Ethernet for the NUCLEO STM32F746 Board Testprogram uses DHCP and NTP to set the clock. At the moment there are dependencies to the used compiler. It works with the online compiler

Dependencies:   F7_Ethernet mbed

mbed-rtos/rtos/Thread.cpp

Committer:
DieterGraef
Date:
2016-06-23
Revision:
2:bcf5290d42bf
Parent:
0:f9b6112278fe

File content as of revision 2:bcf5290d42bf:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2012 ARM Limited
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "Thread.h"

#include "mbed_error.h"
#include "rtos_idle.h"

// rt_tid2ptcb is an internal function which we exposed to get TCB for thread id
#undef NULL  //Workaround for conflicting macros in rt_TypeDef.h and stdio.h
#include "rt_TypeDef.h"

extern "C" P_TCB rt_tid2ptcb(osThreadId thread_id);

namespace rtos {

Thread::Thread(void (*task)(void const *argument), void *argument,
        osPriority priority, uint32_t stack_size, unsigned char *stack_pointer) {
#if defined(__MBED_CMSIS_RTOS_CA9) || defined(__MBED_CMSIS_RTOS_CM)
    _thread_def.pthread = task;
    _thread_def.tpriority = priority;
    _thread_def.stacksize = stack_size;
    if (stack_pointer != NULL) {
        _thread_def.stack_pointer = (uint32_t*)stack_pointer;
        _dynamic_stack = false;
    } else {
        _thread_def.stack_pointer = new uint32_t[stack_size/sizeof(uint32_t)];
        if (_thread_def.stack_pointer == NULL)
            error("Error allocating the stack memory\n");
        _dynamic_stack = true;
    }
    
    //Fill the stack with a magic word for maximum usage checking
    for (uint32_t i = 0; i < (stack_size / sizeof(uint32_t)); i++) {
        _thread_def.stack_pointer[i] = 0xE25A2EA5;
    }
#endif
    _tid = osThreadCreate(&_thread_def, argument);
}

osStatus Thread::terminate() {
    return osThreadTerminate(_tid);
}

osStatus Thread::set_priority(osPriority priority) {
    return osThreadSetPriority(_tid, priority);
}

osPriority Thread::get_priority() {
    return osThreadGetPriority(_tid);
}

int32_t Thread::signal_set(int32_t signals) {
    return osSignalSet(_tid, signals);
}

int32_t Thread::signal_clr(int32_t signals) {
    return osSignalClear(_tid, signals);
}

Thread::State Thread::get_state() {
#if !defined(__MBED_CMSIS_RTOS_CA9) && !defined(__MBED_CMSIS_RTOS_CM)
#ifdef CMSIS_OS_RTX
    return ((State)_thread_def.tcb.state);
#endif
#else
    uint8_t status;
    status = osThreadGetState(_tid);
    return ((State)status);
#endif
}

uint32_t Thread::stack_size() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
    return _thread_def.tcb.priv_stack;
#else
    P_TCB tcb = rt_tid2ptcb(_tid);
    return tcb->priv_stack;
#endif
#else
    return 0;
#endif
}

uint32_t Thread::free_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
    uint32_t bottom = (uint32_t)_thread_def.tcb.stack;
    return _thread_def.tcb.tsk_stack - bottom;
#else
    P_TCB tcb = rt_tid2ptcb(_tid);
    uint32_t bottom = (uint32_t)tcb->stack;
    return tcb->tsk_stack - bottom;
#endif
#else
    return 0;
#endif
}

uint32_t Thread::used_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
    uint32_t top = (uint32_t)_thread_def.tcb.stack + _thread_def.tcb.priv_stack;
    return top - _thread_def.tcb.tsk_stack;
#else
    P_TCB tcb = rt_tid2ptcb(_tid);
    uint32_t top = (uint32_t)tcb->stack + tcb->priv_stack;
    return top - tcb->tsk_stack;
#endif
#else
    return 0;
#endif
}

uint32_t Thread::max_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
    uint32_t high_mark = 0;
    while (_thread_def.tcb.stack[high_mark] == 0xE25A2EA5)
        high_mark++;
    return _thread_def.tcb.priv_stack - (high_mark * 4);
#else
    P_TCB tcb = rt_tid2ptcb(_tid);
    uint32_t high_mark = 0;
    while (tcb->stack[high_mark] == 0xE25A2EA5)
        high_mark++;
    return tcb->priv_stack - (high_mark * 4);
#endif
#else
    return 0;
#endif
}

osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) {
    return osSignalWait(signals, millisec);
}

osStatus Thread::wait(uint32_t millisec) {
    return osDelay(millisec);
}

osStatus Thread::yield() {
    return osThreadYield();
}

osThreadId Thread::gettid() {
    return osThreadGetId();
}

void Thread::attach_idle_hook(void (*fptr)(void)) {
    rtos_attach_idle_hook(fptr);
}

Thread::~Thread() {
    terminate();
#ifdef __MBED_CMSIS_RTOS_CM
    if (_dynamic_stack) {
        delete[] (_thread_def.stack_pointer);
    }
#endif
}

}