![](/media/cache/img/default_profile.jpg.50x50_q85.jpg)
Has base BMU code but sends dummy temperature and voltage readings to test CAN
Dependencies: CUER_CAN DS1820 LTC2943 LTC6804 mbed
Fork of BMS_BMUCore_Max by
main.cpp
- Committer:
- DasSidG
- Date:
- 2017-06-21
- Revision:
- 11:cf2db05cfa56
- Parent:
- 10:1079f8e52d65
- Child:
- 12:fa9b1a459e47
File content as of revision 11:cf2db05cfa56:
#include "mbed.h" #include "CANParserBMU.h" #include "Data_Types_BMU.h" #include "CAN_Data.h" #include "CAN_IDs.h" #include "EEPROM_I2C.h" #include "Temperature.h" #include "LTC2943_Read.h" #include "Cell_Voltage.h" #include "SPI_I2C_Parser.h" using namespace CAN_IDs; // Function definitions void transmit_data(BMU_data measurements,uint32_t status); void read_temperature_sensors(BMU_data &measurements); void update_SOC(); void init(); void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address); uint16_t read_EEPROM_startup(BMU_data &measurements); uint32_t check_measurements(BMU_data &measurements); void take_measurements(BMU_data &measurements); void test_read_voltage_CAN(); void test_CAN_send(); void test_CAN_read(); CAN can(CAN_READ_PIN, CAN_WRITE_PIN); //Create a CAN object to handle CAN comms uint16_t eeprom_start_address; //the initial address where we store/read SoC values Timeout loop_delay; bool delay_finished = false; void loop_delay_callback(void) { delay_finished = true; } int main() { BMU_data measurements; uint16_t current_EEPROM_address; uint32_t status; /*while(true) { //wait(0.05); test_read_voltage_CAN(); }*/ init(); //current_EEPROM_address = read_EEPROM_startup(measurements); // Read from the eeprom at startup to fill in the values of SoC //ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge while (true) { // Take measurements from the sensors take_measurements(measurements); /*// Dont want to read the temperature sensors during each iteration of the loop if (c == 0) { read_temperature_sensors(measurements); } else if(c >= 4) { c = -1; } c++; // Check data for errors status = check_measurements(measurements); // Update the SOC update_SOC(); //Store data in the eeprom write_SOC_EEPROM(measurements, current_EEPROM_address); */ // CAN bus transmit_data(measurements,status); /* // Conserve power - enter a low powered mode delay_finished = false; loop_delay.attach(loop_delay_callback, LOOP_DELAY_S); while (!delay_finished) sleep(); */ //test_CAN_send(); //test_CAN_read(); wait(1); } } void transmit_data(BMU_data measurements, uint32_t status) { CANMessage msg; /* Place all of the collected data onto the CAN bus */ // Send cell voltages //voltages sent in sets of 4 + one cmy data set int repeating_unit_length = NO_READINGS_PER_CMU /4 + 1; for(uint16_t i= 0; i < NO_CMUS; i++) { //input id is offset, data structure is info, voltage, voltage, ...... //This is a slightly modified version of the Tritium BMS datasheet, to add an extra voltage reading set. msg = createVoltageTelemetry(repeating_unit_length*i+2, measurements.cell_voltages[i].voltages); can.write(msg); wait(0.1); //CONSIDER WAITS JUST IN CASE //+4 - 4 cell voltages sent per measurement msg = createVoltageTelemetry(repeating_unit_length*i+3, measurements.cell_voltages[i].voltages + 4); can.write(msg); wait(0.1); msg = createVoltageTelemetry(repeating_unit_length*i+4, measurements.cell_voltages[i].voltages + 8); can.write(msg); wait(0.1); //printf("Message id: %d \r\n", msg.id); } // Create SOC CAN message createPackSOC(measurements.SOC, measurements.percentage_SOC); // Min/max cell voltages createCellVoltageMAXMIN(measurements.max_cell_voltage, measurements.min_cell_voltage); // Min/Max cell temperature createCellTemperatureMAXMIN(measurements.min_cell_temp,measurements.max_cell_temp); // Battery voltage and current // @TODO add the voltage createBatteryVI(measurements.battery_voltage,measurements.battery_current); //Extended battery pack status createExtendedBatteryPackStatus(status); } uint16_t read_EEPROM_startup(BMU_data &measurements) { /* The first page of the EEPROM, specifically the first 2 addresses store a pointer of the first memory location of measurement data. The EEPROM only has a finite number of read/write cycles which is why we aren't writing to the same location throughout */ uint16_t start_address; char start_address_array[2]; char SOC_out[8]; // 4 bytes for the 2 floats one is SOC and the other % charge float *fp1,*fp2; // temporary storage for float conversion // Get a pointer to the start address for the data stored in the eeprom i2c_page_read(0x0000,2,start_address_array); // Read the data from this address start_address = (start_address_array[1]<< 8) | start_address_array[0]; // mbed little endian follow this convention i2c_page_read(start_address, 8,SOC_out); // Convert the SOC_out values back into floats fp1 = (float*)(&SOC_out[0]); fp2 = (float*)(&SOC_out[4]); measurements.SOC = *fp1; measurements.percentage_SOC = *fp2; // Select the next address to write to start_address += 0x0040; if(start_address > MAX_WRITE_ADDRESS) { start_address = START_WRITE_ADDRESS; // Loop to the start of the eeprom } /*@TODO need to include a CRC check for the address pointer for the scenario when power is removed and we are writing to the eeprom*/ // write the new address to location 0x0000 start_address_array[0] = start_address | 0x00FF; start_address_array[1] = start_address >> 8; i2c_page_write(0x0000, 2, start_address_array); return start_address; } void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address) { char data_out[8]; float *fp1,*fp2; fp1 = (float*)(&measurements.SOC); fp2 = (float*)(&measurements.percentage_SOC); for(int i = 0; i < 4; i++ ) { data_out[i] = *fp1; fp1++; } for(int j = 4; j < 7; j++ ) { data_out[j] = *fp2; fp2++; } i2c_page_write(start_address, 8,data_out); } void read_temperature_sensors(BMU_data &measurements) { float min_temperature; float max_temperature; probe[0]->convert_temperature(DS1820::all_devices); min_temperature = probe[0]->temperature('C'); max_temperature = min_temperature; // Initially set the max and min temperature equal for (int i=1; i<devices_found; i++) { measurements.temperature_measurements[i].ID = i; measurements.temperature_measurements[i].measurement = probe[i] ->temperature('C'); if(measurements.temperature_measurements[i].measurement > max_temperature) { max_temperature = measurements.temperature_measurements[i].measurement; } else if (measurements.temperature_measurements[i].measurement < min_temperature) { min_temperature = measurements.temperature_measurements[i].measurement; } } measurements.max_cell_temp.temperature = max_temperature; measurements.min_cell_temp.temperature = min_temperature; } void update_SOC() { // Update the SOC value } uint32_t check_measurements(BMU_data &measurements) { uint32_t status; if(measurements.max_cell_voltage.voltage > MAX_CELL_VOLTAGE) { status = status | CELL_OVER_VOLTAGE; } else if (measurements.min_cell_voltage.voltage < MIN_CELL_VOLTAGE) { status = status | CELL_UNDER_VOLTAGE; } else if (measurements.max_cell_temp.temperature > MAX_CELL_TEMPERATURE) { status = status | CELL_OVER_TEMPERATURE; } /* @TODO also include errors for: *untrusted measurement *CMU timeout *SOC not valid */ return status; } void take_measurements(BMU_data &measurements) { uint16_t cellvoltages[NO_CMUS][12]; //TODO Use LTC6804_acquireVoltage to fill this array, and then properly format //it to be sent over CAN LTC6804_acquireVoltage(cellvoltages); for(int i=0; i<NO_CMUS; i++){ for(int j=0; j<12; j++){ measurements.cell_voltages[i].voltages[j] = cellvoltages[i][j] / 10; printf("Cellvoltage[%d][%d] = %d \r\n",i,j,cellvoltages[i][j] /10); } } //Current, SoC measurements.battery_current = (uint32_t) ltc2943.current()*1000; //*1000 to converet to mA measurements.percentage_SOC = ltc2943.accumulatedCharge(); measurements.SOC = (measurements.percentage_SOC /100) * BATTERY_CAPACITY; } void init() { temperature_init(); // Initialise the temperature sensors LTC2943_initialise(); //Initialises the fixed parameters of the LTC2943 } void test_read_voltage_CAN() { CANMessage msg; uint16_t readings[4]; int can_id; int offset; int first_index; int second_index; if(can.read(msg)) { for(int i =0; i < 4; i++) { readings[i] = (msg.data[2 * i]) + (msg.data[2*i+1] << 8); //Since data is 8 8bit ints not 4 16 bit ones } can_id = msg.id; printf("CAN ID: %d \r\n", can_id); offset = can_id - 1536; //1536 = 0x600 first_index = (offset - 1)/4; //offset of 2,3,4 is CMU 1; 6,7,8, is CMU 2; etc. second_index = ((offset - 1) % 4) - 1; //Makes it so 0,1,2 represent each voltage set //SID: subtracted 1 to make it work for(int i = 0; i < 4; i++) { printf("Cell_Voltage[%d][%d] = %d \r\n", first_index, second_index *4 + i, readings[i]); } } else printf("Reading Failed \r\n"); } void test_CAN_send() { CANMessage msg; char value = 142; msg = CANMessage(1, &value,1); if(can.write(msg)) printf("Succesfully sent %d \r\n", value); else printf("Sending Failed \r\n"); } void test_CAN_read() { CANMessage msg; if(can.read(msg)) printf("Successfully recieved %d \r\n", msg.data[0]); else printf("Reading Failed \r\n"); }