Martin Olejar
/
FRDM_MFRC522
MFRC522 example project for FRDM
MFRC522.cpp@0:1d9c7c0b5015, 2013-12-14 (annotated)
- Committer:
- AtomX
- Date:
- Sat Dec 14 21:41:08 2013 +0000
- Revision:
- 0:1d9c7c0b5015
Created MFRC522 project
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
AtomX | 0:1d9c7c0b5015 | 1 | /* |
AtomX | 0:1d9c7c0b5015 | 2 | * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. |
AtomX | 0:1d9c7c0b5015 | 3 | * _Please_ see the comments in MFRC522.h - they give useful hints and background. |
AtomX | 0:1d9c7c0b5015 | 4 | * Released into the public domain. |
AtomX | 0:1d9c7c0b5015 | 5 | */ |
AtomX | 0:1d9c7c0b5015 | 6 | |
AtomX | 0:1d9c7c0b5015 | 7 | #include "MFRC522.h" |
AtomX | 0:1d9c7c0b5015 | 8 | |
AtomX | 0:1d9c7c0b5015 | 9 | |
AtomX | 0:1d9c7c0b5015 | 10 | #define MFRC522_MaxPICCs 9 |
AtomX | 0:1d9c7c0b5015 | 11 | #define MFRC522_MaxError 10 |
AtomX | 0:1d9c7c0b5015 | 12 | |
AtomX | 0:1d9c7c0b5015 | 13 | static std::string _TypeNamePICC[MFRC522_MaxPICCs] = |
AtomX | 0:1d9c7c0b5015 | 14 | { |
AtomX | 0:1d9c7c0b5015 | 15 | "Unknown type", |
AtomX | 0:1d9c7c0b5015 | 16 | "PICC compliant with ISO/IEC 14443-4", |
AtomX | 0:1d9c7c0b5015 | 17 | "PICC compliant with ISO/IEC 18092 (NFC)", |
AtomX | 0:1d9c7c0b5015 | 18 | "MIFARE Mini, 320 bytes", |
AtomX | 0:1d9c7c0b5015 | 19 | "MIFARE 1KB", |
AtomX | 0:1d9c7c0b5015 | 20 | "MIFARE 4KB", |
AtomX | 0:1d9c7c0b5015 | 21 | "MIFARE Ultralight or Ultralight C", |
AtomX | 0:1d9c7c0b5015 | 22 | "MIFARE Plus", |
AtomX | 0:1d9c7c0b5015 | 23 | "MIFARE TNP3XXX" |
AtomX | 0:1d9c7c0b5015 | 24 | }; |
AtomX | 0:1d9c7c0b5015 | 25 | |
AtomX | 0:1d9c7c0b5015 | 26 | static std::string _ErrorMessage[MFRC522_MaxError] = |
AtomX | 0:1d9c7c0b5015 | 27 | { |
AtomX | 0:1d9c7c0b5015 | 28 | "Unknown error", |
AtomX | 0:1d9c7c0b5015 | 29 | "Success", |
AtomX | 0:1d9c7c0b5015 | 30 | "Error in communication", |
AtomX | 0:1d9c7c0b5015 | 31 | "Collision detected", |
AtomX | 0:1d9c7c0b5015 | 32 | "Timeout in communication", |
AtomX | 0:1d9c7c0b5015 | 33 | "A buffer is not big enough", |
AtomX | 0:1d9c7c0b5015 | 34 | "Internal error in the code, should not happen", |
AtomX | 0:1d9c7c0b5015 | 35 | "Invalid argument", |
AtomX | 0:1d9c7c0b5015 | 36 | "The CRC_A does not match", |
AtomX | 0:1d9c7c0b5015 | 37 | "A MIFARE PICC responded with NAK" |
AtomX | 0:1d9c7c0b5015 | 38 | }; |
AtomX | 0:1d9c7c0b5015 | 39 | |
AtomX | 0:1d9c7c0b5015 | 40 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 41 | // Functions for setting up the driver |
AtomX | 0:1d9c7c0b5015 | 42 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 43 | |
AtomX | 0:1d9c7c0b5015 | 44 | /** |
AtomX | 0:1d9c7c0b5015 | 45 | * Constructor. |
AtomX | 0:1d9c7c0b5015 | 46 | * Prepares the output pins. |
AtomX | 0:1d9c7c0b5015 | 47 | */ |
AtomX | 0:1d9c7c0b5015 | 48 | MFRC522::MFRC522(PinName mosi, |
AtomX | 0:1d9c7c0b5015 | 49 | PinName miso, |
AtomX | 0:1d9c7c0b5015 | 50 | PinName sclk, |
AtomX | 0:1d9c7c0b5015 | 51 | PinName cs, |
AtomX | 0:1d9c7c0b5015 | 52 | PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset) |
AtomX | 0:1d9c7c0b5015 | 53 | { |
AtomX | 0:1d9c7c0b5015 | 54 | /* init MFRC522 SPI BUS */ |
AtomX | 0:1d9c7c0b5015 | 55 | m_SPI.format(8, 0); |
AtomX | 0:1d9c7c0b5015 | 56 | m_SPI.frequency(8000000); |
AtomX | 0:1d9c7c0b5015 | 57 | |
AtomX | 0:1d9c7c0b5015 | 58 | /* init MFRC522 SPI_CS pin */ |
AtomX | 0:1d9c7c0b5015 | 59 | m_CS = 1; |
AtomX | 0:1d9c7c0b5015 | 60 | |
AtomX | 0:1d9c7c0b5015 | 61 | /* init MFRC522 RESET pin */ |
AtomX | 0:1d9c7c0b5015 | 62 | m_RESET = 1; |
AtomX | 0:1d9c7c0b5015 | 63 | } // End constructor |
AtomX | 0:1d9c7c0b5015 | 64 | |
AtomX | 0:1d9c7c0b5015 | 65 | |
AtomX | 0:1d9c7c0b5015 | 66 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 67 | // Basic interface functions for communicating with the MFRC522 |
AtomX | 0:1d9c7c0b5015 | 68 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 69 | |
AtomX | 0:1d9c7c0b5015 | 70 | /** |
AtomX | 0:1d9c7c0b5015 | 71 | * Writes a byte to the specified register in the MFRC522 chip. |
AtomX | 0:1d9c7c0b5015 | 72 | * The interface is described in the datasheet section 8.1.2. |
AtomX | 0:1d9c7c0b5015 | 73 | */ |
AtomX | 0:1d9c7c0b5015 | 74 | void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value) |
AtomX | 0:1d9c7c0b5015 | 75 | { |
AtomX | 0:1d9c7c0b5015 | 76 | m_CS = 0; /* Select SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 77 | |
AtomX | 0:1d9c7c0b5015 | 78 | // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. |
AtomX | 0:1d9c7c0b5015 | 79 | (void) m_SPI.write(reg & 0x7E); |
AtomX | 0:1d9c7c0b5015 | 80 | (void) m_SPI.write(value); |
AtomX | 0:1d9c7c0b5015 | 81 | |
AtomX | 0:1d9c7c0b5015 | 82 | m_CS = 1; /* Release SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 83 | } // End PCD_WriteRegister() |
AtomX | 0:1d9c7c0b5015 | 84 | |
AtomX | 0:1d9c7c0b5015 | 85 | /** |
AtomX | 0:1d9c7c0b5015 | 86 | * Writes a number of bytes to the specified register in the MFRC522 chip. |
AtomX | 0:1d9c7c0b5015 | 87 | * The interface is described in the datasheet section 8.1.2. |
AtomX | 0:1d9c7c0b5015 | 88 | */ |
AtomX | 0:1d9c7c0b5015 | 89 | void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values) |
AtomX | 0:1d9c7c0b5015 | 90 | { |
AtomX | 0:1d9c7c0b5015 | 91 | m_CS = 0; /* Select SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 92 | |
AtomX | 0:1d9c7c0b5015 | 93 | // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. |
AtomX | 0:1d9c7c0b5015 | 94 | (void) m_SPI.write(reg & 0x7E); |
AtomX | 0:1d9c7c0b5015 | 95 | for (uint8_t index = 0; index < count; index++) |
AtomX | 0:1d9c7c0b5015 | 96 | { |
AtomX | 0:1d9c7c0b5015 | 97 | (void) m_SPI.write(values[index]); |
AtomX | 0:1d9c7c0b5015 | 98 | } |
AtomX | 0:1d9c7c0b5015 | 99 | |
AtomX | 0:1d9c7c0b5015 | 100 | m_CS = 1; /* Release SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 101 | } // End PCD_WriteRegister() |
AtomX | 0:1d9c7c0b5015 | 102 | |
AtomX | 0:1d9c7c0b5015 | 103 | /** |
AtomX | 0:1d9c7c0b5015 | 104 | * Reads a byte from the specified register in the MFRC522 chip. |
AtomX | 0:1d9c7c0b5015 | 105 | * The interface is described in the datasheet section 8.1.2. |
AtomX | 0:1d9c7c0b5015 | 106 | */ |
AtomX | 0:1d9c7c0b5015 | 107 | uint8_t MFRC522::PCD_ReadRegister(uint8_t reg) |
AtomX | 0:1d9c7c0b5015 | 108 | { |
AtomX | 0:1d9c7c0b5015 | 109 | uint8_t value; |
AtomX | 0:1d9c7c0b5015 | 110 | m_CS = 0; /* Select SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 111 | |
AtomX | 0:1d9c7c0b5015 | 112 | // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. |
AtomX | 0:1d9c7c0b5015 | 113 | (void) m_SPI.write(0x80 | reg); |
AtomX | 0:1d9c7c0b5015 | 114 | value = m_SPI.write(0); // Read the value back. Send 0 to stop reading. |
AtomX | 0:1d9c7c0b5015 | 115 | |
AtomX | 0:1d9c7c0b5015 | 116 | m_CS = 1; /* Release SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 117 | return value; |
AtomX | 0:1d9c7c0b5015 | 118 | } // End PCD_ReadRegister() |
AtomX | 0:1d9c7c0b5015 | 119 | |
AtomX | 0:1d9c7c0b5015 | 120 | /** |
AtomX | 0:1d9c7c0b5015 | 121 | * Reads a number of bytes from the specified register in the MFRC522 chip. |
AtomX | 0:1d9c7c0b5015 | 122 | * The interface is described in the datasheet section 8.1.2. |
AtomX | 0:1d9c7c0b5015 | 123 | */ |
AtomX | 0:1d9c7c0b5015 | 124 | void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign) |
AtomX | 0:1d9c7c0b5015 | 125 | { |
AtomX | 0:1d9c7c0b5015 | 126 | if (count == 0) { return; } |
AtomX | 0:1d9c7c0b5015 | 127 | |
AtomX | 0:1d9c7c0b5015 | 128 | //Serial.print("Reading "); Serial.print(count); Serial.println(" bytes from register."); |
AtomX | 0:1d9c7c0b5015 | 129 | uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. |
AtomX | 0:1d9c7c0b5015 | 130 | uint8_t index = 0; // Index in values array. |
AtomX | 0:1d9c7c0b5015 | 131 | |
AtomX | 0:1d9c7c0b5015 | 132 | m_CS = 0; /* Select SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 133 | count--; // One read is performed outside of the loop |
AtomX | 0:1d9c7c0b5015 | 134 | (void) m_SPI.write(address); // Tell MFRC522 which address we want to read |
AtomX | 0:1d9c7c0b5015 | 135 | |
AtomX | 0:1d9c7c0b5015 | 136 | while (index < count) |
AtomX | 0:1d9c7c0b5015 | 137 | { |
AtomX | 0:1d9c7c0b5015 | 138 | if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0] |
AtomX | 0:1d9c7c0b5015 | 139 | { |
AtomX | 0:1d9c7c0b5015 | 140 | // Create bit mask for bit positions rxAlign..7 |
AtomX | 0:1d9c7c0b5015 | 141 | uint8_t mask = 0; |
AtomX | 0:1d9c7c0b5015 | 142 | for (uint8_t i = rxAlign; i <= 7; i++) |
AtomX | 0:1d9c7c0b5015 | 143 | { |
AtomX | 0:1d9c7c0b5015 | 144 | mask |= (1 << i); |
AtomX | 0:1d9c7c0b5015 | 145 | } |
AtomX | 0:1d9c7c0b5015 | 146 | |
AtomX | 0:1d9c7c0b5015 | 147 | // Read value and tell that we want to read the same address again. |
AtomX | 0:1d9c7c0b5015 | 148 | uint8_t value = m_SPI.write(address); |
AtomX | 0:1d9c7c0b5015 | 149 | |
AtomX | 0:1d9c7c0b5015 | 150 | // Apply mask to both current value of values[0] and the new data in value. |
AtomX | 0:1d9c7c0b5015 | 151 | values[0] = (values[index] & ~mask) | (value & mask); |
AtomX | 0:1d9c7c0b5015 | 152 | } |
AtomX | 0:1d9c7c0b5015 | 153 | else |
AtomX | 0:1d9c7c0b5015 | 154 | { |
AtomX | 0:1d9c7c0b5015 | 155 | // Read value and tell that we want to read the same address again. |
AtomX | 0:1d9c7c0b5015 | 156 | values[index] = m_SPI.write(address); |
AtomX | 0:1d9c7c0b5015 | 157 | } |
AtomX | 0:1d9c7c0b5015 | 158 | |
AtomX | 0:1d9c7c0b5015 | 159 | index++; |
AtomX | 0:1d9c7c0b5015 | 160 | } |
AtomX | 0:1d9c7c0b5015 | 161 | |
AtomX | 0:1d9c7c0b5015 | 162 | values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading. |
AtomX | 0:1d9c7c0b5015 | 163 | |
AtomX | 0:1d9c7c0b5015 | 164 | m_CS = 1; /* Release SPI Chip MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 165 | } // End PCD_ReadRegister() |
AtomX | 0:1d9c7c0b5015 | 166 | |
AtomX | 0:1d9c7c0b5015 | 167 | /** |
AtomX | 0:1d9c7c0b5015 | 168 | * Sets the bits given in mask in register reg. |
AtomX | 0:1d9c7c0b5015 | 169 | */ |
AtomX | 0:1d9c7c0b5015 | 170 | void MFRC522::PCD_SetRegisterBitMask(uint8_t reg, uint8_t mask) |
AtomX | 0:1d9c7c0b5015 | 171 | { |
AtomX | 0:1d9c7c0b5015 | 172 | uint8_t tmp; |
AtomX | 0:1d9c7c0b5015 | 173 | tmp = PCD_ReadRegister(reg); |
AtomX | 0:1d9c7c0b5015 | 174 | PCD_WriteRegister(reg, tmp | mask); // set bit mask |
AtomX | 0:1d9c7c0b5015 | 175 | } // End PCD_SetRegisterBitMask() |
AtomX | 0:1d9c7c0b5015 | 176 | |
AtomX | 0:1d9c7c0b5015 | 177 | /** |
AtomX | 0:1d9c7c0b5015 | 178 | * Clears the bits given in mask from register reg. |
AtomX | 0:1d9c7c0b5015 | 179 | */ |
AtomX | 0:1d9c7c0b5015 | 180 | void MFRC522::PCD_ClearRegisterBitMask(uint8_t reg, uint8_t mask) |
AtomX | 0:1d9c7c0b5015 | 181 | { |
AtomX | 0:1d9c7c0b5015 | 182 | uint8_t tmp; |
AtomX | 0:1d9c7c0b5015 | 183 | tmp = PCD_ReadRegister(reg); |
AtomX | 0:1d9c7c0b5015 | 184 | PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask |
AtomX | 0:1d9c7c0b5015 | 185 | } // End PCD_ClearRegisterBitMask() |
AtomX | 0:1d9c7c0b5015 | 186 | |
AtomX | 0:1d9c7c0b5015 | 187 | |
AtomX | 0:1d9c7c0b5015 | 188 | /** |
AtomX | 0:1d9c7c0b5015 | 189 | * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. |
AtomX | 0:1d9c7c0b5015 | 190 | * |
AtomX | 0:1d9c7c0b5015 | 191 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 192 | */ |
AtomX | 0:1d9c7c0b5015 | 193 | uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result) |
AtomX | 0:1d9c7c0b5015 | 194 | { |
AtomX | 0:1d9c7c0b5015 | 195 | PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. |
AtomX | 0:1d9c7c0b5015 | 196 | PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit |
AtomX | 0:1d9c7c0b5015 | 197 | PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization |
AtomX | 0:1d9c7c0b5015 | 198 | PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO |
AtomX | 0:1d9c7c0b5015 | 199 | PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation |
AtomX | 0:1d9c7c0b5015 | 200 | |
AtomX | 0:1d9c7c0b5015 | 201 | // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73�s. |
AtomX | 0:1d9c7c0b5015 | 202 | uint16_t i = 5000; |
AtomX | 0:1d9c7c0b5015 | 203 | uint8_t n; |
AtomX | 0:1d9c7c0b5015 | 204 | while (1) |
AtomX | 0:1d9c7c0b5015 | 205 | { |
AtomX | 0:1d9c7c0b5015 | 206 | n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved |
AtomX | 0:1d9c7c0b5015 | 207 | if (n & 0x04) |
AtomX | 0:1d9c7c0b5015 | 208 | { |
AtomX | 0:1d9c7c0b5015 | 209 | // CRCIRq bit set - calculation done |
AtomX | 0:1d9c7c0b5015 | 210 | break; |
AtomX | 0:1d9c7c0b5015 | 211 | } |
AtomX | 0:1d9c7c0b5015 | 212 | if (--i == 0) |
AtomX | 0:1d9c7c0b5015 | 213 | { |
AtomX | 0:1d9c7c0b5015 | 214 | // The emergency break. We will eventually terminate on this one after 89ms. |
AtomX | 0:1d9c7c0b5015 | 215 | // Communication with the MFRC522 might be down. |
AtomX | 0:1d9c7c0b5015 | 216 | return STATUS_TIMEOUT; |
AtomX | 0:1d9c7c0b5015 | 217 | } |
AtomX | 0:1d9c7c0b5015 | 218 | } |
AtomX | 0:1d9c7c0b5015 | 219 | |
AtomX | 0:1d9c7c0b5015 | 220 | // Stop calculating CRC for new content in the FIFO. |
AtomX | 0:1d9c7c0b5015 | 221 | PCD_WriteRegister(CommandReg, PCD_Idle); |
AtomX | 0:1d9c7c0b5015 | 222 | |
AtomX | 0:1d9c7c0b5015 | 223 | // Transfer the result from the registers to the result buffer |
AtomX | 0:1d9c7c0b5015 | 224 | result[0] = PCD_ReadRegister(CRCResultRegL); |
AtomX | 0:1d9c7c0b5015 | 225 | result[1] = PCD_ReadRegister(CRCResultRegH); |
AtomX | 0:1d9c7c0b5015 | 226 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 227 | } // End PCD_CalculateCRC() |
AtomX | 0:1d9c7c0b5015 | 228 | |
AtomX | 0:1d9c7c0b5015 | 229 | |
AtomX | 0:1d9c7c0b5015 | 230 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 231 | // Functions for manipulating the MFRC522 |
AtomX | 0:1d9c7c0b5015 | 232 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 233 | |
AtomX | 0:1d9c7c0b5015 | 234 | /** |
AtomX | 0:1d9c7c0b5015 | 235 | * Initializes the MFRC522 chip. |
AtomX | 0:1d9c7c0b5015 | 236 | */ |
AtomX | 0:1d9c7c0b5015 | 237 | void MFRC522::PCD_Init() |
AtomX | 0:1d9c7c0b5015 | 238 | { |
AtomX | 0:1d9c7c0b5015 | 239 | /* Reset MFRC522 */ |
AtomX | 0:1d9c7c0b5015 | 240 | m_RESET = 0; |
AtomX | 0:1d9c7c0b5015 | 241 | wait_ms(10); |
AtomX | 0:1d9c7c0b5015 | 242 | m_RESET = 1; |
AtomX | 0:1d9c7c0b5015 | 243 | // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. |
AtomX | 0:1d9c7c0b5015 | 244 | wait_ms(50); |
AtomX | 0:1d9c7c0b5015 | 245 | |
AtomX | 0:1d9c7c0b5015 | 246 | // When communicating with a PICC we need a timeout if something goes wrong. |
AtomX | 0:1d9c7c0b5015 | 247 | // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. |
AtomX | 0:1d9c7c0b5015 | 248 | // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. |
AtomX | 0:1d9c7c0b5015 | 249 | PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds |
AtomX | 0:1d9c7c0b5015 | 250 | PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s. |
AtomX | 0:1d9c7c0b5015 | 251 | PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. |
AtomX | 0:1d9c7c0b5015 | 252 | PCD_WriteRegister(TReloadRegL, 0xE8); |
AtomX | 0:1d9c7c0b5015 | 253 | |
AtomX | 0:1d9c7c0b5015 | 254 | PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting |
AtomX | 0:1d9c7c0b5015 | 255 | PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) |
AtomX | 0:1d9c7c0b5015 | 256 | PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) |
AtomX | 0:1d9c7c0b5015 | 257 | } // End PCD_Init() |
AtomX | 0:1d9c7c0b5015 | 258 | |
AtomX | 0:1d9c7c0b5015 | 259 | /** |
AtomX | 0:1d9c7c0b5015 | 260 | * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. |
AtomX | 0:1d9c7c0b5015 | 261 | */ |
AtomX | 0:1d9c7c0b5015 | 262 | void MFRC522::PCD_Reset() |
AtomX | 0:1d9c7c0b5015 | 263 | { |
AtomX | 0:1d9c7c0b5015 | 264 | PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command. |
AtomX | 0:1d9c7c0b5015 | 265 | // The datasheet does not mention how long the SoftRest command takes to complete. |
AtomX | 0:1d9c7c0b5015 | 266 | // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) |
AtomX | 0:1d9c7c0b5015 | 267 | // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. |
AtomX | 0:1d9c7c0b5015 | 268 | wait_ms(50); |
AtomX | 0:1d9c7c0b5015 | 269 | |
AtomX | 0:1d9c7c0b5015 | 270 | // Wait for the PowerDown bit in CommandReg to be cleared |
AtomX | 0:1d9c7c0b5015 | 271 | while (PCD_ReadRegister(CommandReg) & (1<<4)) |
AtomX | 0:1d9c7c0b5015 | 272 | { |
AtomX | 0:1d9c7c0b5015 | 273 | // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry. |
AtomX | 0:1d9c7c0b5015 | 274 | } |
AtomX | 0:1d9c7c0b5015 | 275 | } // End PCD_Reset() |
AtomX | 0:1d9c7c0b5015 | 276 | |
AtomX | 0:1d9c7c0b5015 | 277 | /** |
AtomX | 0:1d9c7c0b5015 | 278 | * Turns the antenna on by enabling pins TX1 and TX2. |
AtomX | 0:1d9c7c0b5015 | 279 | * After a reset these pins disabled. |
AtomX | 0:1d9c7c0b5015 | 280 | */ |
AtomX | 0:1d9c7c0b5015 | 281 | void MFRC522::PCD_AntennaOn() |
AtomX | 0:1d9c7c0b5015 | 282 | { |
AtomX | 0:1d9c7c0b5015 | 283 | uint8_t value = PCD_ReadRegister(TxControlReg); |
AtomX | 0:1d9c7c0b5015 | 284 | if ((value & 0x03) != 0x03) |
AtomX | 0:1d9c7c0b5015 | 285 | { |
AtomX | 0:1d9c7c0b5015 | 286 | PCD_WriteRegister(TxControlReg, value | 0x03); |
AtomX | 0:1d9c7c0b5015 | 287 | } |
AtomX | 0:1d9c7c0b5015 | 288 | } // End PCD_AntennaOn() |
AtomX | 0:1d9c7c0b5015 | 289 | |
AtomX | 0:1d9c7c0b5015 | 290 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 291 | // Functions for communicating with PICCs |
AtomX | 0:1d9c7c0b5015 | 292 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 293 | |
AtomX | 0:1d9c7c0b5015 | 294 | /** |
AtomX | 0:1d9c7c0b5015 | 295 | * Executes the Transceive command. |
AtomX | 0:1d9c7c0b5015 | 296 | * CRC validation can only be done if backData and backLen are specified. |
AtomX | 0:1d9c7c0b5015 | 297 | * |
AtomX | 0:1d9c7c0b5015 | 298 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 299 | */ |
AtomX | 0:1d9c7c0b5015 | 300 | uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. |
AtomX | 0:1d9c7c0b5015 | 301 | uint8_t sendLen, ///< Number of bytes to transfer to the FIFO. |
AtomX | 0:1d9c7c0b5015 | 302 | uint8_t *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. |
AtomX | 0:1d9c7c0b5015 | 303 | uint8_t *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. |
AtomX | 0:1d9c7c0b5015 | 304 | uint8_t *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL. |
AtomX | 0:1d9c7c0b5015 | 305 | uint8_t rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. |
AtomX | 0:1d9c7c0b5015 | 306 | bool checkCRC) ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. |
AtomX | 0:1d9c7c0b5015 | 307 | { |
AtomX | 0:1d9c7c0b5015 | 308 | uint8_t waitIRq = 0x30; // RxIRq and IdleIRq |
AtomX | 0:1d9c7c0b5015 | 309 | return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC); |
AtomX | 0:1d9c7c0b5015 | 310 | } // End PCD_TransceiveData() |
AtomX | 0:1d9c7c0b5015 | 311 | |
AtomX | 0:1d9c7c0b5015 | 312 | /** |
AtomX | 0:1d9c7c0b5015 | 313 | * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO. |
AtomX | 0:1d9c7c0b5015 | 314 | * CRC validation can only be done if backData and backLen are specified. |
AtomX | 0:1d9c7c0b5015 | 315 | * |
AtomX | 0:1d9c7c0b5015 | 316 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 317 | */ |
AtomX | 0:1d9c7c0b5015 | 318 | uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command, ///< The command to execute. One of the PCD_Command enums. |
AtomX | 0:1d9c7c0b5015 | 319 | uint8_t waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command. |
AtomX | 0:1d9c7c0b5015 | 320 | uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. |
AtomX | 0:1d9c7c0b5015 | 321 | uint8_t sendLen, ///< Number of bytes to transfer to the FIFO. |
AtomX | 0:1d9c7c0b5015 | 322 | uint8_t *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. |
AtomX | 0:1d9c7c0b5015 | 323 | uint8_t *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. |
AtomX | 0:1d9c7c0b5015 | 324 | uint8_t *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. |
AtomX | 0:1d9c7c0b5015 | 325 | uint8_t rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. |
AtomX | 0:1d9c7c0b5015 | 326 | bool checkCRC) ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. |
AtomX | 0:1d9c7c0b5015 | 327 | { |
AtomX | 0:1d9c7c0b5015 | 328 | uint8_t n, _validBits = 0; |
AtomX | 0:1d9c7c0b5015 | 329 | uint32_t i; |
AtomX | 0:1d9c7c0b5015 | 330 | |
AtomX | 0:1d9c7c0b5015 | 331 | // Prepare values for BitFramingReg |
AtomX | 0:1d9c7c0b5015 | 332 | uint8_t txLastBits = validBits ? *validBits : 0; |
AtomX | 0:1d9c7c0b5015 | 333 | uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] |
AtomX | 0:1d9c7c0b5015 | 334 | |
AtomX | 0:1d9c7c0b5015 | 335 | PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. |
AtomX | 0:1d9c7c0b5015 | 336 | PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits |
AtomX | 0:1d9c7c0b5015 | 337 | PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization |
AtomX | 0:1d9c7c0b5015 | 338 | PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO |
AtomX | 0:1d9c7c0b5015 | 339 | PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments |
AtomX | 0:1d9c7c0b5015 | 340 | PCD_WriteRegister(CommandReg, command); // Execute the command |
AtomX | 0:1d9c7c0b5015 | 341 | if (command == PCD_Transceive) |
AtomX | 0:1d9c7c0b5015 | 342 | { |
AtomX | 0:1d9c7c0b5015 | 343 | PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts |
AtomX | 0:1d9c7c0b5015 | 344 | } |
AtomX | 0:1d9c7c0b5015 | 345 | |
AtomX | 0:1d9c7c0b5015 | 346 | // Wait for the command to complete. |
AtomX | 0:1d9c7c0b5015 | 347 | // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. |
AtomX | 0:1d9c7c0b5015 | 348 | // Each iteration of the do-while-loop takes 17.86�s. |
AtomX | 0:1d9c7c0b5015 | 349 | i = 2000; |
AtomX | 0:1d9c7c0b5015 | 350 | while (1) |
AtomX | 0:1d9c7c0b5015 | 351 | { |
AtomX | 0:1d9c7c0b5015 | 352 | n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq |
AtomX | 0:1d9c7c0b5015 | 353 | if (n & waitIRq) |
AtomX | 0:1d9c7c0b5015 | 354 | { // One of the interrupts that signal success has been set. |
AtomX | 0:1d9c7c0b5015 | 355 | break; |
AtomX | 0:1d9c7c0b5015 | 356 | } |
AtomX | 0:1d9c7c0b5015 | 357 | |
AtomX | 0:1d9c7c0b5015 | 358 | if (n & 0x01) |
AtomX | 0:1d9c7c0b5015 | 359 | { // Timer interrupt - nothing received in 25ms |
AtomX | 0:1d9c7c0b5015 | 360 | return STATUS_TIMEOUT; |
AtomX | 0:1d9c7c0b5015 | 361 | } |
AtomX | 0:1d9c7c0b5015 | 362 | |
AtomX | 0:1d9c7c0b5015 | 363 | if (--i == 0) |
AtomX | 0:1d9c7c0b5015 | 364 | { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down. |
AtomX | 0:1d9c7c0b5015 | 365 | return STATUS_TIMEOUT; |
AtomX | 0:1d9c7c0b5015 | 366 | } |
AtomX | 0:1d9c7c0b5015 | 367 | } |
AtomX | 0:1d9c7c0b5015 | 368 | |
AtomX | 0:1d9c7c0b5015 | 369 | // Stop now if any errors except collisions were detected. |
AtomX | 0:1d9c7c0b5015 | 370 | uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr |
AtomX | 0:1d9c7c0b5015 | 371 | if (errorRegValue & 0x13) |
AtomX | 0:1d9c7c0b5015 | 372 | { // BufferOvfl ParityErr ProtocolErr |
AtomX | 0:1d9c7c0b5015 | 373 | return STATUS_ERROR; |
AtomX | 0:1d9c7c0b5015 | 374 | } |
AtomX | 0:1d9c7c0b5015 | 375 | |
AtomX | 0:1d9c7c0b5015 | 376 | // If the caller wants data back, get it from the MFRC522. |
AtomX | 0:1d9c7c0b5015 | 377 | if (backData && backLen) |
AtomX | 0:1d9c7c0b5015 | 378 | { |
AtomX | 0:1d9c7c0b5015 | 379 | n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO |
AtomX | 0:1d9c7c0b5015 | 380 | if (n > *backLen) |
AtomX | 0:1d9c7c0b5015 | 381 | { |
AtomX | 0:1d9c7c0b5015 | 382 | return STATUS_NO_ROOM; |
AtomX | 0:1d9c7c0b5015 | 383 | } |
AtomX | 0:1d9c7c0b5015 | 384 | |
AtomX | 0:1d9c7c0b5015 | 385 | *backLen = n; // Number of bytes returned |
AtomX | 0:1d9c7c0b5015 | 386 | PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO |
AtomX | 0:1d9c7c0b5015 | 387 | _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. |
AtomX | 0:1d9c7c0b5015 | 388 | if (validBits) |
AtomX | 0:1d9c7c0b5015 | 389 | { |
AtomX | 0:1d9c7c0b5015 | 390 | *validBits = _validBits; |
AtomX | 0:1d9c7c0b5015 | 391 | } |
AtomX | 0:1d9c7c0b5015 | 392 | } |
AtomX | 0:1d9c7c0b5015 | 393 | |
AtomX | 0:1d9c7c0b5015 | 394 | // Tell about collisions |
AtomX | 0:1d9c7c0b5015 | 395 | if (errorRegValue & 0x08) { // CollErr |
AtomX | 0:1d9c7c0b5015 | 396 | return STATUS_COLLISION; |
AtomX | 0:1d9c7c0b5015 | 397 | } |
AtomX | 0:1d9c7c0b5015 | 398 | |
AtomX | 0:1d9c7c0b5015 | 399 | // Perform CRC_A validation if requested. |
AtomX | 0:1d9c7c0b5015 | 400 | if (backData && backLen && checkCRC) |
AtomX | 0:1d9c7c0b5015 | 401 | { |
AtomX | 0:1d9c7c0b5015 | 402 | // In this case a MIFARE Classic NAK is not OK. |
AtomX | 0:1d9c7c0b5015 | 403 | if (*backLen == 1 && _validBits == 4) |
AtomX | 0:1d9c7c0b5015 | 404 | { |
AtomX | 0:1d9c7c0b5015 | 405 | return STATUS_MIFARE_NACK; |
AtomX | 0:1d9c7c0b5015 | 406 | } |
AtomX | 0:1d9c7c0b5015 | 407 | |
AtomX | 0:1d9c7c0b5015 | 408 | // We need at least the CRC_A value and all 8 bits of the last byte must be received. |
AtomX | 0:1d9c7c0b5015 | 409 | if (*backLen < 2 || _validBits != 0) |
AtomX | 0:1d9c7c0b5015 | 410 | { |
AtomX | 0:1d9c7c0b5015 | 411 | return STATUS_CRC_WRONG; |
AtomX | 0:1d9c7c0b5015 | 412 | } |
AtomX | 0:1d9c7c0b5015 | 413 | |
AtomX | 0:1d9c7c0b5015 | 414 | // Verify CRC_A - do our own calculation and store the control in controlBuffer. |
AtomX | 0:1d9c7c0b5015 | 415 | uint8_t controlBuffer[2]; |
AtomX | 0:1d9c7c0b5015 | 416 | n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]); |
AtomX | 0:1d9c7c0b5015 | 417 | if (n != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 418 | { |
AtomX | 0:1d9c7c0b5015 | 419 | return n; |
AtomX | 0:1d9c7c0b5015 | 420 | } |
AtomX | 0:1d9c7c0b5015 | 421 | |
AtomX | 0:1d9c7c0b5015 | 422 | if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) |
AtomX | 0:1d9c7c0b5015 | 423 | { |
AtomX | 0:1d9c7c0b5015 | 424 | return STATUS_CRC_WRONG; |
AtomX | 0:1d9c7c0b5015 | 425 | } |
AtomX | 0:1d9c7c0b5015 | 426 | } |
AtomX | 0:1d9c7c0b5015 | 427 | |
AtomX | 0:1d9c7c0b5015 | 428 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 429 | } // End PCD_CommunicateWithPICC() |
AtomX | 0:1d9c7c0b5015 | 430 | |
AtomX | 0:1d9c7c0b5015 | 431 | /** |
AtomX | 0:1d9c7c0b5015 | 432 | * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. |
AtomX | 0:1d9c7c0b5015 | 433 | * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. |
AtomX | 0:1d9c7c0b5015 | 434 | * |
AtomX | 0:1d9c7c0b5015 | 435 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 436 | */ |
AtomX | 0:1d9c7c0b5015 | 437 | uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize) |
AtomX | 0:1d9c7c0b5015 | 438 | { |
AtomX | 0:1d9c7c0b5015 | 439 | return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize); |
AtomX | 0:1d9c7c0b5015 | 440 | } // End PICC_RequestA() |
AtomX | 0:1d9c7c0b5015 | 441 | |
AtomX | 0:1d9c7c0b5015 | 442 | /** |
AtomX | 0:1d9c7c0b5015 | 443 | * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. |
AtomX | 0:1d9c7c0b5015 | 444 | * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. |
AtomX | 0:1d9c7c0b5015 | 445 | * |
AtomX | 0:1d9c7c0b5015 | 446 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 447 | */ |
AtomX | 0:1d9c7c0b5015 | 448 | uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize) |
AtomX | 0:1d9c7c0b5015 | 449 | { |
AtomX | 0:1d9c7c0b5015 | 450 | return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize); |
AtomX | 0:1d9c7c0b5015 | 451 | } // End PICC_WakeupA() |
AtomX | 0:1d9c7c0b5015 | 452 | |
AtomX | 0:1d9c7c0b5015 | 453 | /** |
AtomX | 0:1d9c7c0b5015 | 454 | * Transmits REQA or WUPA commands. |
AtomX | 0:1d9c7c0b5015 | 455 | * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. |
AtomX | 0:1d9c7c0b5015 | 456 | * |
AtomX | 0:1d9c7c0b5015 | 457 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 458 | */ |
AtomX | 0:1d9c7c0b5015 | 459 | uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize) |
AtomX | 0:1d9c7c0b5015 | 460 | { |
AtomX | 0:1d9c7c0b5015 | 461 | uint8_t validBits; |
AtomX | 0:1d9c7c0b5015 | 462 | uint8_t status; |
AtomX | 0:1d9c7c0b5015 | 463 | |
AtomX | 0:1d9c7c0b5015 | 464 | if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long. |
AtomX | 0:1d9c7c0b5015 | 465 | return STATUS_NO_ROOM; |
AtomX | 0:1d9c7c0b5015 | 466 | } |
AtomX | 0:1d9c7c0b5015 | 467 | |
AtomX | 0:1d9c7c0b5015 | 468 | PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. |
AtomX | 0:1d9c7c0b5015 | 469 | validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] |
AtomX | 0:1d9c7c0b5015 | 470 | status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits); |
AtomX | 0:1d9c7c0b5015 | 471 | if (status != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 472 | { |
AtomX | 0:1d9c7c0b5015 | 473 | return status; |
AtomX | 0:1d9c7c0b5015 | 474 | } |
AtomX | 0:1d9c7c0b5015 | 475 | |
AtomX | 0:1d9c7c0b5015 | 476 | if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits. |
AtomX | 0:1d9c7c0b5015 | 477 | return STATUS_ERROR; |
AtomX | 0:1d9c7c0b5015 | 478 | } |
AtomX | 0:1d9c7c0b5015 | 479 | |
AtomX | 0:1d9c7c0b5015 | 480 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 481 | } // End PICC_REQA_or_WUPA() |
AtomX | 0:1d9c7c0b5015 | 482 | |
AtomX | 0:1d9c7c0b5015 | 483 | /** |
AtomX | 0:1d9c7c0b5015 | 484 | * Transmits SELECT/ANTICOLLISION commands to select a single PICC. |
AtomX | 0:1d9c7c0b5015 | 485 | * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). |
AtomX | 0:1d9c7c0b5015 | 486 | * On success: |
AtomX | 0:1d9c7c0b5015 | 487 | * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) |
AtomX | 0:1d9c7c0b5015 | 488 | * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. |
AtomX | 0:1d9c7c0b5015 | 489 | * |
AtomX | 0:1d9c7c0b5015 | 490 | * A PICC UID consists of 4, 7 or 10 bytes. |
AtomX | 0:1d9c7c0b5015 | 491 | * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: |
AtomX | 0:1d9c7c0b5015 | 492 | * UID size Number of UID bytes Cascade levels Example of PICC |
AtomX | 0:1d9c7c0b5015 | 493 | * ======== =================== ============== =============== |
AtomX | 0:1d9c7c0b5015 | 494 | * single 4 1 MIFARE Classic |
AtomX | 0:1d9c7c0b5015 | 495 | * double 7 2 MIFARE Ultralight |
AtomX | 0:1d9c7c0b5015 | 496 | * triple 10 3 Not currently in use? |
AtomX | 0:1d9c7c0b5015 | 497 | * |
AtomX | 0:1d9c7c0b5015 | 498 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 499 | */ |
AtomX | 0:1d9c7c0b5015 | 500 | uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits) |
AtomX | 0:1d9c7c0b5015 | 501 | { |
AtomX | 0:1d9c7c0b5015 | 502 | bool uidComplete; |
AtomX | 0:1d9c7c0b5015 | 503 | bool selectDone; |
AtomX | 0:1d9c7c0b5015 | 504 | bool useCascadeTag; |
AtomX | 0:1d9c7c0b5015 | 505 | uint8_t cascadeLevel = 1; |
AtomX | 0:1d9c7c0b5015 | 506 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 507 | uint8_t count; |
AtomX | 0:1d9c7c0b5015 | 508 | uint8_t index; |
AtomX | 0:1d9c7c0b5015 | 509 | uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. |
AtomX | 0:1d9c7c0b5015 | 510 | uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. |
AtomX | 0:1d9c7c0b5015 | 511 | uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A |
AtomX | 0:1d9c7c0b5015 | 512 | uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. |
AtomX | 0:1d9c7c0b5015 | 513 | uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. |
AtomX | 0:1d9c7c0b5015 | 514 | uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. |
AtomX | 0:1d9c7c0b5015 | 515 | uint8_t *responseBuffer; |
AtomX | 0:1d9c7c0b5015 | 516 | uint8_t responseLength; |
AtomX | 0:1d9c7c0b5015 | 517 | |
AtomX | 0:1d9c7c0b5015 | 518 | // Description of buffer structure: |
AtomX | 0:1d9c7c0b5015 | 519 | // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 |
AtomX | 0:1d9c7c0b5015 | 520 | // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. |
AtomX | 0:1d9c7c0b5015 | 521 | // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. |
AtomX | 0:1d9c7c0b5015 | 522 | // Byte 3: UID-data |
AtomX | 0:1d9c7c0b5015 | 523 | // Byte 4: UID-data |
AtomX | 0:1d9c7c0b5015 | 524 | // Byte 5: UID-data |
AtomX | 0:1d9c7c0b5015 | 525 | // Byte 6: BCC Block Check Character - XOR of bytes 2-5 |
AtomX | 0:1d9c7c0b5015 | 526 | // Byte 7: CRC_A |
AtomX | 0:1d9c7c0b5015 | 527 | // Byte 8: CRC_A |
AtomX | 0:1d9c7c0b5015 | 528 | // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level. |
AtomX | 0:1d9c7c0b5015 | 529 | // |
AtomX | 0:1d9c7c0b5015 | 530 | // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) |
AtomX | 0:1d9c7c0b5015 | 531 | // UID size Cascade level Byte2 Byte3 Byte4 Byte5 |
AtomX | 0:1d9c7c0b5015 | 532 | // ======== ============= ===== ===== ===== ===== |
AtomX | 0:1d9c7c0b5015 | 533 | // 4 bytes 1 uid0 uid1 uid2 uid3 |
AtomX | 0:1d9c7c0b5015 | 534 | // 7 bytes 1 CT uid0 uid1 uid2 |
AtomX | 0:1d9c7c0b5015 | 535 | // 2 uid3 uid4 uid5 uid6 |
AtomX | 0:1d9c7c0b5015 | 536 | // 10 bytes 1 CT uid0 uid1 uid2 |
AtomX | 0:1d9c7c0b5015 | 537 | // 2 CT uid3 uid4 uid5 |
AtomX | 0:1d9c7c0b5015 | 538 | // 3 uid6 uid7 uid8 uid9 |
AtomX | 0:1d9c7c0b5015 | 539 | |
AtomX | 0:1d9c7c0b5015 | 540 | // Sanity checks |
AtomX | 0:1d9c7c0b5015 | 541 | if (validBits > 80) |
AtomX | 0:1d9c7c0b5015 | 542 | { |
AtomX | 0:1d9c7c0b5015 | 543 | return STATUS_INVALID; |
AtomX | 0:1d9c7c0b5015 | 544 | } |
AtomX | 0:1d9c7c0b5015 | 545 | |
AtomX | 0:1d9c7c0b5015 | 546 | // Prepare MFRC522 |
AtomX | 0:1d9c7c0b5015 | 547 | PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. |
AtomX | 0:1d9c7c0b5015 | 548 | |
AtomX | 0:1d9c7c0b5015 | 549 | // Repeat Cascade Level loop until we have a complete UID. |
AtomX | 0:1d9c7c0b5015 | 550 | uidComplete = false; |
AtomX | 0:1d9c7c0b5015 | 551 | while ( ! uidComplete) |
AtomX | 0:1d9c7c0b5015 | 552 | { |
AtomX | 0:1d9c7c0b5015 | 553 | // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. |
AtomX | 0:1d9c7c0b5015 | 554 | switch (cascadeLevel) |
AtomX | 0:1d9c7c0b5015 | 555 | { |
AtomX | 0:1d9c7c0b5015 | 556 | case 1: |
AtomX | 0:1d9c7c0b5015 | 557 | buffer[0] = PICC_CMD_SEL_CL1; |
AtomX | 0:1d9c7c0b5015 | 558 | uidIndex = 0; |
AtomX | 0:1d9c7c0b5015 | 559 | useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes |
AtomX | 0:1d9c7c0b5015 | 560 | break; |
AtomX | 0:1d9c7c0b5015 | 561 | |
AtomX | 0:1d9c7c0b5015 | 562 | case 2: |
AtomX | 0:1d9c7c0b5015 | 563 | buffer[0] = PICC_CMD_SEL_CL2; |
AtomX | 0:1d9c7c0b5015 | 564 | uidIndex = 3; |
AtomX | 0:1d9c7c0b5015 | 565 | useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes |
AtomX | 0:1d9c7c0b5015 | 566 | break; |
AtomX | 0:1d9c7c0b5015 | 567 | |
AtomX | 0:1d9c7c0b5015 | 568 | case 3: |
AtomX | 0:1d9c7c0b5015 | 569 | buffer[0] = PICC_CMD_SEL_CL3; |
AtomX | 0:1d9c7c0b5015 | 570 | uidIndex = 6; |
AtomX | 0:1d9c7c0b5015 | 571 | useCascadeTag = false; // Never used in CL3. |
AtomX | 0:1d9c7c0b5015 | 572 | break; |
AtomX | 0:1d9c7c0b5015 | 573 | |
AtomX | 0:1d9c7c0b5015 | 574 | default: |
AtomX | 0:1d9c7c0b5015 | 575 | return STATUS_INTERNAL_ERROR; |
AtomX | 0:1d9c7c0b5015 | 576 | //break; |
AtomX | 0:1d9c7c0b5015 | 577 | } |
AtomX | 0:1d9c7c0b5015 | 578 | |
AtomX | 0:1d9c7c0b5015 | 579 | // How many UID bits are known in this Cascade Level? |
AtomX | 0:1d9c7c0b5015 | 580 | if(validBits > (8 * uidIndex)) |
AtomX | 0:1d9c7c0b5015 | 581 | { |
AtomX | 0:1d9c7c0b5015 | 582 | currentLevelKnownBits = validBits - (8 * uidIndex); |
AtomX | 0:1d9c7c0b5015 | 583 | } |
AtomX | 0:1d9c7c0b5015 | 584 | else |
AtomX | 0:1d9c7c0b5015 | 585 | { |
AtomX | 0:1d9c7c0b5015 | 586 | currentLevelKnownBits = 0; |
AtomX | 0:1d9c7c0b5015 | 587 | } |
AtomX | 0:1d9c7c0b5015 | 588 | // Copy the known bits from uid->uidByte[] to buffer[] |
AtomX | 0:1d9c7c0b5015 | 589 | index = 2; // destination index in buffer[] |
AtomX | 0:1d9c7c0b5015 | 590 | if (useCascadeTag) |
AtomX | 0:1d9c7c0b5015 | 591 | { |
AtomX | 0:1d9c7c0b5015 | 592 | buffer[index++] = PICC_CMD_CT; |
AtomX | 0:1d9c7c0b5015 | 593 | } |
AtomX | 0:1d9c7c0b5015 | 594 | |
AtomX | 0:1d9c7c0b5015 | 595 | uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. |
AtomX | 0:1d9c7c0b5015 | 596 | if (bytesToCopy) |
AtomX | 0:1d9c7c0b5015 | 597 | { |
AtomX | 0:1d9c7c0b5015 | 598 | uint8_t maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag |
AtomX | 0:1d9c7c0b5015 | 599 | if (bytesToCopy > maxBytes) |
AtomX | 0:1d9c7c0b5015 | 600 | { |
AtomX | 0:1d9c7c0b5015 | 601 | bytesToCopy = maxBytes; |
AtomX | 0:1d9c7c0b5015 | 602 | } |
AtomX | 0:1d9c7c0b5015 | 603 | |
AtomX | 0:1d9c7c0b5015 | 604 | for (count = 0; count < bytesToCopy; count++) |
AtomX | 0:1d9c7c0b5015 | 605 | { |
AtomX | 0:1d9c7c0b5015 | 606 | buffer[index++] = uid->uidByte[uidIndex + count]; |
AtomX | 0:1d9c7c0b5015 | 607 | } |
AtomX | 0:1d9c7c0b5015 | 608 | } |
AtomX | 0:1d9c7c0b5015 | 609 | // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits |
AtomX | 0:1d9c7c0b5015 | 610 | if (useCascadeTag) |
AtomX | 0:1d9c7c0b5015 | 611 | { |
AtomX | 0:1d9c7c0b5015 | 612 | currentLevelKnownBits += 8; |
AtomX | 0:1d9c7c0b5015 | 613 | } |
AtomX | 0:1d9c7c0b5015 | 614 | |
AtomX | 0:1d9c7c0b5015 | 615 | // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. |
AtomX | 0:1d9c7c0b5015 | 616 | selectDone = false; |
AtomX | 0:1d9c7c0b5015 | 617 | while ( ! selectDone) |
AtomX | 0:1d9c7c0b5015 | 618 | { |
AtomX | 0:1d9c7c0b5015 | 619 | // Find out how many bits and bytes to send and receive. |
AtomX | 0:1d9c7c0b5015 | 620 | if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. |
AtomX | 0:1d9c7c0b5015 | 621 | //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); |
AtomX | 0:1d9c7c0b5015 | 622 | buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes |
AtomX | 0:1d9c7c0b5015 | 623 | // Calulate BCC - Block Check Character |
AtomX | 0:1d9c7c0b5015 | 624 | buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; |
AtomX | 0:1d9c7c0b5015 | 625 | // Calculate CRC_A |
AtomX | 0:1d9c7c0b5015 | 626 | result = PCD_CalculateCRC(buffer, 7, &buffer[7]); |
AtomX | 0:1d9c7c0b5015 | 627 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 628 | { |
AtomX | 0:1d9c7c0b5015 | 629 | return result; |
AtomX | 0:1d9c7c0b5015 | 630 | } |
AtomX | 0:1d9c7c0b5015 | 631 | txLastBits = 0; // 0 => All 8 bits are valid. |
AtomX | 0:1d9c7c0b5015 | 632 | bufferUsed = 9; |
AtomX | 0:1d9c7c0b5015 | 633 | // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) |
AtomX | 0:1d9c7c0b5015 | 634 | responseBuffer = &buffer[6]; |
AtomX | 0:1d9c7c0b5015 | 635 | responseLength = 3; |
AtomX | 0:1d9c7c0b5015 | 636 | } |
AtomX | 0:1d9c7c0b5015 | 637 | else { // This is an ANTICOLLISION. |
AtomX | 0:1d9c7c0b5015 | 638 | //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); |
AtomX | 0:1d9c7c0b5015 | 639 | txLastBits = currentLevelKnownBits % 8; |
AtomX | 0:1d9c7c0b5015 | 640 | count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. |
AtomX | 0:1d9c7c0b5015 | 641 | index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs |
AtomX | 0:1d9c7c0b5015 | 642 | buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits |
AtomX | 0:1d9c7c0b5015 | 643 | bufferUsed = index + (txLastBits ? 1 : 0); |
AtomX | 0:1d9c7c0b5015 | 644 | // Store response in the unused part of buffer |
AtomX | 0:1d9c7c0b5015 | 645 | responseBuffer = &buffer[index]; |
AtomX | 0:1d9c7c0b5015 | 646 | responseLength = sizeof(buffer) - index; |
AtomX | 0:1d9c7c0b5015 | 647 | } |
AtomX | 0:1d9c7c0b5015 | 648 | |
AtomX | 0:1d9c7c0b5015 | 649 | // Set bit adjustments |
AtomX | 0:1d9c7c0b5015 | 650 | rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read. |
AtomX | 0:1d9c7c0b5015 | 651 | PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] |
AtomX | 0:1d9c7c0b5015 | 652 | |
AtomX | 0:1d9c7c0b5015 | 653 | // Transmit the buffer and receive the response. |
AtomX | 0:1d9c7c0b5015 | 654 | result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign); |
AtomX | 0:1d9c7c0b5015 | 655 | if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. |
AtomX | 0:1d9c7c0b5015 | 656 | result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] |
AtomX | 0:1d9c7c0b5015 | 657 | if (result & 0x20) { // CollPosNotValid |
AtomX | 0:1d9c7c0b5015 | 658 | return STATUS_COLLISION; // Without a valid collision position we cannot continue |
AtomX | 0:1d9c7c0b5015 | 659 | } |
AtomX | 0:1d9c7c0b5015 | 660 | uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32. |
AtomX | 0:1d9c7c0b5015 | 661 | if (collisionPos == 0) |
AtomX | 0:1d9c7c0b5015 | 662 | { |
AtomX | 0:1d9c7c0b5015 | 663 | collisionPos = 32; |
AtomX | 0:1d9c7c0b5015 | 664 | } |
AtomX | 0:1d9c7c0b5015 | 665 | if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen |
AtomX | 0:1d9c7c0b5015 | 666 | return STATUS_INTERNAL_ERROR; |
AtomX | 0:1d9c7c0b5015 | 667 | } |
AtomX | 0:1d9c7c0b5015 | 668 | // Choose the PICC with the bit set. |
AtomX | 0:1d9c7c0b5015 | 669 | currentLevelKnownBits = collisionPos; |
AtomX | 0:1d9c7c0b5015 | 670 | count = (currentLevelKnownBits - 1) % 8; // The bit to modify |
AtomX | 0:1d9c7c0b5015 | 671 | index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. |
AtomX | 0:1d9c7c0b5015 | 672 | buffer[index] |= (1 << count); |
AtomX | 0:1d9c7c0b5015 | 673 | } |
AtomX | 0:1d9c7c0b5015 | 674 | else if (result != STATUS_OK) { |
AtomX | 0:1d9c7c0b5015 | 675 | return result; |
AtomX | 0:1d9c7c0b5015 | 676 | } |
AtomX | 0:1d9c7c0b5015 | 677 | else { // STATUS_OK |
AtomX | 0:1d9c7c0b5015 | 678 | if (currentLevelKnownBits >= 32) { // This was a SELECT. |
AtomX | 0:1d9c7c0b5015 | 679 | selectDone = true; // No more anticollision |
AtomX | 0:1d9c7c0b5015 | 680 | // We continue below outside the while. |
AtomX | 0:1d9c7c0b5015 | 681 | } |
AtomX | 0:1d9c7c0b5015 | 682 | else { // This was an ANTICOLLISION. |
AtomX | 0:1d9c7c0b5015 | 683 | // We now have all 32 bits of the UID in this Cascade Level |
AtomX | 0:1d9c7c0b5015 | 684 | currentLevelKnownBits = 32; |
AtomX | 0:1d9c7c0b5015 | 685 | // Run loop again to do the SELECT. |
AtomX | 0:1d9c7c0b5015 | 686 | } |
AtomX | 0:1d9c7c0b5015 | 687 | } |
AtomX | 0:1d9c7c0b5015 | 688 | } // End of while ( ! selectDone) |
AtomX | 0:1d9c7c0b5015 | 689 | |
AtomX | 0:1d9c7c0b5015 | 690 | // We do not check the CBB - it was constructed by us above. |
AtomX | 0:1d9c7c0b5015 | 691 | |
AtomX | 0:1d9c7c0b5015 | 692 | // Copy the found UID bytes from buffer[] to uid->uidByte[] |
AtomX | 0:1d9c7c0b5015 | 693 | index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] |
AtomX | 0:1d9c7c0b5015 | 694 | bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; |
AtomX | 0:1d9c7c0b5015 | 695 | for (count = 0; count < bytesToCopy; count++) |
AtomX | 0:1d9c7c0b5015 | 696 | { |
AtomX | 0:1d9c7c0b5015 | 697 | uid->uidByte[uidIndex + count] = buffer[index++]; |
AtomX | 0:1d9c7c0b5015 | 698 | } |
AtomX | 0:1d9c7c0b5015 | 699 | |
AtomX | 0:1d9c7c0b5015 | 700 | // Check response SAK (Select Acknowledge) |
AtomX | 0:1d9c7c0b5015 | 701 | if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). |
AtomX | 0:1d9c7c0b5015 | 702 | return STATUS_ERROR; |
AtomX | 0:1d9c7c0b5015 | 703 | } |
AtomX | 0:1d9c7c0b5015 | 704 | // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. |
AtomX | 0:1d9c7c0b5015 | 705 | result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); |
AtomX | 0:1d9c7c0b5015 | 706 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 707 | { |
AtomX | 0:1d9c7c0b5015 | 708 | return result; |
AtomX | 0:1d9c7c0b5015 | 709 | } |
AtomX | 0:1d9c7c0b5015 | 710 | if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) |
AtomX | 0:1d9c7c0b5015 | 711 | { |
AtomX | 0:1d9c7c0b5015 | 712 | return STATUS_CRC_WRONG; |
AtomX | 0:1d9c7c0b5015 | 713 | } |
AtomX | 0:1d9c7c0b5015 | 714 | if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes |
AtomX | 0:1d9c7c0b5015 | 715 | cascadeLevel++; |
AtomX | 0:1d9c7c0b5015 | 716 | } |
AtomX | 0:1d9c7c0b5015 | 717 | else |
AtomX | 0:1d9c7c0b5015 | 718 | { |
AtomX | 0:1d9c7c0b5015 | 719 | uidComplete = true; |
AtomX | 0:1d9c7c0b5015 | 720 | uid->sak = responseBuffer[0]; |
AtomX | 0:1d9c7c0b5015 | 721 | } |
AtomX | 0:1d9c7c0b5015 | 722 | } // End of while ( ! uidComplete) |
AtomX | 0:1d9c7c0b5015 | 723 | |
AtomX | 0:1d9c7c0b5015 | 724 | // Set correct uid->size |
AtomX | 0:1d9c7c0b5015 | 725 | uid->size = 3 * cascadeLevel + 1; |
AtomX | 0:1d9c7c0b5015 | 726 | |
AtomX | 0:1d9c7c0b5015 | 727 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 728 | } // End PICC_Select() |
AtomX | 0:1d9c7c0b5015 | 729 | |
AtomX | 0:1d9c7c0b5015 | 730 | /** |
AtomX | 0:1d9c7c0b5015 | 731 | * Instructs a PICC in state ACTIVE(*) to go to state HALT. |
AtomX | 0:1d9c7c0b5015 | 732 | * |
AtomX | 0:1d9c7c0b5015 | 733 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 734 | */ |
AtomX | 0:1d9c7c0b5015 | 735 | uint8_t MFRC522::PICC_HaltA() |
AtomX | 0:1d9c7c0b5015 | 736 | { |
AtomX | 0:1d9c7c0b5015 | 737 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 738 | uint8_t buffer[4]; |
AtomX | 0:1d9c7c0b5015 | 739 | |
AtomX | 0:1d9c7c0b5015 | 740 | // Build command buffer |
AtomX | 0:1d9c7c0b5015 | 741 | buffer[0] = PICC_CMD_HLTA; |
AtomX | 0:1d9c7c0b5015 | 742 | buffer[1] = 0; |
AtomX | 0:1d9c7c0b5015 | 743 | // Calculate CRC_A |
AtomX | 0:1d9c7c0b5015 | 744 | result = PCD_CalculateCRC(buffer, 2, &buffer[2]); |
AtomX | 0:1d9c7c0b5015 | 745 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 746 | { |
AtomX | 0:1d9c7c0b5015 | 747 | return result; |
AtomX | 0:1d9c7c0b5015 | 748 | } |
AtomX | 0:1d9c7c0b5015 | 749 | |
AtomX | 0:1d9c7c0b5015 | 750 | // Send the command. |
AtomX | 0:1d9c7c0b5015 | 751 | // The standard says: |
AtomX | 0:1d9c7c0b5015 | 752 | // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the |
AtomX | 0:1d9c7c0b5015 | 753 | // HLTA command, this response shall be interpreted as 'not acknowledge'. |
AtomX | 0:1d9c7c0b5015 | 754 | // We interpret that this way: Only STATUS_TIMEOUT is an success. |
AtomX | 0:1d9c7c0b5015 | 755 | result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0); |
AtomX | 0:1d9c7c0b5015 | 756 | if (result == STATUS_TIMEOUT) |
AtomX | 0:1d9c7c0b5015 | 757 | { |
AtomX | 0:1d9c7c0b5015 | 758 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 759 | } |
AtomX | 0:1d9c7c0b5015 | 760 | if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) |
AtomX | 0:1d9c7c0b5015 | 761 | return STATUS_ERROR; |
AtomX | 0:1d9c7c0b5015 | 762 | } |
AtomX | 0:1d9c7c0b5015 | 763 | return result; |
AtomX | 0:1d9c7c0b5015 | 764 | } // End PICC_HaltA() |
AtomX | 0:1d9c7c0b5015 | 765 | |
AtomX | 0:1d9c7c0b5015 | 766 | |
AtomX | 0:1d9c7c0b5015 | 767 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 768 | // Functions for communicating with MIFARE PICCs |
AtomX | 0:1d9c7c0b5015 | 769 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 770 | |
AtomX | 0:1d9c7c0b5015 | 771 | /** |
AtomX | 0:1d9c7c0b5015 | 772 | * Executes the MFRC522 MFAuthent command. |
AtomX | 0:1d9c7c0b5015 | 773 | * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. |
AtomX | 0:1d9c7c0b5015 | 774 | * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. |
AtomX | 0:1d9c7c0b5015 | 775 | * For use with MIFARE Classic PICCs. |
AtomX | 0:1d9c7c0b5015 | 776 | * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. |
AtomX | 0:1d9c7c0b5015 | 777 | * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. |
AtomX | 0:1d9c7c0b5015 | 778 | * |
AtomX | 0:1d9c7c0b5015 | 779 | * All keys are set to FFFFFFFFFFFFh at chip delivery. |
AtomX | 0:1d9c7c0b5015 | 780 | * |
AtomX | 0:1d9c7c0b5015 | 781 | * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. |
AtomX | 0:1d9c7c0b5015 | 782 | */ |
AtomX | 0:1d9c7c0b5015 | 783 | uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid) |
AtomX | 0:1d9c7c0b5015 | 784 | { |
AtomX | 0:1d9c7c0b5015 | 785 | uint8_t waitIRq = 0x10; // IdleIRq |
AtomX | 0:1d9c7c0b5015 | 786 | |
AtomX | 0:1d9c7c0b5015 | 787 | // Build command buffer |
AtomX | 0:1d9c7c0b5015 | 788 | uint8_t sendData[12]; |
AtomX | 0:1d9c7c0b5015 | 789 | sendData[0] = command; |
AtomX | 0:1d9c7c0b5015 | 790 | sendData[1] = blockAddr; |
AtomX | 0:1d9c7c0b5015 | 791 | for (uint8_t i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes |
AtomX | 0:1d9c7c0b5015 | 792 | sendData[2+i] = key->keyByte[i]; |
AtomX | 0:1d9c7c0b5015 | 793 | } |
AtomX | 0:1d9c7c0b5015 | 794 | for (uint8_t i = 0; i < 4; i++) { // The first 4 bytes of the UID |
AtomX | 0:1d9c7c0b5015 | 795 | sendData[8+i] = uid->uidByte[i]; |
AtomX | 0:1d9c7c0b5015 | 796 | } |
AtomX | 0:1d9c7c0b5015 | 797 | |
AtomX | 0:1d9c7c0b5015 | 798 | // Start the authentication. |
AtomX | 0:1d9c7c0b5015 | 799 | return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData)); |
AtomX | 0:1d9c7c0b5015 | 800 | } // End PCD_Authenticate() |
AtomX | 0:1d9c7c0b5015 | 801 | |
AtomX | 0:1d9c7c0b5015 | 802 | /** |
AtomX | 0:1d9c7c0b5015 | 803 | * Used to exit the PCD from its authenticated state. |
AtomX | 0:1d9c7c0b5015 | 804 | * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. |
AtomX | 0:1d9c7c0b5015 | 805 | */ |
AtomX | 0:1d9c7c0b5015 | 806 | void MFRC522::PCD_StopCrypto1() |
AtomX | 0:1d9c7c0b5015 | 807 | { |
AtomX | 0:1d9c7c0b5015 | 808 | // Clear MFCrypto1On bit |
AtomX | 0:1d9c7c0b5015 | 809 | PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] |
AtomX | 0:1d9c7c0b5015 | 810 | } // End PCD_StopCrypto1() |
AtomX | 0:1d9c7c0b5015 | 811 | |
AtomX | 0:1d9c7c0b5015 | 812 | /** |
AtomX | 0:1d9c7c0b5015 | 813 | * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. |
AtomX | 0:1d9c7c0b5015 | 814 | * |
AtomX | 0:1d9c7c0b5015 | 815 | * For MIFARE Classic the sector containing the block must be authenticated before calling this function. |
AtomX | 0:1d9c7c0b5015 | 816 | * |
AtomX | 0:1d9c7c0b5015 | 817 | * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. |
AtomX | 0:1d9c7c0b5015 | 818 | * The MF0ICU1 returns a NAK for higher addresses. |
AtomX | 0:1d9c7c0b5015 | 819 | * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. |
AtomX | 0:1d9c7c0b5015 | 820 | * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. |
AtomX | 0:1d9c7c0b5015 | 821 | * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. |
AtomX | 0:1d9c7c0b5015 | 822 | * |
AtomX | 0:1d9c7c0b5015 | 823 | * The buffer must be at least 18 bytes because a CRC_A is also returned. |
AtomX | 0:1d9c7c0b5015 | 824 | * Checks the CRC_A before returning STATUS_OK. |
AtomX | 0:1d9c7c0b5015 | 825 | * |
AtomX | 0:1d9c7c0b5015 | 826 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 827 | */ |
AtomX | 0:1d9c7c0b5015 | 828 | uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize) |
AtomX | 0:1d9c7c0b5015 | 829 | { |
AtomX | 0:1d9c7c0b5015 | 830 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 831 | |
AtomX | 0:1d9c7c0b5015 | 832 | // Sanity check |
AtomX | 0:1d9c7c0b5015 | 833 | if (buffer == NULL || *bufferSize < 18) |
AtomX | 0:1d9c7c0b5015 | 834 | { |
AtomX | 0:1d9c7c0b5015 | 835 | return STATUS_NO_ROOM; |
AtomX | 0:1d9c7c0b5015 | 836 | } |
AtomX | 0:1d9c7c0b5015 | 837 | |
AtomX | 0:1d9c7c0b5015 | 838 | // Build command buffer |
AtomX | 0:1d9c7c0b5015 | 839 | buffer[0] = PICC_CMD_MF_READ; |
AtomX | 0:1d9c7c0b5015 | 840 | buffer[1] = blockAddr; |
AtomX | 0:1d9c7c0b5015 | 841 | // Calculate CRC_A |
AtomX | 0:1d9c7c0b5015 | 842 | result = PCD_CalculateCRC(buffer, 2, &buffer[2]); |
AtomX | 0:1d9c7c0b5015 | 843 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 844 | { |
AtomX | 0:1d9c7c0b5015 | 845 | return result; |
AtomX | 0:1d9c7c0b5015 | 846 | } |
AtomX | 0:1d9c7c0b5015 | 847 | |
AtomX | 0:1d9c7c0b5015 | 848 | // Transmit the buffer and receive the response, validate CRC_A. |
AtomX | 0:1d9c7c0b5015 | 849 | return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true); |
AtomX | 0:1d9c7c0b5015 | 850 | } // End MIFARE_Read() |
AtomX | 0:1d9c7c0b5015 | 851 | |
AtomX | 0:1d9c7c0b5015 | 852 | /** |
AtomX | 0:1d9c7c0b5015 | 853 | * Writes 16 bytes to the active PICC. |
AtomX | 0:1d9c7c0b5015 | 854 | * |
AtomX | 0:1d9c7c0b5015 | 855 | * For MIFARE Classic the sector containing the block must be authenticated before calling this function. |
AtomX | 0:1d9c7c0b5015 | 856 | * |
AtomX | 0:1d9c7c0b5015 | 857 | * For MIFARE Ultralight the opretaion is called "COMPATIBILITY WRITE". |
AtomX | 0:1d9c7c0b5015 | 858 | * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) |
AtomX | 0:1d9c7c0b5015 | 859 | * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. |
AtomX | 0:1d9c7c0b5015 | 860 | * * |
AtomX | 0:1d9c7c0b5015 | 861 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 862 | */ |
AtomX | 0:1d9c7c0b5015 | 863 | uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize) |
AtomX | 0:1d9c7c0b5015 | 864 | { |
AtomX | 0:1d9c7c0b5015 | 865 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 866 | |
AtomX | 0:1d9c7c0b5015 | 867 | // Sanity check |
AtomX | 0:1d9c7c0b5015 | 868 | if (buffer == NULL || bufferSize < 16) |
AtomX | 0:1d9c7c0b5015 | 869 | { |
AtomX | 0:1d9c7c0b5015 | 870 | return STATUS_INVALID; |
AtomX | 0:1d9c7c0b5015 | 871 | } |
AtomX | 0:1d9c7c0b5015 | 872 | |
AtomX | 0:1d9c7c0b5015 | 873 | // Mifare Classic protocol requires two communications to perform a write. |
AtomX | 0:1d9c7c0b5015 | 874 | // Step 1: Tell the PICC we want to write to block blockAddr. |
AtomX | 0:1d9c7c0b5015 | 875 | uint8_t cmdBuffer[2]; |
AtomX | 0:1d9c7c0b5015 | 876 | cmdBuffer[0] = PICC_CMD_MF_WRITE; |
AtomX | 0:1d9c7c0b5015 | 877 | cmdBuffer[1] = blockAddr; |
AtomX | 0:1d9c7c0b5015 | 878 | result = PCD_MIFARE_Transceive(cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. |
AtomX | 0:1d9c7c0b5015 | 879 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 880 | { |
AtomX | 0:1d9c7c0b5015 | 881 | return result; |
AtomX | 0:1d9c7c0b5015 | 882 | } |
AtomX | 0:1d9c7c0b5015 | 883 | |
AtomX | 0:1d9c7c0b5015 | 884 | // Step 2: Transfer the data |
AtomX | 0:1d9c7c0b5015 | 885 | result = PCD_MIFARE_Transceive( buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK. |
AtomX | 0:1d9c7c0b5015 | 886 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 887 | { |
AtomX | 0:1d9c7c0b5015 | 888 | return result; |
AtomX | 0:1d9c7c0b5015 | 889 | } |
AtomX | 0:1d9c7c0b5015 | 890 | |
AtomX | 0:1d9c7c0b5015 | 891 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 892 | } // End MIFARE_Write() |
AtomX | 0:1d9c7c0b5015 | 893 | |
AtomX | 0:1d9c7c0b5015 | 894 | /** |
AtomX | 0:1d9c7c0b5015 | 895 | * Writes a 4 byte page to the active MIFARE Ultralight PICC. |
AtomX | 0:1d9c7c0b5015 | 896 | * |
AtomX | 0:1d9c7c0b5015 | 897 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 898 | */ |
AtomX | 0:1d9c7c0b5015 | 899 | uint8_t MFRC522::MIFARE_Ultralight_Write(uint8_t page, uint8_t *buffer, uint8_t bufferSize) |
AtomX | 0:1d9c7c0b5015 | 900 | { |
AtomX | 0:1d9c7c0b5015 | 901 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 902 | |
AtomX | 0:1d9c7c0b5015 | 903 | // Sanity check |
AtomX | 0:1d9c7c0b5015 | 904 | if (buffer == NULL || bufferSize < 4) |
AtomX | 0:1d9c7c0b5015 | 905 | { |
AtomX | 0:1d9c7c0b5015 | 906 | return STATUS_INVALID; |
AtomX | 0:1d9c7c0b5015 | 907 | } |
AtomX | 0:1d9c7c0b5015 | 908 | |
AtomX | 0:1d9c7c0b5015 | 909 | // Build commmand buffer |
AtomX | 0:1d9c7c0b5015 | 910 | uint8_t cmdBuffer[6]; |
AtomX | 0:1d9c7c0b5015 | 911 | cmdBuffer[0] = PICC_CMD_UL_WRITE; |
AtomX | 0:1d9c7c0b5015 | 912 | cmdBuffer[1] = page; |
AtomX | 0:1d9c7c0b5015 | 913 | memcpy(&cmdBuffer[2], buffer, 4); |
AtomX | 0:1d9c7c0b5015 | 914 | |
AtomX | 0:1d9c7c0b5015 | 915 | // Perform the write |
AtomX | 0:1d9c7c0b5015 | 916 | result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK. |
AtomX | 0:1d9c7c0b5015 | 917 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 918 | { |
AtomX | 0:1d9c7c0b5015 | 919 | return result; |
AtomX | 0:1d9c7c0b5015 | 920 | } |
AtomX | 0:1d9c7c0b5015 | 921 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 922 | } // End MIFARE_Ultralight_Write() |
AtomX | 0:1d9c7c0b5015 | 923 | |
AtomX | 0:1d9c7c0b5015 | 924 | /** |
AtomX | 0:1d9c7c0b5015 | 925 | * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. |
AtomX | 0:1d9c7c0b5015 | 926 | * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. |
AtomX | 0:1d9c7c0b5015 | 927 | * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. |
AtomX | 0:1d9c7c0b5015 | 928 | * Use MIFARE_Transfer() to store the result in a block. |
AtomX | 0:1d9c7c0b5015 | 929 | * |
AtomX | 0:1d9c7c0b5015 | 930 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 931 | */ |
AtomX | 0:1d9c7c0b5015 | 932 | uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta) |
AtomX | 0:1d9c7c0b5015 | 933 | { |
AtomX | 0:1d9c7c0b5015 | 934 | return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta); |
AtomX | 0:1d9c7c0b5015 | 935 | } // End MIFARE_Decrement() |
AtomX | 0:1d9c7c0b5015 | 936 | |
AtomX | 0:1d9c7c0b5015 | 937 | /** |
AtomX | 0:1d9c7c0b5015 | 938 | * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. |
AtomX | 0:1d9c7c0b5015 | 939 | * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. |
AtomX | 0:1d9c7c0b5015 | 940 | * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. |
AtomX | 0:1d9c7c0b5015 | 941 | * Use MIFARE_Transfer() to store the result in a block. |
AtomX | 0:1d9c7c0b5015 | 942 | * |
AtomX | 0:1d9c7c0b5015 | 943 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 944 | */ |
AtomX | 0:1d9c7c0b5015 | 945 | uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta) |
AtomX | 0:1d9c7c0b5015 | 946 | { |
AtomX | 0:1d9c7c0b5015 | 947 | return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta); |
AtomX | 0:1d9c7c0b5015 | 948 | } // End MIFARE_Increment() |
AtomX | 0:1d9c7c0b5015 | 949 | |
AtomX | 0:1d9c7c0b5015 | 950 | /** |
AtomX | 0:1d9c7c0b5015 | 951 | * MIFARE Restore copies the value of the addressed block into a volatile memory. |
AtomX | 0:1d9c7c0b5015 | 952 | * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. |
AtomX | 0:1d9c7c0b5015 | 953 | * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. |
AtomX | 0:1d9c7c0b5015 | 954 | * Use MIFARE_Transfer() to store the result in a block. |
AtomX | 0:1d9c7c0b5015 | 955 | * |
AtomX | 0:1d9c7c0b5015 | 956 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 957 | */ |
AtomX | 0:1d9c7c0b5015 | 958 | uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr) |
AtomX | 0:1d9c7c0b5015 | 959 | { |
AtomX | 0:1d9c7c0b5015 | 960 | // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. |
AtomX | 0:1d9c7c0b5015 | 961 | // Doing only a single step does not work, so I chose to transfer 0L in step two. |
AtomX | 0:1d9c7c0b5015 | 962 | return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L); |
AtomX | 0:1d9c7c0b5015 | 963 | } // End MIFARE_Restore() |
AtomX | 0:1d9c7c0b5015 | 964 | |
AtomX | 0:1d9c7c0b5015 | 965 | /** |
AtomX | 0:1d9c7c0b5015 | 966 | * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. |
AtomX | 0:1d9c7c0b5015 | 967 | * |
AtomX | 0:1d9c7c0b5015 | 968 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 969 | */ |
AtomX | 0:1d9c7c0b5015 | 970 | uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data) |
AtomX | 0:1d9c7c0b5015 | 971 | { |
AtomX | 0:1d9c7c0b5015 | 972 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 973 | uint8_t cmdBuffer[2]; // We only need room for 2 bytes. |
AtomX | 0:1d9c7c0b5015 | 974 | |
AtomX | 0:1d9c7c0b5015 | 975 | // Step 1: Tell the PICC the command and block address |
AtomX | 0:1d9c7c0b5015 | 976 | cmdBuffer[0] = command; |
AtomX | 0:1d9c7c0b5015 | 977 | cmdBuffer[1] = blockAddr; |
AtomX | 0:1d9c7c0b5015 | 978 | result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. |
AtomX | 0:1d9c7c0b5015 | 979 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 980 | { |
AtomX | 0:1d9c7c0b5015 | 981 | return result; |
AtomX | 0:1d9c7c0b5015 | 982 | } |
AtomX | 0:1d9c7c0b5015 | 983 | |
AtomX | 0:1d9c7c0b5015 | 984 | // Step 2: Transfer the data |
AtomX | 0:1d9c7c0b5015 | 985 | result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true); // Adds CRC_A and accept timeout as success. |
AtomX | 0:1d9c7c0b5015 | 986 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 987 | { |
AtomX | 0:1d9c7c0b5015 | 988 | return result; |
AtomX | 0:1d9c7c0b5015 | 989 | } |
AtomX | 0:1d9c7c0b5015 | 990 | |
AtomX | 0:1d9c7c0b5015 | 991 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 992 | } // End MIFARE_TwoStepHelper() |
AtomX | 0:1d9c7c0b5015 | 993 | |
AtomX | 0:1d9c7c0b5015 | 994 | /** |
AtomX | 0:1d9c7c0b5015 | 995 | * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. |
AtomX | 0:1d9c7c0b5015 | 996 | * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. |
AtomX | 0:1d9c7c0b5015 | 997 | * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. |
AtomX | 0:1d9c7c0b5015 | 998 | * |
AtomX | 0:1d9c7c0b5015 | 999 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 1000 | */ |
AtomX | 0:1d9c7c0b5015 | 1001 | uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr) |
AtomX | 0:1d9c7c0b5015 | 1002 | { |
AtomX | 0:1d9c7c0b5015 | 1003 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 1004 | uint8_t cmdBuffer[2]; // We only need room for 2 bytes. |
AtomX | 0:1d9c7c0b5015 | 1005 | |
AtomX | 0:1d9c7c0b5015 | 1006 | // Tell the PICC we want to transfer the result into block blockAddr. |
AtomX | 0:1d9c7c0b5015 | 1007 | cmdBuffer[0] = PICC_CMD_MF_TRANSFER; |
AtomX | 0:1d9c7c0b5015 | 1008 | cmdBuffer[1] = blockAddr; |
AtomX | 0:1d9c7c0b5015 | 1009 | result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. |
AtomX | 0:1d9c7c0b5015 | 1010 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 1011 | { |
AtomX | 0:1d9c7c0b5015 | 1012 | return result; |
AtomX | 0:1d9c7c0b5015 | 1013 | } |
AtomX | 0:1d9c7c0b5015 | 1014 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 1015 | } // End MIFARE_Transfer() |
AtomX | 0:1d9c7c0b5015 | 1016 | |
AtomX | 0:1d9c7c0b5015 | 1017 | |
AtomX | 0:1d9c7c0b5015 | 1018 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 1019 | // Support functions |
AtomX | 0:1d9c7c0b5015 | 1020 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 1021 | |
AtomX | 0:1d9c7c0b5015 | 1022 | /** |
AtomX | 0:1d9c7c0b5015 | 1023 | * Wrapper for MIFARE protocol communication. |
AtomX | 0:1d9c7c0b5015 | 1024 | * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. |
AtomX | 0:1d9c7c0b5015 | 1025 | * |
AtomX | 0:1d9c7c0b5015 | 1026 | * @return STATUS_OK on success, STATUS_??? otherwise. |
AtomX | 0:1d9c7c0b5015 | 1027 | */ |
AtomX | 0:1d9c7c0b5015 | 1028 | uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout) |
AtomX | 0:1d9c7c0b5015 | 1029 | { |
AtomX | 0:1d9c7c0b5015 | 1030 | uint8_t result; |
AtomX | 0:1d9c7c0b5015 | 1031 | uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. |
AtomX | 0:1d9c7c0b5015 | 1032 | |
AtomX | 0:1d9c7c0b5015 | 1033 | // Sanity check |
AtomX | 0:1d9c7c0b5015 | 1034 | if (sendData == NULL || sendLen > 16) |
AtomX | 0:1d9c7c0b5015 | 1035 | { |
AtomX | 0:1d9c7c0b5015 | 1036 | return STATUS_INVALID; |
AtomX | 0:1d9c7c0b5015 | 1037 | } |
AtomX | 0:1d9c7c0b5015 | 1038 | |
AtomX | 0:1d9c7c0b5015 | 1039 | // Copy sendData[] to cmdBuffer[] and add CRC_A |
AtomX | 0:1d9c7c0b5015 | 1040 | memcpy(cmdBuffer, sendData, sendLen); |
AtomX | 0:1d9c7c0b5015 | 1041 | result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]); |
AtomX | 0:1d9c7c0b5015 | 1042 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 1043 | { |
AtomX | 0:1d9c7c0b5015 | 1044 | return result; |
AtomX | 0:1d9c7c0b5015 | 1045 | } |
AtomX | 0:1d9c7c0b5015 | 1046 | sendLen += 2; |
AtomX | 0:1d9c7c0b5015 | 1047 | |
AtomX | 0:1d9c7c0b5015 | 1048 | // Transceive the data, store the reply in cmdBuffer[] |
AtomX | 0:1d9c7c0b5015 | 1049 | uint8_t waitIRq = 0x30; // RxIRq and IdleIRq |
AtomX | 0:1d9c7c0b5015 | 1050 | uint8_t cmdBufferSize = sizeof(cmdBuffer); |
AtomX | 0:1d9c7c0b5015 | 1051 | uint8_t validBits = 0; |
AtomX | 0:1d9c7c0b5015 | 1052 | result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits); |
AtomX | 0:1d9c7c0b5015 | 1053 | if (acceptTimeout && result == STATUS_TIMEOUT) |
AtomX | 0:1d9c7c0b5015 | 1054 | { |
AtomX | 0:1d9c7c0b5015 | 1055 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 1056 | } |
AtomX | 0:1d9c7c0b5015 | 1057 | |
AtomX | 0:1d9c7c0b5015 | 1058 | if (result != STATUS_OK) |
AtomX | 0:1d9c7c0b5015 | 1059 | { |
AtomX | 0:1d9c7c0b5015 | 1060 | return result; |
AtomX | 0:1d9c7c0b5015 | 1061 | } |
AtomX | 0:1d9c7c0b5015 | 1062 | |
AtomX | 0:1d9c7c0b5015 | 1063 | // The PICC must reply with a 4 bit ACK |
AtomX | 0:1d9c7c0b5015 | 1064 | if (cmdBufferSize != 1 || validBits != 4) |
AtomX | 0:1d9c7c0b5015 | 1065 | { |
AtomX | 0:1d9c7c0b5015 | 1066 | return STATUS_ERROR; |
AtomX | 0:1d9c7c0b5015 | 1067 | } |
AtomX | 0:1d9c7c0b5015 | 1068 | |
AtomX | 0:1d9c7c0b5015 | 1069 | if (cmdBuffer[0] != MF_ACK) |
AtomX | 0:1d9c7c0b5015 | 1070 | { |
AtomX | 0:1d9c7c0b5015 | 1071 | return STATUS_MIFARE_NACK; |
AtomX | 0:1d9c7c0b5015 | 1072 | } |
AtomX | 0:1d9c7c0b5015 | 1073 | |
AtomX | 0:1d9c7c0b5015 | 1074 | return STATUS_OK; |
AtomX | 0:1d9c7c0b5015 | 1075 | } // End PCD_MIFARE_Transceive() |
AtomX | 0:1d9c7c0b5015 | 1076 | |
AtomX | 0:1d9c7c0b5015 | 1077 | |
AtomX | 0:1d9c7c0b5015 | 1078 | /** |
AtomX | 0:1d9c7c0b5015 | 1079 | * Translates the SAK (Select Acknowledge) to a PICC type. |
AtomX | 0:1d9c7c0b5015 | 1080 | * |
AtomX | 0:1d9c7c0b5015 | 1081 | * @return PICC_Type |
AtomX | 0:1d9c7c0b5015 | 1082 | */ |
AtomX | 0:1d9c7c0b5015 | 1083 | uint8_t MFRC522::PICC_GetType(uint8_t sak) |
AtomX | 0:1d9c7c0b5015 | 1084 | { |
AtomX | 0:1d9c7c0b5015 | 1085 | uint8_t retType = PICC_TYPE_UNKNOWN; |
AtomX | 0:1d9c7c0b5015 | 1086 | |
AtomX | 0:1d9c7c0b5015 | 1087 | if (sak & 0x04) // UID not complete |
AtomX | 0:1d9c7c0b5015 | 1088 | { |
AtomX | 0:1d9c7c0b5015 | 1089 | retType = PICC_TYPE_NOT_COMPLETE; |
AtomX | 0:1d9c7c0b5015 | 1090 | } |
AtomX | 0:1d9c7c0b5015 | 1091 | else |
AtomX | 0:1d9c7c0b5015 | 1092 | { |
AtomX | 0:1d9c7c0b5015 | 1093 | switch (sak) |
AtomX | 0:1d9c7c0b5015 | 1094 | { |
AtomX | 0:1d9c7c0b5015 | 1095 | case 0x09: retType = PICC_TYPE_MIFARE_MINI; break; |
AtomX | 0:1d9c7c0b5015 | 1096 | case 0x08: retType = PICC_TYPE_MIFARE_1K; break; |
AtomX | 0:1d9c7c0b5015 | 1097 | case 0x18: retType = PICC_TYPE_MIFARE_4K; break; |
AtomX | 0:1d9c7c0b5015 | 1098 | case 0x00: retType = PICC_TYPE_MIFARE_UL; break; |
AtomX | 0:1d9c7c0b5015 | 1099 | case 0x10: |
AtomX | 0:1d9c7c0b5015 | 1100 | case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break; |
AtomX | 0:1d9c7c0b5015 | 1101 | case 0x01: retType = PICC_TYPE_TNP3XXX; break; |
AtomX | 0:1d9c7c0b5015 | 1102 | default: |
AtomX | 0:1d9c7c0b5015 | 1103 | if (sak & 0x20) |
AtomX | 0:1d9c7c0b5015 | 1104 | { |
AtomX | 0:1d9c7c0b5015 | 1105 | retType = PICC_TYPE_ISO_14443_4; |
AtomX | 0:1d9c7c0b5015 | 1106 | } |
AtomX | 0:1d9c7c0b5015 | 1107 | else if (sak & 0x40) |
AtomX | 0:1d9c7c0b5015 | 1108 | { |
AtomX | 0:1d9c7c0b5015 | 1109 | retType = PICC_TYPE_ISO_18092; |
AtomX | 0:1d9c7c0b5015 | 1110 | } |
AtomX | 0:1d9c7c0b5015 | 1111 | break; |
AtomX | 0:1d9c7c0b5015 | 1112 | } |
AtomX | 0:1d9c7c0b5015 | 1113 | } |
AtomX | 0:1d9c7c0b5015 | 1114 | |
AtomX | 0:1d9c7c0b5015 | 1115 | return (retType); |
AtomX | 0:1d9c7c0b5015 | 1116 | } // End PICC_GetType() |
AtomX | 0:1d9c7c0b5015 | 1117 | |
AtomX | 0:1d9c7c0b5015 | 1118 | /** |
AtomX | 0:1d9c7c0b5015 | 1119 | * Returns a string pointer to the PICC type name. |
AtomX | 0:1d9c7c0b5015 | 1120 | * |
AtomX | 0:1d9c7c0b5015 | 1121 | */ |
AtomX | 0:1d9c7c0b5015 | 1122 | std::string MFRC522::PICC_GetTypeName(uint8_t piccType) |
AtomX | 0:1d9c7c0b5015 | 1123 | { |
AtomX | 0:1d9c7c0b5015 | 1124 | if(piccType == PICC_TYPE_NOT_COMPLETE) |
AtomX | 0:1d9c7c0b5015 | 1125 | { |
AtomX | 0:1d9c7c0b5015 | 1126 | return ("SAK indicates UID is not complete."); |
AtomX | 0:1d9c7c0b5015 | 1127 | } |
AtomX | 0:1d9c7c0b5015 | 1128 | |
AtomX | 0:1d9c7c0b5015 | 1129 | return(_TypeNamePICC[piccType]); |
AtomX | 0:1d9c7c0b5015 | 1130 | } // End PICC_GetTypeName() |
AtomX | 0:1d9c7c0b5015 | 1131 | |
AtomX | 0:1d9c7c0b5015 | 1132 | /** |
AtomX | 0:1d9c7c0b5015 | 1133 | * Returns a string pointer to a status code name. |
AtomX | 0:1d9c7c0b5015 | 1134 | * |
AtomX | 0:1d9c7c0b5015 | 1135 | */ |
AtomX | 0:1d9c7c0b5015 | 1136 | std::string MFRC522::GetStatusCodeName(uint8_t code) |
AtomX | 0:1d9c7c0b5015 | 1137 | { |
AtomX | 0:1d9c7c0b5015 | 1138 | return(_ErrorMessage[code]); |
AtomX | 0:1d9c7c0b5015 | 1139 | } // End GetStatusCodeName() |
AtomX | 0:1d9c7c0b5015 | 1140 | |
AtomX | 0:1d9c7c0b5015 | 1141 | /** |
AtomX | 0:1d9c7c0b5015 | 1142 | * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). |
AtomX | 0:1d9c7c0b5015 | 1143 | */ |
AtomX | 0:1d9c7c0b5015 | 1144 | void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. |
AtomX | 0:1d9c7c0b5015 | 1145 | uint8_t g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) |
AtomX | 0:1d9c7c0b5015 | 1146 | uint8_t g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) |
AtomX | 0:1d9c7c0b5015 | 1147 | uint8_t g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) |
AtomX | 0:1d9c7c0b5015 | 1148 | uint8_t g3) ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) |
AtomX | 0:1d9c7c0b5015 | 1149 | { |
AtomX | 0:1d9c7c0b5015 | 1150 | uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); |
AtomX | 0:1d9c7c0b5015 | 1151 | uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); |
AtomX | 0:1d9c7c0b5015 | 1152 | uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); |
AtomX | 0:1d9c7c0b5015 | 1153 | |
AtomX | 0:1d9c7c0b5015 | 1154 | accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); |
AtomX | 0:1d9c7c0b5015 | 1155 | accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF); |
AtomX | 0:1d9c7c0b5015 | 1156 | accessBitBuffer[2] = c3 << 4 | c2; |
AtomX | 0:1d9c7c0b5015 | 1157 | } // End MIFARE_SetAccessBits() |
AtomX | 0:1d9c7c0b5015 | 1158 | |
AtomX | 0:1d9c7c0b5015 | 1159 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 1160 | // Convenience functions - does not add extra functionality |
AtomX | 0:1d9c7c0b5015 | 1161 | ///////////////////////////////////////////////////////////////////////////////////// |
AtomX | 0:1d9c7c0b5015 | 1162 | |
AtomX | 0:1d9c7c0b5015 | 1163 | /** |
AtomX | 0:1d9c7c0b5015 | 1164 | * Returns true if a PICC responds to PICC_CMD_REQA. |
AtomX | 0:1d9c7c0b5015 | 1165 | * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. |
AtomX | 0:1d9c7c0b5015 | 1166 | * |
AtomX | 0:1d9c7c0b5015 | 1167 | * @return bool |
AtomX | 0:1d9c7c0b5015 | 1168 | */ |
AtomX | 0:1d9c7c0b5015 | 1169 | bool MFRC522::PICC_IsNewCardPresent() |
AtomX | 0:1d9c7c0b5015 | 1170 | { |
AtomX | 0:1d9c7c0b5015 | 1171 | uint8_t bufferATQA[2]; |
AtomX | 0:1d9c7c0b5015 | 1172 | uint8_t bufferSize = sizeof(bufferATQA); |
AtomX | 0:1d9c7c0b5015 | 1173 | uint8_t result = PICC_RequestA(bufferATQA, &bufferSize); |
AtomX | 0:1d9c7c0b5015 | 1174 | return (result == STATUS_OK || result == STATUS_COLLISION); |
AtomX | 0:1d9c7c0b5015 | 1175 | } // End PICC_IsNewCardPresent() |
AtomX | 0:1d9c7c0b5015 | 1176 | |
AtomX | 0:1d9c7c0b5015 | 1177 | /** |
AtomX | 0:1d9c7c0b5015 | 1178 | * Simple wrapper around PICC_Select. |
AtomX | 0:1d9c7c0b5015 | 1179 | * Returns true if a UID could be read. |
AtomX | 0:1d9c7c0b5015 | 1180 | * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. |
AtomX | 0:1d9c7c0b5015 | 1181 | * The read UID is available in the class variable uid. |
AtomX | 0:1d9c7c0b5015 | 1182 | * |
AtomX | 0:1d9c7c0b5015 | 1183 | * @return bool |
AtomX | 0:1d9c7c0b5015 | 1184 | */ |
AtomX | 0:1d9c7c0b5015 | 1185 | bool MFRC522::PICC_ReadCardSerial() |
AtomX | 0:1d9c7c0b5015 | 1186 | { |
AtomX | 0:1d9c7c0b5015 | 1187 | uint8_t result = PICC_Select(&uid); |
AtomX | 0:1d9c7c0b5015 | 1188 | return (result == STATUS_OK); |
AtomX | 0:1d9c7c0b5015 | 1189 | } // End PICC_ReadCardSerial() |