 63 return (((uint64_t) us * RTC_CLOCK_HZ) / RTC_SEC_TO_US) & RTC_SUB_SEC_MASK;
AnnaBridge 167:e84263d55307 64 }
AnnaBridge 167:e84263d55307 65
AnnaBridge 167:e84263d55307 66 #define RTC_TICK_THRESHOLD 5
<> 149:156823d33999 67
<> 149:156823d33999 68 /* See rtc.h for details */
<> 149:156823d33999 69 void fRtcInit(void)
<> 149:156823d33999 70 {
<> 149:156823d33999 71 CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */
<> 149:156823d33999 72 CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */
<> 149:156823d33999 73
<> 149:156823d33999 74 /* Reset RTC control register */
AnnaBridge 167:e84263d55307 75 RTCREG->CONTROL.WORD = 0;
<> 149:156823d33999 76
<> 149:156823d33999 77 /* Initialize all counters */
AnnaBridge 167:e84263d55307 78 RTCREG->SECOND_COUNTER = 0;
AnnaBridge 167:e84263d55307 79 RTCREG->SUB_SECOND_COUNTER = 0;
AnnaBridge 167:e84263d55307 80 RTCREG->SECOND_ALARM = 0;
AnnaBridge 167:e84263d55307 81 RTCREG->SUB_SECOND_ALARM = 0;
AnnaBridge 167:e84263d55307 82 last_time_read = 0;
<> 149:156823d33999 83
<> 149:156823d33999 84 /* Reset RTC Status register */
AnnaBridge 167:e84263d55307 85 RTCREG->STATUS.WORD = 0;
<> 149:156823d33999 86
<> 149:156823d33999 87 /* Clear interrupt status */
AnnaBridge 167:e84263d55307 88 RTCREG->INT_CLEAR.WORD = (
AnnaBridge 167:e84263d55307 89 (1 << RTC_INT_CLR_SUB_SEC_BIT_POS) |
AnnaBridge 167:e84263d55307 90 (1 << RTC_INT_CLR_SEC_BIT_POS)
AnnaBridge 167:e84263d55307 91 );
<> 149:156823d33999 92
AnnaBridge 167:e84263d55307 93 /* Wait previous write to complete */
AnnaBridge 167:e84263d55307 94 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);
<> 149:156823d33999 95 /* Start sec & sub_sec counter */
AnnaBridge 167:e84263d55307 96 RTCREG->CONTROL.WORD |= (
AnnaBridge 167:e84263d55307 97 (True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
AnnaBridge 167:e84263d55307 98 (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)
AnnaBridge 167:e84263d55307 99 );
<> 149:156823d33999 100
<> 149:156823d33999 101 /* enable interruption associated with the rtc at NVIC level */
AnnaBridge 167:e84263d55307 102 NVIC_SetVector(Rtc_IRQn,(uint32_t) fRtcHandler); /* TODO define lp_ticker_isr */
<> 149:156823d33999 103 NVIC_ClearPendingIRQ(Rtc_IRQn);
<> 149:156823d33999 104 NVIC_EnableIRQ(Rtc_IRQn);
<> 149:156823d33999 105
AnnaBridge 167:e84263d55307 106 /* Wait for RTC to finish writing register */
AnnaBridge 167:e84263d55307 107 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);
<> 149:156823d33999 108 }
<> 149:156823d33999 109
<> 149:156823d33999 110 /* See rtc.h for details */
<> 149:156823d33999 111 void fRtcFree(void)
<> 149:156823d33999 112 {
AnnaBridge 167:e84263d55307 113 /* Disable interrupts and counter */
AnnaBridge 167:e84263d55307 114 RTCREG->CONTROL.WORD = 0;
<> 149:156823d33999 115
<> 149:156823d33999 116 /* disable interruption associated with the rtc */
<> 149:156823d33999 117 NVIC_DisableIRQ(Rtc_IRQn);
<> 149:156823d33999 118
AnnaBridge 167:e84263d55307 119 /* Wait for RTC to finish writing register */
AnnaBridge 167:e84263d55307 120 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);
<> 149:156823d33999 121 }
<> 149:156823d33999 122
<> 149:156823d33999 123 /* See rtc.h for details */
<> 149:156823d33999 124 void fRtcSetInterrupt(uint32_t timestamp)
<> 149:156823d33999 125 {
AnnaBridge 167:e84263d55307 126 uint64_t current_time = fRtcRead();
<> 149:156823d33999 127
AnnaBridge 167:e84263d55307 128 /* compute delta between current time and timestamp.
AnnaBridge 167:e84263d55307 129 * Note: the current time used to compute the delta is relative (truncated
AnnaBridge 167:e84263d55307 130 * to 32 bits).
AnnaBridge 167:e84263d55307 131 */
AnnaBridge 167:e84263d55307 132 int32_t delta = timestamp - (uint32_t) current_time;
AnnaBridge 167:e84263d55307 133 if (delta <= 0) {
AnnaBridge 167:e84263d55307 134 // event considered in the past, set the interrupt as pending.
AnnaBridge 167:e84263d55307 135 NVIC_SetPendingIRQ(Rtc_IRQn);
AnnaBridge 167:e84263d55307 136 return;
AnnaBridge 167:e84263d55307 137 }
<> 149:156823d33999 138
AnnaBridge 167:e84263d55307 139 uint64_t full_timestamp = (current_time & ~UINT32_MAX) | timestamp;
AnnaBridge 167:e84263d55307 140 if ( (uint32_t)current_time > timestamp) {
AnnaBridge 167:e84263d55307 141 full_timestamp += ((uint64_t) UINT32_MAX) + 1;
AnnaBridge 167:e84263d55307 142 }
<> 149:156823d33999 143
AnnaBridge 167:e84263d55307 144 uint32_t target_seconds = full_timestamp / RTC_SEC_TO_US;
AnnaBridge 167:e84263d55307 145 uint16_t target_ticks = us_to_ticks(full_timestamp);
<> 149:156823d33999 146
AnnaBridge 167:e84263d55307 147 /*
AnnaBridge 167:e84263d55307 148 * If the interrupt is in more than one second from now then use the
AnnaBridge 167:e84263d55307 149 * second alarm, otherwise use the subsecond alarm.
AnnaBridge 167:e84263d55307 150 * In case of the second alarm is used, there is no need to preserve the
AnnaBridge 167:e84263d55307 151 * remaining subsecond because the irq handler should manage spurious
AnnaBridge 167:e84263d55307 152 * interrupts (like when the timestamp is in the past). In such case, irq
AnnaBridge 167:e84263d55307 153 * handler will schedule a new interrupt with the remaining us.
AnnaBridge 167:e84263d55307 154 */
AnnaBridge 167:e84263d55307 155 NVIC_DisableIRQ(Rtc_IRQn);
AnnaBridge 167:e84263d55307 156 if (target_seconds != RTCREG->SECOND_COUNTER) {
AnnaBridge 167:e84263d55307 157 RTCREG->SECOND_ALARM = target_seconds;
<> 149:156823d33999 158
AnnaBridge 167:e84263d55307 159 uint32_t rtc_control = RTCREG->CONTROL.WORD;
AnnaBridge 167:e84263d55307 160 rtc_control |= (1 << RTC_CONTROL_SEC_CNT_INT_BIT_POS); // enable seconds interrupt
AnnaBridge 167:e84263d55307 161 rtc_control &= ~(1 << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); // disable sub sec interrupt
AnnaBridge 167:e84263d55307 162 RTCREG->CONTROL.WORD = rtc_control;
AnnaBridge 167:e84263d55307 163 } else {
AnnaBridge 167:e84263d55307 164 uint16_t current_ticks = RTCREG->SUB_SECOND_COUNTER;
AnnaBridge 167:e84263d55307 165 if (current_ticks == target_ticks ||
AnnaBridge 167:e84263d55307 166 ((target_ticks > current_ticks) && ((target_ticks - current_ticks) < RTC_TICK_THRESHOLD)) ||
AnnaBridge 167:e84263d55307 167 ((target_ticks < current_ticks) && ((RTC_SUB_SEC_MASK - (current_ticks - target_ticks)) < RTC_TICK_THRESHOLD))) {
AnnaBridge 167:e84263d55307 168 // target ticks too close; schedule the interrupt immediately
AnnaBridge 167:e84263d55307 169 NVIC_SetPendingIRQ(Rtc_IRQn);
AnnaBridge 167:e84263d55307 170 } else {
AnnaBridge 167:e84263d55307 171 RTCREG->SUB_SECOND_ALARM = target_ticks;
AnnaBridge 167:e84263d55307 172
AnnaBridge 167:e84263d55307 173 uint32_t rtc_control = RTCREG->CONTROL.WORD;
AnnaBridge 167:e84263d55307 174 rtc_control &= ~(1 << RTC_CONTROL_SEC_CNT_INT_BIT_POS); // disable seconds interrupt
AnnaBridge 167:e84263d55307 175 rtc_control |= (1 << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); // enable sub sec interrupt
AnnaBridge 167:e84263d55307 176 RTCREG->CONTROL.WORD = rtc_control;
AnnaBridge 167:e84263d55307 177 }
AnnaBridge 167:e84263d55307 178 }
AnnaBridge 167:e84263d55307 179 NVIC_EnableIRQ(Rtc_IRQn);
AnnaBridge 167:e84263d55307 180
AnnaBridge 167:e84263d55307 181 /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
AnnaBridge 167:e84263d55307 182 while(RTCREG->STATUS.WORD &
AnnaBridge 167:e84263d55307 183 (
AnnaBridge 167:e84263d55307 184 (True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
AnnaBridge 167:e84263d55307 185 (True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) |
AnnaBridge 167:e84263d55307 186 (True << RTC_STATUS_CONTROL_WRT_BIT_POS)
AnnaBridge 167:e84263d55307 187 )
AnnaBridge 167:e84263d55307 188 );
<> 149:156823d33999 189 }
<> 149:156823d33999 190
<> 149:156823d33999 191 /* See rtc.h for details */
<> 149:156823d33999 192 void fRtcDisableInterrupt(void)
<> 149:156823d33999 193 {
<> 150:02e0a0aed4ec 194 NVIC_DisableIRQ(Rtc_IRQn);
<> 149:156823d33999 195 }
<> 149:156823d33999 196
<> 149:156823d33999 197 /* See rtc.h for details */
<> 149:156823d33999 198 void fRtcEnableInterrupt(void)
<> 149:156823d33999 199 {
<> 150:02e0a0aed4ec 200 NVIC_EnableIRQ(Rtc_IRQn);
<> 149:156823d33999 201 }
<> 149:156823d33999 202
<> 149:156823d33999 203 /* See rtc.h for details */
<> 149:156823d33999 204 void fRtcClearInterrupt(void)
<> 149:156823d33999 205 {
<> 149:156823d33999 206 /* Disable subsec/sec interrupt */
<> 149:156823d33999 207 /* Clear sec & sub_sec interrupts */
<> 149:156823d33999 208 RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
<> 149:156823d33999 209 (True << RTC_INT_CLR_SEC_BIT_POS));
<> 150:02e0a0aed4ec 210
<> 150:02e0a0aed4ec 211 while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
AnnaBridge 167:e84263d55307 212 (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS)))); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
<> 149:156823d33999 213 }
<> 149:156823d33999 214
<> 149:156823d33999 215 /* See rtc.h for details */
<> 149:156823d33999 216 uint64_t fRtcRead(void)
<> 149:156823d33999 217 {
<> 149:156823d33999 218 /* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter.
<> 149:156823d33999 219 * That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented
<> 149:156823d33999 220 * and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure.
<> 149:156823d33999 221 * If you read a zero in the sub-second counter then increment the second counter by 1.
<> 149:156823d33999 222 * Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover.
<> 149:156823d33999 223 */
AnnaBridge 167:e84263d55307 224 uint32_t seconds = RTCREG->SECOND_COUNTER;
AnnaBridge 167:e84263d55307 225 uint16_t ticks = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK;
<> 149:156823d33999 226
AnnaBridge 167:e84263d55307 227 /*
AnnaBridge 167:e84263d55307 228 * If seconds has changed while reading ticks, read them both again.
AnnaBridge 167:e84263d55307 229 */
AnnaBridge 167:e84263d55307 230 while (seconds != RTCREG->SECOND_COUNTER) {
AnnaBridge 167:e84263d55307 231 seconds = RTCREG->SECOND_COUNTER;
AnnaBridge 167:e84263d55307 232 ticks = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK;
AnnaBridge 167:e84263d55307 233 }
<> 149:156823d33999 234
AnnaBridge 167:e84263d55307 235 uint64_t current_time = ((uint64_t) seconds * RTC_SEC_TO_US) + ticks_to_us(ticks);
<> 149:156823d33999 236
<> 149:156823d33999 237 /*check that the time did not go backwards */
AnnaBridge 167:e84263d55307 238 MBED_ASSERT(current_time >= last_time_read);
AnnaBridge 167:e84263d55307 239 last_time_read = current_time;
<> 149:156823d33999 240
AnnaBridge 167:e84263d55307 241 return current_time;
<> 149:156823d33999 242 }
<> 149:156823d33999 243
<> 149:156823d33999 244 /* See rtc.h for details */
<> 149:156823d33999 245 void fRtcWrite(uint64_t RtcTimeus)
<> 149:156823d33999 246 {
<> 150:02e0a0aed4ec 247 uint32_t Second = False;
<> 150:02e0a0aed4ec 248 uint16_t SubSecond = False;
<> 149:156823d33999 249 /* Stop RTC */
<> 149:156823d33999 250 RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
<> 149:156823d33999 251 (True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
<> 149:156823d33999 252
<> 149:156823d33999 253 if(RtcTimeus > RTC_SEC_TO_US) {
<> 149:156823d33999 254 /* TimeStamp is big enough to set second counter */
<> 149:156823d33999 255 Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK);
<> 149:156823d33999 256 }
<> 149:156823d33999 257 RTCREG->SECOND_COUNTER = Second;
<> 149:156823d33999 258 RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US);
<> 149:156823d33999 259 if(RtcTimeus > False) {
<> 149:156823d33999 260 /* Convert TimeStamp to sub_seconds */
<> 149:156823d33999 261 SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK;
<> 149:156823d33999 262 }
<> 149:156823d33999 263 /* Set SUB_SEC_ALARM */
<> 149:156823d33999 264 RTCREG->SUB_SECOND_COUNTER = SubSecond;
<> 149:156823d33999 265
<> 149:156823d33999 266 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
<> 149:156823d33999 267 /* Start RTC */
<> 149:156823d33999 268 RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
<> 149:156823d33999 269 (True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
<> 149:156823d33999 270
<> 149:156823d33999 271 while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
<> 149:156823d33999 272 }
<> 149:156823d33999 273
<> 149:156823d33999 274 /* See rtc.h for details */
<> 149:156823d33999 275 void fRtcHandler(void)
<> 149:156823d33999 276 {
<> 149:156823d33999 277 /* Disable RTC interrupt */
<> 149:156823d33999 278 NVIC_DisableIRQ(Rtc_IRQn);
<> 149:156823d33999 279
<> 149:156823d33999 280 /* Clear sec & sub_sec interrupts */
AnnaBridge 167:e84263d55307 281 RTCREG->INT_CLEAR.WORD = (
AnnaBridge 167:e84263d55307 282 (True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
AnnaBridge 167:e84263d55307 283 (True << RTC_INT_CLR_SEC_BIT_POS)
AnnaBridge 167:e84263d55307 284 );
<> 149:156823d33999 285
AnnaBridge 167:e84263d55307 286 /* Disable sub seconds and seconds interrupts */
AnnaBridge 167:e84263d55307 287 RTCREG->CONTROL.WORD &= ~(
AnnaBridge 167:e84263d55307 288 (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
AnnaBridge 167:e84263d55307 289 (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS)
AnnaBridge 167:e84263d55307 290 );
<> 149:156823d33999 291
<> 149:156823d33999 292 NVIC_EnableIRQ(Rtc_IRQn);
<> 149:156823d33999 293
AnnaBridge 167:e84263d55307 294 /* Wait for RTC to finish writing registers */
AnnaBridge 167:e84263d55307 295 while(RTCREG->STATUS.WORD &
AnnaBridge 167:e84263d55307 296 (
AnnaBridge 167:e84263d55307 297 (True << RTC_STATUS_CONTROL_WRT_BIT_POS) |
AnnaBridge 167:e84263d55307 298 (True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
AnnaBridge 167:e84263d55307 299 (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS)
AnnaBridge 167:e84263d55307 300 )
AnnaBridge 167:e84263d55307 301 );
<> 149:156823d33999 302
<> 149:156823d33999 303 lp_ticker_irq_handler();
<> 149:156823d33999 304 }
<> 149:156823d33999 305
<> 149:156823d33999 306 boolean fIsRtcEnabled(void)
<> 149:156823d33999 307 {
<> 149:156823d33999 308 if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) {
<> 149:156823d33999 309 return True;
<> 149:156823d33999 310 } else {
<> 149:156823d33999 311 return False;
<> 149:156823d33999 312 }
<> 149:156823d33999 313 }