Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
magnetic.cpp
- Committer:
- Cotzo
- Date:
- 2016-06-18
- Revision:
- 0:f68c99fc1bc2
File content as of revision 0:f68c99fc1bc2:
// Source: eCompass v3
#include "magnetic.h"
#include "mbed.h"
float xftmpA4x4[4][4], *ftmpA4x4[4]; // scratch 4x4 matrix
float xftmpB4x4[4][4], *ftmpB4x4[4]; // scratch 4x4 matrix
float xftmpA4x1[4][1], *ftmpA4x1[4]; // scratch 4x1 matrix
float xftmpB4x1[4][1], *ftmpB4x1[4]; // scratch 4x1 matrix
int32 xicolind[MAXMATINV][1], *icolind[MAXMATINV];
int32 xirowind[MAXMATINV][1], *irowind[MAXMATINV];
int32 xipivot[MAXMATINV][1], *ipivot[MAXMATINV];
void magUpdateCalibration(struct MagCalibration *pthisMagCal,
struct MagneticBuffer *pthisMagneticBuffer) {
int i;
//while(1);
// 4 row arrays
for (i = 0; i < 4; i++)
{
ftmpA4x4[i] = xftmpA4x4[i];
ftmpB4x4[i] = xftmpB4x4[i];
ftmpA4x1[i] = xftmpA4x1[i];
ftmpB4x1[i] = xftmpB4x1[i];
};
// MAXMATINV row arrays
for (i = 0; i < MAXMATINV; i++) {
icolind[i] = xicolind[i];
irowind[i] = xirowind[i];
ipivot[i] = xipivot[i];
};
fUpdateCalibration4INV(pthisMagCal, pthisMagneticBuffer, ftmpA4x4, ftmpB4x4, ftmpA4x1, ftmpB4x1, icolind, irowind, ipivot);
};
// function calculates the matrix product A = B x C
void fmatrixAeqBxC(float **A, float **B, float **C, int32 rB, int32 cBrC, int32 cC)
{
// rB = rows in B
// cBrC = columns in B = rows in C
// cC = columns in C
// A has dimension rB rows x cC columns
int32 i, j, k; // counters
for (i = 0; i < rB; i++)
{
for (j = 0; j < cC; j++)
{
A[i][j] = 0.0F;
for (k = 0; k < cBrC; k++)
A[i][j] += B[i][k] * C[k][j];
}
}
return;
}
// function sets the matrix A to the identity matrix
void fmatrixAeqI(float **A, int32 rc)
{
// rc = rows and columns in A
int32 i, j; // loop counters
for (i = 0; i < rc; i++)
{
for (j = 0; j < rc; j++)
{
A[i][j] = 0.0F;
}
A[i][i] = 1.0F;
}
return;
}
/* function uses Gauss-Jordan elimination to compute the inverse of matrix A in situ */
/* on exit, A is replaced with its inverse */
void fmatrixAeqInvA(float **A, int32 isize, int32 **icolind, int32 **irowind, int32 **ipivot)
{
int32 i, j, k, l, m; // index counters
int32 ipivotrow, ipivotcol; // row and column of pivot element
float largest; // largest element used for pivoting
float scaling; // scaling factor in pivoting
float recippiv; // reciprocal of pivot element
float ftmp; // temporary variable used in swaps
// initialize the pivot array to 0
for (j = 0; j < isize; j++)
{
ipivot[j][0] = 0;
}
// main loop i over the dimensions of the square matrix A
for (i = 0; i < isize; i++)
{
// zero the largest element found for pivoting
largest = 0.0F;
// loop over candidate rows j
for (j = 0; j < isize; j++)
{
// check if row j has been previously pivoted
if (ipivot[j][0] != 1)
{
// loop over candidate columns k
for (k = 0; k < isize; k++)
{
// check if column k has previously been pivoted
if (ipivot[k][0] == 0)
{
// check if the pivot element is the largest found so far
if (fabs(A[j][k]) >= largest)
{
// and store this location as the current best candidate for pivoting
ipivotrow = j;
ipivotcol = k;
largest = (float) fabs(A[ipivotrow][ipivotcol]);
}
}
else if (ipivot[k][0] > 1)
{
// zero determinant situation: exit with identity matrix
fmatrixAeqI(A, 3);
return;
}
}
}
}
// increment the entry in ipivot to denote it has been selected for pivoting
ipivot[ipivotcol][0]++;
// check the pivot rows ipivotrow and ipivotcol are not the same before swapping
if (ipivotrow != ipivotcol)
{
// loop over columns l
for (l = 0; l < isize; l++)
{
// and swap all elements of rows ipivotrow and ipivotcol
ftmp = A[ipivotrow][l];
A[ipivotrow][l] = A[ipivotcol][l];
A[ipivotcol][l] = ftmp;
}
}
// record that on the i-th iteration rows ipivotrow and ipivotcol were swapped
irowind[i][0] = ipivotrow;
icolind[i][0] = ipivotcol;
// check for zero on-diagonal element (singular matrix) and return with identity matrix if detected
if (A[ipivotcol][ipivotcol] == 0.0F)
{
// zero determinant situation: exit with identity matrix
fmatrixAeqI(A, 3);
return;
}
// calculate the reciprocal of the pivot element knowing it's non-zero
recippiv = 1.0F / A[ipivotcol][ipivotcol];
// by definition, the diagonal element normalizes to 1
A[ipivotcol][ipivotcol] = 1.0F;
// multiply all of row ipivotcol by the reciprocal of the pivot element including the diagonal element
// the diagonal element A[ipivotcol][ipivotcol] now has value equal to the reciprocal of its previous value
for (l = 0; l < isize; l++)
{
A[ipivotcol][l] *= recippiv;
}
// loop over all rows m of A
for (m = 0; m < isize; m++)
{
if (m != ipivotcol)
{
// scaling factor for this row m is in column ipivotcol
scaling = A[m][ipivotcol];
// zero this element
A[m][ipivotcol] = 0.0F;
// loop over all columns l of A and perform elimination
for (l = 0; l < isize; l++)
{
A[m][l] -= A[ipivotcol][l] * scaling;
}
}
}
} // end of loop i over the matrix dimensions
// finally, loop in inverse order to apply the missing column swaps
for (l = isize - 1; l >= 0; l--)
{
// set i and j to the two columns to be swapped
i = irowind[l][0];
j = icolind[l][0];
// check that the two columns i and j to be swapped are not the same
if (i != j)
{
// loop over all rows k to swap columns i and j of A
for (k = 0; k < isize; k++)
{
ftmp = A[k][i];
A[k][i] = A[k][j];
A[k][j] = ftmp;
}
}
}
return;
}
void ResetMagCalibration(struct MagCalibration *pthisMagCal/*, struct MagneticBuffer *pthisMagneticBuffer*/)
{
int32 i, j, k, l; // loop counters
for (i = 0; i < 3; i++) {
pthisMagCal->finvW[i] = pthisMagCal->xfinvW[i];
pthisMagCal->ftrinvW[i] = pthisMagCal->xftrinvW[i];
pthisMagCal->fA[i] = pthisMagCal->xfA[i];
pthisMagCal->finvA[i] = pthisMagCal->xinvA[i];
};
// initialize the calibration hard and soft iron estimate to null
fmatrixAeqI(pthisMagCal->finvW, 3);
pthisMagCal->fVx = pthisMagCal->fVy = pthisMagCal->fVz = 0.0F;
pthisMagCal->fB = 0.0F;
pthisMagCal->fFitErrorpc = 1000.0F;
pthisMagCal->iValidMagCal = 0;
// set magnetic buffer index to invalid value -1 to denote invalid
/*pthisMagneticBuffer->iMagBufferCount = 0;
for (j = 0; j < MAGBUFFSIZE; j++)
{
for (k = 0; k < MAGBUFFSIZE; k++)
{
for (l = 0; l < MAGBUFFSIZE; l++)
{
pthisMagneticBuffer->index[j][k][l] = -1;
}
}
}*/
return;
}
// 4 element calibration using 4x4 matrix inverse
void fUpdateCalibration4INV(struct MagCalibration *pthisMagCal,
struct MagneticBuffer *pthisMagneticBuffer,
float **ftmpA4x4, float **ftmpB4x4, float **ftmpA4x1,
float **ftmpB4x1, int32 **icolind, int32 **irowind, int32 **ipivot)
{
int32 i, j, /*k, l,*/ m, n; // loop counters
int32 ilocalMagBufferCount; // local count of measurements for this process
float fOffsetx, fOffsety, fOffsetz; // offset to remove large DC hard iron bias in matrix
float ftmpBpx, ftmpBpy, ftmpBpz; // x, y, z magnetometer readings (uT)
float ftmpBpxsq, ftmpBpysq, ftmpBpzsq; // squares of x, y, z magnetometer readings (uT)
float fy; // dependent variable
float fYTY; // scalar equal to Y^T.Y
float fscaling; // set to FUTPERCOUNT * FMATRIXSCALING
float fP; // performance function = r^T.r
// compute fscaling to reduce multiplications later
fscaling = FUTPERCOUNT * FMATRIXSCALING;
// set trial inverse soft iron matrix invW to the identity matrix for 4 element calibration
pthisMagCal->ftrinvW[0][0] = pthisMagCal->ftrinvW[1][1] = pthisMagCal->ftrinvW[2][2] = 1.0F;
pthisMagCal->ftrinvW[0][1] = pthisMagCal->ftrinvW[0][2] = pthisMagCal->ftrinvW[1][0] = 0.0F;
pthisMagCal->ftrinvW[1][2] = pthisMagCal->ftrinvW[2][0] = pthisMagCal->ftrinvW[2][1] = 0.0F;
// zero fYTY=Y^T.Y, ftmpA4x1=X^T.Y and on and above diagonal elements of ftmpA4x4=X^T*X
fYTY = 0.0F;
for (m = 0; m < 4; m++)
{
ftmpA4x1[m][0] = 0.0F;
for (n = m; n < 4; n++)
{
ftmpA4x4[m][n] = 0.0F;
}
}
// the offsets are guaranteed to be set from the first element but to avoid compiler error
fOffsetx = fOffsety = fOffsetz = 0.0F;
// use from MINEQUATIONS up to MAXEQUATIONS entries from magnetic buffer to compute matrices
i = 0;
for (j = 0; j < MAGBUFFSIZE; j++)
{
//for (k = 0; k < MAGBUFFSIZE; k++)
//{
//for (l = 0; l < MAGBUFFSIZE; l++)
//{
//if (pthisMagneticBuffer->index[j][k][l] != -1)
//{
// use first valid magnetic buffer entry as estimate (in counts) for offset
printf(".");
if (i == 0)
{
fOffsetx = (float)pthisMagneticBuffer->iBx[j]/*[k][l]*/;
fOffsety = (float)pthisMagneticBuffer->iBy[j]/*[k][l]*/;
fOffsetz = (float)pthisMagneticBuffer->iBz[j]/*[k][l]*/;
}
// calculate offset and scaled magnetic buffer vector data Bx, By, Bz (scaled uT)
ftmpBpx = ((float)pthisMagneticBuffer->iBx[j]/*[k][l]*/ - fOffsetx) * fscaling;
ftmpBpy = ((float)pthisMagneticBuffer->iBy[j]/*[k][l]*/ - fOffsety) * fscaling;
ftmpBpz = ((float)pthisMagneticBuffer->iBz[j]/*[k][l]*/ - fOffsetz) * fscaling;
// calculate y = Bx^2 + By^2 + Bz^2 (scaled uT^2) and accumulate Y^T.Y
ftmpBpxsq = ftmpBpx * ftmpBpx;
ftmpBpysq = ftmpBpy * ftmpBpy;
ftmpBpzsq = ftmpBpz * ftmpBpz;
fy = ftmpBpxsq + ftmpBpysq + ftmpBpzsq;
fYTY += fy * fy;
// accumulate ftmpA4x1 = X^T.Y
ftmpA4x1[0][0] += ftmpBpx * fy;
ftmpA4x1[1][0] += ftmpBpy * fy;
ftmpA4x1[2][0] += ftmpBpz * fy;
ftmpA4x1[3][0] += fy;
// accumulate on and above-diagonal terms of ftmpA4x4 = X^T.X
ftmpA4x4[0][0] += ftmpBpxsq;
ftmpA4x4[0][1] += ftmpBpx * ftmpBpy;
ftmpA4x4[0][2] += ftmpBpx * ftmpBpz;
ftmpA4x4[0][3] += ftmpBpx;
ftmpA4x4[1][1] += ftmpBpysq;
ftmpA4x4[1][2] += ftmpBpy * ftmpBpz;
ftmpA4x4[1][3] += ftmpBpy;
ftmpA4x4[2][2] += ftmpBpzsq;
ftmpA4x4[2][3] += ftmpBpz;
// increment the counter for next iteration
i++;
//}
//}
//}
}
//printf("[dbg1]");
// store the number of measurements accumulated
ilocalMagBufferCount = i;
// set the last element of the measurement matrix to the number of buffer elements used
ftmpA4x4[3][3] = (float) i;
// use above diagonal elements of symmetric matrix ftmpA4x4 to create ftmpB4x4 = ftmpA4x4 = X^T.X
for (m = 0; m < 4; m++)
{
for (n = m; n < 4; n++)
{
ftmpB4x4[m][n] = ftmpB4x4[n][m] = ftmpA4x4[n][m] = ftmpA4x4[m][n];
}
}
//printf("[dbg2]");
// calculate in situ inverse of ftmpB4x4 = inv(X^T.X) (4x4)
fmatrixAeqInvA(ftmpB4x4, 4, icolind, irowind, ipivot);
// calculate ftmpB4x1 = solution vector beta (4x1) = inv(X^T.X).X^T.Y = ftmpB4x4 * ftmpA4x1
fmatrixAeqBxC(ftmpB4x1, ftmpB4x4, ftmpA4x1, 4, 4, 1);
// calculate P = r^T.r = Y^T.Y - 2 * beta^T.(X^T.Y) + beta^T.(X^T.X).beta
// = fYTY - 2 * ftmpB4x1^T.ftmpA4x1 + ftmpB4x1^T.ftmpA4x4.ftmpB4x1
// first set P = Y^T.Y - 2 * beta^T.(X^T.Y) = fYTY - 2 * ftmpB4x1^T.ftmpA4x1
fP = fYTY - 2.0F * (ftmpA4x1[0][0] * ftmpB4x1[0][0] + ftmpA4x1[1][0] * ftmpB4x1[1][0] +
ftmpA4x1[2][0] * ftmpB4x1[2][0] + ftmpA4x1[3][0] * ftmpB4x1[3][0]);
// set ftmpA4x1 = (X^T.X).beta = ftmpA4x4.ftmpB4x1
fmatrixAeqBxC(ftmpA4x1, ftmpA4x4, ftmpB4x1, 4, 4, 1);
// add beta^T.(X^T.X).beta = ftmpB4x1^T * ftmpA4x1 to P
fP += ftmpA4x1[0][0] * ftmpB4x1[0][0] + ftmpA4x1[1][0] * ftmpB4x1[1][0] +
ftmpA4x1[2][0] * ftmpB4x1[2][0] + ftmpA4x1[3][0] * ftmpB4x1[3][0];
// compute the hard iron vector (in uT but offset and scaled by FMATRIXSCALING)
pthisMagCal->ftrVx = 0.5F * ftmpB4x1[0][0];
pthisMagCal->ftrVy = 0.5F * ftmpB4x1[1][0];
pthisMagCal->ftrVz = 0.5F * ftmpB4x1[2][0];
// compute the scaled geomagnetic field strength B (in uT but scaled by FMATRIXSCALING)
pthisMagCal->ftrB = (float)sqrt(ftmpB4x1[3][0] + pthisMagCal->ftrVx * pthisMagCal->ftrVx +
pthisMagCal->ftrVy * pthisMagCal->ftrVy + pthisMagCal->ftrVz * pthisMagCal->ftrVz);
// calculate the trial fit error (percent) normalized to number of measurements and scaled geomagnetic field strength
pthisMagCal->ftrFitErrorpc = (float)sqrt(fP / (float) ilocalMagBufferCount) * 100.0F /
(2.0F * pthisMagCal->ftrB * pthisMagCal->ftrB);
//printf("\n\nTrial new calibration fit error=%9.4f%% versus previous %9.4f%%", pthisMagCal->ftrFitErrorpc, pthisMagCal->fFitErrorpc);
// correct the hard iron estimate for FMATRIXSCALING and the offsets applied (result in uT)
pthisMagCal->ftrVx = pthisMagCal->ftrVx * FINVMATRIXSCALING + fOffsetx * FUTPERCOUNT;
pthisMagCal->ftrVy = pthisMagCal->ftrVy * FINVMATRIXSCALING + fOffsety * FUTPERCOUNT;
pthisMagCal->ftrVz = pthisMagCal->ftrVz * FINVMATRIXSCALING + fOffsetz * FUTPERCOUNT;
//printf("\n\nTrial new calibration hard iron (uT) Vx=%9.3f Vy=%9.3f Vz=%9.3f", pthisMagCal->ftrVx, pthisMagCal->ftrVy, pthisMagCal->ftrVz);
// correct the geomagnetic field strength B to correct scaling (result in uT)
pthisMagCal->ftrB *= FINVMATRIXSCALING;
//printf("\n\nTrial new calibration geomagnetic field (uT) B=%9.3f", pthisMagCal->ftrB);
// set the valid calibration flag to true
pthisMagCal->iValidMagCal = 1;
return;
}