SCIboard(TM): mbed base board data logger - Altimeter: MPL3115A2 - Accelerometer: LSM303DLHC - Gyro: L3G4200D - 4 High Current MOSFET switches

Dependencies:   mbed

/media/uploads/AstrodyneSystems/sciboard_top.jpg

/media/uploads/AstrodyneSystems/sciboard_bottom.jpg

Product Description

SCIboard will take your model rocketry, science, or engineering project to new heights with a complete 10-Degree-Of-Freedom (10-DOF) Inertial Measurement Unit (IMU), 4 high current MOSFET switches, PWM interface (RC servos), USB (memory sticks or BlueTooth) and interfaces for GPS and an XBee® RF module. The SCIboard is an mbed base board ideal for use in college and high school science labs, science fair projects, high power model rocketry, model airplanes, and near space balloon projects. SCIboard is also designed for Open Source software so you can customize the application. Example applications include high power model rocketry, near space balloon projects, and R/C airplanes/quadcopters. While SCIboard requires some basic electronics and software knowledge, it combines multiple breakout boards into a single base board which improves reliability, especially in high g environments such as in model rocketry. Available on Amazon. Search on "SCIboard".

  • Dimensions: 1.5 x 3.8 inches (3.8 x 9.7 cm)
  • Weight: 0.8 ounces (24 g)

10-DOF Inertial Measurement Unit

Going beyond just the 6 degrees of freedom afforded by a 3-axis accelerometer and 3-axis gyro, SCIboard includes an additional 3-axis magnetometer, and highly accurate altimeter / atmospheric pressure sensor. Sensors provide digital measurements over an I2C shared bus (p27 and p28).

Precision Altimeter

(Freescale Semiconductor – MPL3115A2) MEMS pressure sensor with 24-bit Analog-to-Digital Converter (ADC) employs temperature compensation resulting in fully compensated 20-bit pressure/altitude measurements (resolution down to 1 foot).

  • Pressure range: 50 – 110 kPa.
  • Pressure reading noise: 1.5 Pa RMS over -10 to +70° C. Conversion rate: up to 100 Hz.
  • 12-bit temperature sensor measurement range: -40 to +85° C.

3-Axis MEMS Accelerometer

(STMicroelectronics – LSM303DLHC) The sensor measures linear acceleration. Pointing any axis to the earth will apply 1 g in that axis when stationary.

  • Selectable full scale range: +/-2 g to +/-16 g.
  • Sensitivity: 1 – 12 mg/LSB depending on full scale range.
  • Zero-g level offset: +/-60 mg.
  • Acceleration noise density: 220 micro-g/sqrt(Hz).
  • Operating temp range: -40 to +85° C.
  • Conversion rate up to 400 Hz.

3-Axis Ultra-Stable MEMS Gyroscope

(STMicroelectronics – L3G4200D) A gyroscope is an angular rate sensor.

  • Selectable full scale ranges: 250/500/2000 degrees per second (DPS).
  • Resolution: 16-bit.
  • Bandwidth: user selectable.
  • Sensitivity: 8.75/17.50/70 milli-degrees per second/LSB.
  • Nonlinearity: 0.2% full scale
  • Rate noise density: 0.03 DPS/sqrt(Hz).
  • Operating temp range: -40 to +85°C.

Digital I/O

4 MOSFET switches are included. They provide 6-amperes momentary current sinking. Example uses include high power strobes, and lights for night launches or buzzers for location. Switches can be activated at apogee or prior to landing for model rocketry. A continuity check through an analog to digital converter allows verification of circuit continuity before launch. A piezoelectric buzzer provides software control for audible alert and low battery voltage measurement.

/media/uploads/AstrodyneSystems/mosfet.jpg

Host USB Type-A with 5.0 Vdc regulator

USB Type-A connector wired as a host controller provides regulated 5 volt power from a battery. A variety of USB devices from memory sticks, Bluetooth, and Wi-Fi can be used with multiple software projects from the mbed web site.

XBee® and XBee-PRO® Modules

The XBee-PRO® interface supports multiple different XBee and XBee-PRO modules such as Wi-Fi, ZigBee, 802.15.4, Bluetooth, and longer range 900 MHz RF Modules. Compatible modules are Roving Networks and Digi-International. SCIboard provides dual 10 pin headers with regulated 3.3 volt power (from p40) and serial UART (Tx=p9/Rx=p10). Alternatively if the headers are not installed, the serial port may be connected to a SMS cell phone evaluation module. Since the 3.3 volt provided to XBee modules is from the mbed regulator, the user is responsible for power calculations. Testing was done with RN-XV and a 9-volt battery but higher battery voltages or higher current XBee modules could overheat the 3.3 volt regulator on the mbed. When using XBee modules, the user may need to perform hard/soft iron calibration if using the magnetometer.

Interface for GPS

SCIboard provides a serial UART interface for GPS receivers. It also provides 3.3 and 5.0 Vdc for power and Vbat (battery not included). PCB has 0.1” holes for soldered cable or header of your choice. This provides flexibility to use a variety of GPS modules.

/media/uploads/AstrodyneSystems/gps.jpg

Interface for Ethernet Cable

PCB has 0.1” interface for an Ethernet cable of your choice of Ethernet magnetics interface with LEDs. For Ethernet direct wire, use RD-, RD+, TD+, and TD-. For magnetics, several 3.3 Vdc and Grounds are provided allowing easy interfacing. For both LEDs a 160 ohm resistor is provided. Both LEDs share the 2 PWMs out.

/media/uploads/AstrodyneSystems/ethernet.jpg

Interface for PWM RC Servos

SCIboard provides a Pulse Width Modulation (PWM) header for RC servo motors. Up to 6 PWM servos can be controlled. Terminal block is provided for separate servo power source if desired. If the user chooses to not install the headers, the PCB has 0.1” spacing thru-holes for 3-pin R/C servos. (Pins 21 – 26)

/media/uploads/AstrodyneSystems/pwm.jpg

Applications

A 10-Degree-Of-Freedom Inertial Measurement Unit (IMU) can be used to measure distance traveled, velocity, acceleration, attitude (yaw, pitch, and roll), and attitude rate. When combined with a GPS, SCIboard will provide a GPS aided inertial navigation solutions. The PWM can be used to control a camera attached to a servo motor. This enables near space projects to point the camera up at the weather balloon, horizontally at the earth’s horizon, and down directly at the earth.

  1. College and high school science labs
  2. Science Fairs
  3. High Power Model Rocketry
  4. Near Space Balloons
  5. Quadcopters
  6. R/C Airplanes
  7. R/C Helicopter

Processor Board Support (Direct Pin-Out compatible)

  • mbed LPC1768
  • mbed LPC11U24
  • Embedded Artists LPCexpresso LPC1769
Committer:
AstrodyneSystems
Date:
Sun Apr 06 19:03:29 2014 +0000
Revision:
5:dc778a682d29
Parent:
0:ab51d784ef36
Added ublox GPS

Who changed what in which revision?

UserRevisionLine numberNew contents of line
AstrodyneSystems 0:ab51d784ef36 1 /* SCIboard(TM) LSM303DLHC.cpp
AstrodyneSystems 0:ab51d784ef36 2 Copyright (c) 2013 K. Andres
AstrodyneSystems 0:ab51d784ef36 3
AstrodyneSystems 0:ab51d784ef36 4 Permission is hereby granted, free of charge, to any person obtaining a copy
AstrodyneSystems 0:ab51d784ef36 5 of this software and associated documentation files (the "Software"), to deal
AstrodyneSystems 0:ab51d784ef36 6 in the Software without restriction, including without limitation the rights
AstrodyneSystems 0:ab51d784ef36 7 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
AstrodyneSystems 0:ab51d784ef36 8 copies of the Software, and to permit persons to whom the Software is
AstrodyneSystems 0:ab51d784ef36 9 furnished to do so, subject to the following conditions:
AstrodyneSystems 0:ab51d784ef36 10
AstrodyneSystems 0:ab51d784ef36 11 The above copyright notice and this permission notice shall be included in
AstrodyneSystems 0:ab51d784ef36 12 all copies or substantial portions of the Software.
AstrodyneSystems 0:ab51d784ef36 13
AstrodyneSystems 0:ab51d784ef36 14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
AstrodyneSystems 0:ab51d784ef36 15 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
AstrodyneSystems 0:ab51d784ef36 16 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AstrodyneSystems 0:ab51d784ef36 17 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
AstrodyneSystems 0:ab51d784ef36 18 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
AstrodyneSystems 0:ab51d784ef36 19 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
AstrodyneSystems 0:ab51d784ef36 20 THE SOFTWARE.
AstrodyneSystems 0:ab51d784ef36 21 */
AstrodyneSystems 0:ab51d784ef36 22
AstrodyneSystems 0:ab51d784ef36 23 #include "SCIboard_LSM303DLHC.h"
AstrodyneSystems 0:ab51d784ef36 24
AstrodyneSystems 0:ab51d784ef36 25 SCIboard_LSM303DLHC::SCIboard_LSM303DLHC(SCIboard_I2C *ptr_I2C) {
AstrodyneSystems 0:ab51d784ef36 26 pI2C = ptr_I2C;
AstrodyneSystems 0:ab51d784ef36 27 }
AstrodyneSystems 0:ab51d784ef36 28
AstrodyneSystems 0:ab51d784ef36 29 void SCIboard_LSM303DLHC::getDeviceID(unsigned char *id) {
AstrodyneSystems 0:ab51d784ef36 30 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_IRA_REG, id, 3);
AstrodyneSystems 0:ab51d784ef36 31 }
AstrodyneSystems 0:ab51d784ef36 32
AstrodyneSystems 0:ab51d784ef36 33 // ACCELEROMETER ------------------------------------------------------
AstrodyneSystems 0:ab51d784ef36 34 void SCIboard_LSM303DLHC::setAccMode(unsigned char AccFs, unsigned char AccRate) {
AstrodyneSystems 0:ab51d784ef36 35 unsigned char data[2] = {ACCREG_CTRL_REG1, 0};
AstrodyneSystems 0:ab51d784ef36 36 float sf[] = {2, 4, 8, 16};
AstrodyneSystems 0:ab51d784ef36 37
AstrodyneSystems 0:ab51d784ef36 38 accSF = 32768.0 / sf[AccFs];
AstrodyneSystems 0:ab51d784ef36 39 accRate = AccRate;
AstrodyneSystems 0:ab51d784ef36 40 // printf("AccRate=%u AccFs=%u\r\n", AccRate, AccFs);
AstrodyneSystems 0:ab51d784ef36 41
AstrodyneSystems 0:ab51d784ef36 42 data[1] = 0x07; // Enable accels
AstrodyneSystems 0:ab51d784ef36 43 data[1] |= AccRate << 4;
AstrodyneSystems 0:ab51d784ef36 44 pI2C->writeRegs(ACC_I2C_ADDR, data, 2);
AstrodyneSystems 0:ab51d784ef36 45
AstrodyneSystems 0:ab51d784ef36 46 data[0] = ACCREG_CTRL_REG4;
AstrodyneSystems 0:ab51d784ef36 47 data[1] = AccFs << 4;
AstrodyneSystems 0:ab51d784ef36 48 // data[1] |= 0x80; // Block data update - BDU: 0=continuous
AstrodyneSystems 0:ab51d784ef36 49 pI2C->writeRegs(ACC_I2C_ADDR, data, 2);
AstrodyneSystems 0:ab51d784ef36 50 }
AstrodyneSystems 0:ab51d784ef36 51
AstrodyneSystems 0:ab51d784ef36 52 unsigned char SCIboard_LSM303DLHC::getAccStatus(void) {
AstrodyneSystems 0:ab51d784ef36 53 unsigned char data;
AstrodyneSystems 0:ab51d784ef36 54 pI2C->readRegs(ACC_I2C_ADDR, ACCREG_STATUS, &data, 1);
AstrodyneSystems 0:ab51d784ef36 55 return data;
AstrodyneSystems 0:ab51d784ef36 56 }
AstrodyneSystems 0:ab51d784ef36 57
AstrodyneSystems 0:ab51d784ef36 58 bool SCIboard_LSM303DLHC::bAccDataAvailable(void) {
AstrodyneSystems 0:ab51d784ef36 59 unsigned char data;
AstrodyneSystems 0:ab51d784ef36 60 pI2C->readRegs(ACC_I2C_ADDR, ACCREG_STATUS, &data, 1);
AstrodyneSystems 0:ab51d784ef36 61 if(data & STATUS_REG_ZYXDA) {
AstrodyneSystems 0:ab51d784ef36 62 return 1;
AstrodyneSystems 0:ab51d784ef36 63 }
AstrodyneSystems 0:ab51d784ef36 64 return 0;
AstrodyneSystems 0:ab51d784ef36 65 }
AstrodyneSystems 0:ab51d784ef36 66
AstrodyneSystems 0:ab51d784ef36 67 void SCIboard_LSM303DLHC::getAccData(float *fData) {
AstrodyneSystems 0:ab51d784ef36 68 unsigned char data[6];
AstrodyneSystems 0:ab51d784ef36 69
AstrodyneSystems 0:ab51d784ef36 70 pI2C->readRegs(ACC_I2C_ADDR, ACCREG_OUT_X_L, data, 6);
AstrodyneSystems 0:ab51d784ef36 71
AstrodyneSystems 0:ab51d784ef36 72 fData[0] = float(short(data[1] << 8 | data[0])) / accSF;
AstrodyneSystems 0:ab51d784ef36 73 fData[1] = float(short(data[3] << 8 | data[2])) / accSF;
AstrodyneSystems 0:ab51d784ef36 74 fData[2] = float(short(data[5] << 8 | data[4])) / accSF;
AstrodyneSystems 0:ab51d784ef36 75 }
AstrodyneSystems 0:ab51d784ef36 76
AstrodyneSystems 0:ab51d784ef36 77 unsigned char SCIboard_LSM303DLHC::getInt1Src(void) {
AstrodyneSystems 0:ab51d784ef36 78 unsigned char data;
AstrodyneSystems 0:ab51d784ef36 79 pI2C->readRegs(ACC_I2C_ADDR, ACCREG_INT1_SOURCE, &data, 1);
AstrodyneSystems 0:ab51d784ef36 80 return data;
AstrodyneSystems 0:ab51d784ef36 81 }
AstrodyneSystems 0:ab51d784ef36 82
AstrodyneSystems 0:ab51d784ef36 83 void SCIboard_LSM303DLHC::writeCtrlReg(unsigned char reg, unsigned char value) {
AstrodyneSystems 0:ab51d784ef36 84 unsigned char data[2];
AstrodyneSystems 0:ab51d784ef36 85
AstrodyneSystems 0:ab51d784ef36 86 if(reg>0 && reg<6) {
AstrodyneSystems 0:ab51d784ef36 87 data[0] = ACCREG_CTRL_REG1 - 1 + reg;
AstrodyneSystems 0:ab51d784ef36 88 data[1] = value;
AstrodyneSystems 0:ab51d784ef36 89 pI2C->writeRegs(ACC_I2C_ADDR, data, 2);
AstrodyneSystems 0:ab51d784ef36 90 }
AstrodyneSystems 0:ab51d784ef36 91 }
AstrodyneSystems 0:ab51d784ef36 92
AstrodyneSystems 0:ab51d784ef36 93
AstrodyneSystems 0:ab51d784ef36 94 // MAGNETOMETER ------------------------------------------------------
AstrodyneSystems 0:ab51d784ef36 95 void SCIboard_LSM303DLHC::setMagMode(unsigned char MagFs, unsigned char MagRate) {
AstrodyneSystems 0:ab51d784ef36 96 unsigned char data[2] = {MAGREG_CRA_REG, 0};
AstrodyneSystems 0:ab51d784ef36 97 float GN[][2] = { 1100, 980,
AstrodyneSystems 0:ab51d784ef36 98 855, 760,
AstrodyneSystems 0:ab51d784ef36 99 670, 600,
AstrodyneSystems 0:ab51d784ef36 100 450, 400,
AstrodyneSystems 0:ab51d784ef36 101 400, 355,
AstrodyneSystems 0:ab51d784ef36 102 330, 295,
AstrodyneSystems 0:ab51d784ef36 103 230, 205};
AstrodyneSystems 0:ab51d784ef36 104
AstrodyneSystems 0:ab51d784ef36 105 magSF[0] = GN[MagFs-1][0];
AstrodyneSystems 0:ab51d784ef36 106 magSF[1] = magSF[0];
AstrodyneSystems 0:ab51d784ef36 107 magSF[2] = GN[MagFs-1][1];
AstrodyneSystems 0:ab51d784ef36 108 // printf("MagRate=%u MagFs=%u\r\n", MagRate, MagFs);
AstrodyneSystems 0:ab51d784ef36 109 // printf("Mag SF= %.0f %.0f %.0f\r\n", magSF[0], magSF[1], magSF[2]);
AstrodyneSystems 0:ab51d784ef36 110
AstrodyneSystems 0:ab51d784ef36 111 magRate = MagRate;
AstrodyneSystems 0:ab51d784ef36 112 data[1] = MagRate << 2;
AstrodyneSystems 0:ab51d784ef36 113 // data[1] |= 0x80; // Temperature sensor enable
AstrodyneSystems 0:ab51d784ef36 114 pI2C->writeRegs(MAG_I2C_ADDR, data, 2);
AstrodyneSystems 0:ab51d784ef36 115
AstrodyneSystems 0:ab51d784ef36 116 data[0] = MAGREG_CRB_REG;
AstrodyneSystems 0:ab51d784ef36 117 data[1] = MagFs << 5;
AstrodyneSystems 0:ab51d784ef36 118 pI2C->writeRegs(MAG_I2C_ADDR, data, 2);
AstrodyneSystems 0:ab51d784ef36 119
AstrodyneSystems 0:ab51d784ef36 120 data[0] = MAGREG_MR_REG;
AstrodyneSystems 0:ab51d784ef36 121 data[1] = MAG_Continuous_Conv;
AstrodyneSystems 0:ab51d784ef36 122 pI2C->writeRegs(MAG_I2C_ADDR, data, 2);
AstrodyneSystems 0:ab51d784ef36 123 }
AstrodyneSystems 0:ab51d784ef36 124
AstrodyneSystems 0:ab51d784ef36 125 unsigned char SCIboard_LSM303DLHC::getMagStatus(void) {
AstrodyneSystems 0:ab51d784ef36 126 unsigned char data;
AstrodyneSystems 0:ab51d784ef36 127 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_SR_REG, &data, 1);
AstrodyneSystems 0:ab51d784ef36 128 return data;
AstrodyneSystems 0:ab51d784ef36 129 }
AstrodyneSystems 0:ab51d784ef36 130
AstrodyneSystems 0:ab51d784ef36 131 bool SCIboard_LSM303DLHC::bMagDataAvailable(void) {
AstrodyneSystems 0:ab51d784ef36 132 unsigned char data;
AstrodyneSystems 0:ab51d784ef36 133 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_SR_REG, &data, 1);
AstrodyneSystems 0:ab51d784ef36 134 if(data & MAG_DRDY) {
AstrodyneSystems 0:ab51d784ef36 135 return true;
AstrodyneSystems 0:ab51d784ef36 136 }
AstrodyneSystems 0:ab51d784ef36 137 return false;
AstrodyneSystems 0:ab51d784ef36 138 }
AstrodyneSystems 0:ab51d784ef36 139
AstrodyneSystems 0:ab51d784ef36 140 void SCIboard_LSM303DLHC::getMagData(float *fData) {
AstrodyneSystems 0:ab51d784ef36 141 char data[6];
AstrodyneSystems 0:ab51d784ef36 142
AstrodyneSystems 0:ab51d784ef36 143 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_OUT_X_H, (unsigned char*) data, 6);
AstrodyneSystems 0:ab51d784ef36 144 fData[0] = float(short(data[0] << 8 | data[1])) / 1100.0;
AstrodyneSystems 0:ab51d784ef36 145 fData[2] = float(short(data[2] << 8 | data[3])) / 980.0;
AstrodyneSystems 0:ab51d784ef36 146 fData[1] = float(short(data[4] << 8 | data[5])) / 1100.0;
AstrodyneSystems 0:ab51d784ef36 147 }
AstrodyneSystems 0:ab51d784ef36 148
AstrodyneSystems 0:ab51d784ef36 149 void SCIboard_LSM303DLHC::getMagData(char *cData) {
AstrodyneSystems 0:ab51d784ef36 150 unsigned char data[6];
AstrodyneSystems 0:ab51d784ef36 151
AstrodyneSystems 0:ab51d784ef36 152 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_OUT_X_H, data, 6);
AstrodyneSystems 0:ab51d784ef36 153 memmove(cData, data, 6);
AstrodyneSystems 0:ab51d784ef36 154 }
AstrodyneSystems 0:ab51d784ef36 155
AstrodyneSystems 0:ab51d784ef36 156
AstrodyneSystems 0:ab51d784ef36 157 float SCIboard_LSM303DLHC::getTemp(void) {
AstrodyneSystems 0:ab51d784ef36 158 char data[2];
AstrodyneSystems 0:ab51d784ef36 159
AstrodyneSystems 0:ab51d784ef36 160 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_TEMP_OUT_H, (unsigned char*) data, 2);
AstrodyneSystems 0:ab51d784ef36 161 return(float(short(data[0] << 8 | data[1]>>4)));
AstrodyneSystems 0:ab51d784ef36 162 }
AstrodyneSystems 0:ab51d784ef36 163
AstrodyneSystems 0:ab51d784ef36 164 void SCIboard_LSM303DLHC::getTemp(char *cData) {
AstrodyneSystems 0:ab51d784ef36 165 char data[2];
AstrodyneSystems 0:ab51d784ef36 166
AstrodyneSystems 0:ab51d784ef36 167 pI2C->readRegs(MAG_I2C_ADDR, MAGREG_TEMP_OUT_H, (unsigned char*) data, 2);
AstrodyneSystems 0:ab51d784ef36 168 memmove(cData, data, 2);
AstrodyneSystems 0:ab51d784ef36 169 }