Has base BMU code but sends dummy temperature and voltage readings to test CAN

Dependencies:   CUER_CAN DS1820 LTC2943 LTC6804 mbed

Fork of BMS_BMUCore_Max by CUER

Committer:
maxv008
Date:
Sat Feb 11 14:57:22 2017 +0000
Revision:
7:d00f4433cea9
Parent:
6:b567fcb604aa
Child:
9:82ba050a7e13
ffdf

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lcockerton62 0:0a5f554d2a16 1 #include "mbed.h"
lcockerton62 0:0a5f554d2a16 2 #include "CANParserBMU.h"
lcockerton62 0:0a5f554d2a16 3 #include "Data_Types_BMU.h"
lcockerton62 0:0a5f554d2a16 4 #include "CAN_Data.h"
lcockerton62 0:0a5f554d2a16 5 #include "CAN_IDs.h"
lcockerton62 1:51477fe4851b 6 #include "EEPROM_I2C.h"
lcockerton62 1:51477fe4851b 7 #include "Temperature.h"
DasSidG 4:9050c5d6925e 8 #include "LTC2943_Read.h"
maxv008 7:d00f4433cea9 9 #include "State_Of_Charge.h"
maxv008 7:d00f4433cea9 10 #include "SPI_I2C_Parser.h"
lcockerton62 0:0a5f554d2a16 11
lcockerton62 0:0a5f554d2a16 12 using namespace CAN_IDs;
lcockerton62 0:0a5f554d2a16 13
lcockerton62 0:0a5f554d2a16 14 // Function definitions
lcockerton62 1:51477fe4851b 15 void transmit_data(BMU_data measurements,uint32_t status);
lcockerton62 1:51477fe4851b 16 void read_temperature_sensors(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 17 void update_SOC();
lcockerton62 0:0a5f554d2a16 18 void init();
lcockerton62 1:51477fe4851b 19 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address);
lcockerton62 1:51477fe4851b 20 uint16_t read_EEPROM_startup(BMU_data &measurements);
lcockerton62 1:51477fe4851b 21 uint32_t check_measurements(BMU_data &measurements);
lcockerton62 1:51477fe4851b 22 void take_measurements(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 23
lcockerton62 0:0a5f554d2a16 24 CAN can(CAN_READ_PIN, CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
DasSidG 4:9050c5d6925e 25 uint16_t eeprom_start_address; //the initial address where we store/read SoC values
lcockerton62 0:0a5f554d2a16 26
lcockerton62 1:51477fe4851b 27 Timeout loop_delay;
lcockerton62 1:51477fe4851b 28 bool delay_finished = false;
lcockerton62 2:94716229ecc3 29
lcockerton62 2:94716229ecc3 30 void loop_delay_callback(void)
lcockerton62 2:94716229ecc3 31 {
lcockerton62 1:51477fe4851b 32 delay_finished = true;
lcockerton62 1:51477fe4851b 33 }
lcockerton62 1:51477fe4851b 34
lcockerton62 0:0a5f554d2a16 35 int main()
lcockerton62 0:0a5f554d2a16 36 {
lcockerton62 1:51477fe4851b 37 BMU_data measurements;
lcockerton62 1:51477fe4851b 38 uint16_t current_EEPROM_address;
lcockerton62 1:51477fe4851b 39 uint32_t status;
lcockerton62 0:0a5f554d2a16 40 int c = 0;
lcockerton62 0:0a5f554d2a16 41 init();
DasSidG 4:9050c5d6925e 42 current_EEPROM_address = read_EEPROM_startup(measurements); // Read from the eeprom at startup to fill in the values of SoC
DasSidG 4:9050c5d6925e 43 ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge
DasSidG 4:9050c5d6925e 44
lcockerton62 1:51477fe4851b 45 while (true) {
lcockerton62 2:94716229ecc3 46
lcockerton62 1:51477fe4851b 47 // Take measurements from the sensors
lcockerton62 1:51477fe4851b 48 take_measurements(measurements);
lcockerton62 0:0a5f554d2a16 49 // Dont want to read the temperature sensors during each iteration of the loop
lcockerton62 1:51477fe4851b 50 if (c == 0) {
lcockerton62 1:51477fe4851b 51 read_temperature_sensors(measurements);
lcockerton62 1:51477fe4851b 52 } else if(c >= 4) {
lcockerton62 0:0a5f554d2a16 53 c = -1;
lcockerton62 0:0a5f554d2a16 54 }
lcockerton62 0:0a5f554d2a16 55 c++;
lcockerton62 0:0a5f554d2a16 56
lcockerton62 1:51477fe4851b 57 // Check data for errors
lcockerton62 1:51477fe4851b 58 status = check_measurements(measurements);
lcockerton62 1:51477fe4851b 59
lcockerton62 0:0a5f554d2a16 60 // Update the SOC
lcockerton62 0:0a5f554d2a16 61 update_SOC();
lcockerton62 0:0a5f554d2a16 62
lcockerton62 1:51477fe4851b 63 //Store data in the eeprom
lcockerton62 1:51477fe4851b 64 write_SOC_EEPROM(measurements, current_EEPROM_address);
lcockerton62 0:0a5f554d2a16 65
lcockerton62 5:793afeef45dc 66 // CAN bus
lcockerton62 1:51477fe4851b 67 transmit_data(measurements,status);
lcockerton62 0:0a5f554d2a16 68
lcockerton62 0:0a5f554d2a16 69 // Conserve power - enter a low powered mode
lcockerton62 2:94716229ecc3 70 delay_finished = false;
lcockerton62 1:51477fe4851b 71 loop_delay.attach(loop_delay_callback, LOOP_DELAY_S);
lcockerton62 1:51477fe4851b 72 while (!delay_finished) sleep();
lcockerton62 0:0a5f554d2a16 73 }
lcockerton62 0:0a5f554d2a16 74 }
lcockerton62 0:0a5f554d2a16 75
lcockerton62 1:51477fe4851b 76 void transmit_data(BMU_data measurements, uint32_t status)
lcockerton62 0:0a5f554d2a16 77 {
lcockerton62 0:0a5f554d2a16 78 /*
lcockerton62 0:0a5f554d2a16 79 Place all of the collected data onto the CAN bus
lcockerton62 0:0a5f554d2a16 80 */
lcockerton62 5:793afeef45dc 81 // Send cell voltages
lcockerton62 1:51477fe4851b 82 for(int i= 0; i < NO_CMUS; i++) {
lcockerton62 1:51477fe4851b 83 createVoltageTelemetry(i + 2 , measurements.cell_voltages[i].first_cell_voltages);
lcockerton62 1:51477fe4851b 84 createVoltageTelemetry(i + 3, measurements.cell_voltages[i].last_cell_voltages);
lcockerton62 1:51477fe4851b 85 }
lcockerton62 1:51477fe4851b 86
lcockerton62 1:51477fe4851b 87 // Create SOC CAN message
lcockerton62 1:51477fe4851b 88 createPackSOC(measurements.SOC, measurements.percentage_SOC);
lcockerton62 0:0a5f554d2a16 89
lcockerton62 1:51477fe4851b 90 // Min/max cell voltages
lcockerton62 1:51477fe4851b 91 createCellVoltageMAXMIN(measurements.max_cell_voltage, measurements.min_cell_voltage);
lcockerton62 2:94716229ecc3 92
lcockerton62 1:51477fe4851b 93 // Min/Max cell temperature
lcockerton62 1:51477fe4851b 94 createCellTemperatureMAXMIN(measurements.min_cell_temp,measurements.max_cell_temp);
lcockerton62 2:94716229ecc3 95
lcockerton62 2:94716229ecc3 96 // Battery voltage and current
lcockerton62 5:793afeef45dc 97 // @TODO add the voltage
lcockerton62 1:51477fe4851b 98 createBatteryVI(measurements.battery_voltage,measurements.battery_current);
lcockerton62 2:94716229ecc3 99
lcockerton62 1:51477fe4851b 100 //Extended battery pack status
lcockerton62 1:51477fe4851b 101 createExtendedBatteryPackStatus(status);
lcockerton62 2:94716229ecc3 102
lcockerton62 0:0a5f554d2a16 103 }
lcockerton62 0:0a5f554d2a16 104
lcockerton62 1:51477fe4851b 105 uint16_t read_EEPROM_startup(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 106 {
lcockerton62 1:51477fe4851b 107 /* The first page of the EEPROM, specifically the first 2 addresses store a
lcockerton62 1:51477fe4851b 108 pointer of the first memory location of measurement data. The EEPROM only has a finite number of
lcockerton62 1:51477fe4851b 109 read/write cycles which is why we aren't writing to the same location throughout
lcockerton62 1:51477fe4851b 110 */
lcockerton62 5:793afeef45dc 111
lcockerton62 1:51477fe4851b 112 uint16_t start_address;
lcockerton62 1:51477fe4851b 113 char start_address_array[2];
lcockerton62 1:51477fe4851b 114 char SOC_out[8]; // 4 bytes for the 2 floats one is SOC and the other % charge
lcockerton62 1:51477fe4851b 115 float *fp1,*fp2; // temporary storage for float conversion
lcockerton62 1:51477fe4851b 116
lcockerton62 1:51477fe4851b 117 // Get a pointer to the start address for the data stored in the eeprom
lcockerton62 1:51477fe4851b 118 i2c_page_read(0x0000,2,start_address_array);
lcockerton62 1:51477fe4851b 119
lcockerton62 1:51477fe4851b 120 // Read the data from this address
lcockerton62 1:51477fe4851b 121 start_address = (start_address_array[1]<< 8) | start_address_array[0]; // mbed little endian follow this convention
lcockerton62 1:51477fe4851b 122 i2c_page_read(start_address, 8,SOC_out);
lcockerton62 0:0a5f554d2a16 123
lcockerton62 1:51477fe4851b 124 // Convert the SOC_out values back into floats
lcockerton62 1:51477fe4851b 125 fp1 = (float*)(&SOC_out[0]);
lcockerton62 1:51477fe4851b 126 fp2 = (float*)(&SOC_out[4]);
lcockerton62 1:51477fe4851b 127 measurements.SOC = *fp1;
lcockerton62 1:51477fe4851b 128 measurements.percentage_SOC = *fp2;
lcockerton62 1:51477fe4851b 129
lcockerton62 1:51477fe4851b 130 // Select the next address to write to
lcockerton62 1:51477fe4851b 131 start_address += 0x0040;
lcockerton62 1:51477fe4851b 132 if(start_address > MAX_WRITE_ADDRESS) {
lcockerton62 5:793afeef45dc 133 start_address = START_WRITE_ADDRESS; // Loop to the start of the eeprom
lcockerton62 1:51477fe4851b 134 }
lcockerton62 1:51477fe4851b 135
lcockerton62 5:793afeef45dc 136 /*@TODO need to include a CRC check for the address pointer for the scenario
lcockerton62 5:793afeef45dc 137 when power is removed and we are writing to the eeprom*/
lcockerton62 1:51477fe4851b 138 // write the new address to location 0x0000
lcockerton62 1:51477fe4851b 139 start_address_array[0] = start_address | 0x00FF;
lcockerton62 1:51477fe4851b 140 start_address_array[1] = start_address >> 8;
lcockerton62 1:51477fe4851b 141 i2c_page_write(0x0000, 2, start_address_array);
lcockerton62 1:51477fe4851b 142
lcockerton62 1:51477fe4851b 143 return start_address;
lcockerton62 0:0a5f554d2a16 144 }
lcockerton62 0:0a5f554d2a16 145
lcockerton62 1:51477fe4851b 146 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address)
lcockerton62 0:0a5f554d2a16 147 {
lcockerton62 1:51477fe4851b 148 char data_out[8];
lcockerton62 1:51477fe4851b 149 float *fp1,*fp2;
lcockerton62 1:51477fe4851b 150
lcockerton62 1:51477fe4851b 151 fp1 = (float*)(&measurements.SOC);
lcockerton62 1:51477fe4851b 152 fp2 = (float*)(&measurements.percentage_SOC);
lcockerton62 0:0a5f554d2a16 153
lcockerton62 1:51477fe4851b 154 for(int i = 0; i < 4; i++ ) {
lcockerton62 1:51477fe4851b 155 data_out[i] = *fp1;
lcockerton62 1:51477fe4851b 156 fp1++;
lcockerton62 1:51477fe4851b 157 }
lcockerton62 1:51477fe4851b 158 for(int j = 4; j < 7; j++ ) {
lcockerton62 1:51477fe4851b 159 data_out[j] = *fp2;
lcockerton62 1:51477fe4851b 160 fp2++;
lcockerton62 1:51477fe4851b 161 }
lcockerton62 1:51477fe4851b 162 i2c_page_write(start_address, 8,data_out);
lcockerton62 0:0a5f554d2a16 163 }
lcockerton62 0:0a5f554d2a16 164
lcockerton62 1:51477fe4851b 165 void read_temperature_sensors(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 166 {
lcockerton62 1:51477fe4851b 167 float min_temperature;
lcockerton62 1:51477fe4851b 168 float max_temperature;
lcockerton62 1:51477fe4851b 169
lcockerton62 1:51477fe4851b 170 probe[0]->convert_temperature(DS1820::all_devices);
lcockerton62 1:51477fe4851b 171 min_temperature = probe[0]->temperature('C');
lcockerton62 1:51477fe4851b 172 max_temperature = min_temperature; // Initially set the max and min temperature equal
lcockerton62 1:51477fe4851b 173 for (int i=1; i<devices_found; i++) {
lcockerton62 2:94716229ecc3 174
lcockerton62 1:51477fe4851b 175 measurements.temperature_measurements[i].ID = i;
lcockerton62 1:51477fe4851b 176 measurements.temperature_measurements[i].measurement = probe[i] ->temperature('C');
lcockerton62 2:94716229ecc3 177
lcockerton62 1:51477fe4851b 178 if(measurements.temperature_measurements[i].measurement > max_temperature) {
lcockerton62 1:51477fe4851b 179 max_temperature = measurements.temperature_measurements[i].measurement;
lcockerton62 2:94716229ecc3 180 } else if (measurements.temperature_measurements[i].measurement < min_temperature) {
lcockerton62 1:51477fe4851b 181 min_temperature = measurements.temperature_measurements[i].measurement;
lcockerton62 1:51477fe4851b 182 }
lcockerton62 1:51477fe4851b 183 }
lcockerton62 1:51477fe4851b 184 measurements.max_cell_temp.temperature = max_temperature;
lcockerton62 1:51477fe4851b 185 measurements.min_cell_temp.temperature = min_temperature;
lcockerton62 0:0a5f554d2a16 186 }
lcockerton62 0:0a5f554d2a16 187
lcockerton62 0:0a5f554d2a16 188 void update_SOC()
lcockerton62 0:0a5f554d2a16 189 {
lcockerton62 1:51477fe4851b 190 // Update the SOC value
lcockerton62 0:0a5f554d2a16 191 }
lcockerton62 0:0a5f554d2a16 192
lcockerton62 0:0a5f554d2a16 193
lcockerton62 1:51477fe4851b 194 uint32_t check_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 195 {
lcockerton62 1:51477fe4851b 196 uint32_t status;
lcockerton62 2:94716229ecc3 197
lcockerton62 2:94716229ecc3 198 if(measurements.max_cell_voltage.voltage > MAX_CELL_VOLTAGE) {
lcockerton62 2:94716229ecc3 199 status = status | CELL_OVER_VOLTAGE;
lcockerton62 2:94716229ecc3 200 } else if (measurements.min_cell_voltage.voltage < MIN_CELL_VOLTAGE) {
lcockerton62 1:51477fe4851b 201 status = status | CELL_UNDER_VOLTAGE;
lcockerton62 2:94716229ecc3 202 } else if (measurements.max_cell_temp.temperature > MAX_CELL_TEMPERATURE) {
lcockerton62 1:51477fe4851b 203 status = status | CELL_OVER_TEMPERATURE;
lcockerton62 1:51477fe4851b 204 }
lcockerton62 2:94716229ecc3 205
lcockerton62 1:51477fe4851b 206 /*
lcockerton62 1:51477fe4851b 207 @TODO also include errors for:
lcockerton62 1:51477fe4851b 208 *untrusted measurement
lcockerton62 1:51477fe4851b 209 *CMU timeout
lcockerton62 1:51477fe4851b 210 *SOC not valid
lcockerton62 1:51477fe4851b 211 */
lcockerton62 1:51477fe4851b 212 return status;
lcockerton62 1:51477fe4851b 213 }
lcockerton62 1:51477fe4851b 214
lcockerton62 1:51477fe4851b 215 void take_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 216 {
maxv008 6:b567fcb604aa 217 uint16_t cellvoltages[NO_CMUS][12];
maxv008 6:b567fcb604aa 218 //TODO Use LTC6804_acquireVoltage to fill this array, and then properly format
maxv008 6:b567fcb604aa 219 //it to be sent over CAN
maxv008 6:b567fcb604aa 220
maxv008 7:d00f4433cea9 221 LTC6804_acquireVoltage(cellvoltages);
maxv008 7:d00f4433cea9 222
maxv008 7:d00f4433cea9 223
lcockerton62 2:94716229ecc3 224 // Here collect all measured data from the sensors
lcockerton62 1:51477fe4851b 225 /*
lcockerton62 5:793afeef45dc 226 * TODO Cell voltages
lcockerton62 1:51477fe4851b 227 */
DasSidG 4:9050c5d6925e 228
DasSidG 4:9050c5d6925e 229 //Current, SoC
DasSidG 4:9050c5d6925e 230 measurements.battery_current = (uint32_t) ltc2943.current()*1000; //*1000 to converet to mA
DasSidG 4:9050c5d6925e 231 measurements.percentage_SOC = ltc2943.accumulatedCharge();
DasSidG 4:9050c5d6925e 232 measurements.SOC = (measurements.percentage_SOC /100) * BATTERY_CAPACITY;
DasSidG 4:9050c5d6925e 233
lcockerton62 1:51477fe4851b 234 }
lcockerton62 1:51477fe4851b 235
lcockerton62 0:0a5f554d2a16 236 void init()
lcockerton62 0:0a5f554d2a16 237 {
lcockerton62 1:51477fe4851b 238 temperature_init(); // Initialise the temperature sensors
DasSidG 4:9050c5d6925e 239 LTC2943_initialise(); //Initialises the fixed parameters of the LTC2943
lcockerton62 0:0a5f554d2a16 240 }
lcockerton62 0:0a5f554d2a16 241