Motors met een eigen wil

Dependencies:   Encoder MODSERIAL mbed

main.cpp

Committer:
Annelotte
Date:
2017-11-02
Revision:
4:836d7f9ac0ca
Parent:
3:120fbef23c17

File content as of revision 4:836d7f9ac0ca:

//libaries
#include "mbed.h"
#include "encoder.h"
#include "MODSERIAL.h"


// globale variables
Ticker AInTicker;           //We make a ticker named AIn (use for HIDScope)

Ticker Treecko;             //We make a awesome ticker for our control system
AnalogIn potMeter2(A1);     //Analoge input of potmeter 2 (will be use for te reference position)
PwmOut M1E(D6);             //Biorobotics Motor 1 PWM control of the speed 
DigitalOut M1D(D7);         //Biorobotics Motor 1 diraction control

Encoder motor1(D13,D12,true);
MODSERIAL pc(USBTX,USBRX);

float PwmPeriod = 1.0/5000.0;           //set up of PWM periode (5000 Hz, want 5000 periodes in 1 seconde)
const float Ts = 0.1;                   // tickettijd/ sample time
float e_prev = 0; 
float e_int = 0;
float PwmPeriod2 = 1.0/5000.0;           //set up of PWM periode (5000 Hz, want 5000 periodes in 1 seconde)
float e_prev2 = 0; 
float e_int2 = 0;

double pi = 3.14159265359;
double SetPx = 0.38;     //Setpoint position x-coordinate from changePosition (EMG dependent)
double SetPy = 0.30;     //Setpoint position y-coordinate from changePosition (EMG dependent)
double q1 = 0;          //Reference position q1 from calibration (only the first time)
double q2 = (pi/2);       //Reference position q2 from calibration (only the first time)
const double L1 = 0.30;  //Length arm 1
const double L2 = 0.38;  //Length arm 2
double K = 1;           //Spring constant for movement end-joint to setpoint
double B1 = 1;          //Friction coefficient for motor 1
double B2 = 1;          //Friction coefficient for motot 2
double T = 0.02;       //Desired time step
double Motor1Set;       //Motor1 angle
double Motor2Set;       //Motor2 angle
double p;
double pp;
double bb;
double cc;
double a;
double aa;
bool autodemo_done = false;      //automatische demo stand =0

//tweede motor
AnalogIn potMeter1(A2);
PwmOut M2E(D5);
DigitalOut M2D(D4);
Encoder motor2(D9,D8,true);


void RKI()
{
    p=sin(q1)*L1;
    pp=sin(q2)*L2;
    a=cos(q1)*L1;
    aa=cos(q2)*L2;
    bb=SetPy;
    cc=SetPx;
    q1 = q1 + ((p + pp)*bb - (a + aa)*cc)*(K*T)/B1;     //Calculate desired joint 1 position
    q2 = q2 + ((bb - a)*pp + (p - cc)*aa)*(K*T)/B2;     //Calculate desired joint 2 position
    
    int maxwaarde = 4096;                   // = 64x64
    
    
    Motor1Set = (q1/(2*pi))*maxwaarde;           //Calculate the desired motor1 angle from the desired joint positions
    Motor2Set = ((pi-q2-q1)/(2*pi))*maxwaarde;   //Calculate the desired motor2 angle from the desired joint positions
    
    pc.printf("waarde p = %f, waarde pp = %f, a= %f, aa = %f, bb = %f, cc = %f \r\n",p,pp,a,aa,bb,cc);
    //pc.printf("q1 = %f, q2 = %f, Motor1Set = %f, Motor2Set = %f \r\n", q1, q2, Motor1Set, Motor2Set);
    //pc.printf("Setpointx = %f, Setpointy = %f \r\n", SetPx, SetPy);
}

void SetpointRobot()
{   
    double Potmeterwaarde2 = potMeter2.read();
    double Potmeterwaarde1 = potMeter1.read();

    if (Potmeterwaarde2>0.6) {
        SetPx += 0.001;    // hoe veel verder gaat hij? 1 cm? 10 cm?
    }
    else if (Potmeterwaarde2<0.4) {
        SetPx -= 0.001;
    }
    else
    {}
    if (Potmeterwaarde1>0.6) {
        SetPy += 0.001;
    }
    else if (Potmeterwaarde1<0.4) {
        SetPy -= 0.001;
    }
    else
    {}
    //pc.printf("Setpointx = %f, Setpointy = %f \r\n", SetPx, SetPy);
}

/*float GetReferencePosition() 
{
    float Potmeterwaarde = potMeter2.read();
    int maxwaarde = 4096;                   // = 64x64
    float refP = Potmeterwaarde*maxwaarde;
    return refP;                            // value between 0 and 4096 
}

float GetReferencePosition2() 
{
    float Potmeterwaarde2 = potMeter1.read();
    int maxwaarde2 = 4096;                   // = 64x64
    float refP2 = Potmeterwaarde2*maxwaarde2;
    return refP2;                            // value between 0 and 4096 
}*/
    
float FeedBackControl(float error, float &e_prev, float &e_int)   // schaalt de snelheid naar de snelheid zodat onze chip het begrijpt (is nog niet in werking)
{
    float kp = 0.0005;                             // kind of scaled.
    float Proportional= kp*error;
    
    float kd = 0.0004;                           // kind of scaled. 
    float VelocityError = (error - e_prev)/Ts; 
    float Derivative = kd*VelocityError;
    e_prev = error;
    
    float ki = 0.00005;                           // kind of scaled.
    e_int = e_int+Ts*error;
    float Integrator = ki*e_int;
    
    
    float motorValue = Proportional + Integrator + Derivative;
    return motorValue;
}

float FeedBackControl2(float error2, float &e_prev2, float &e_int2)   // schaalt de snelheid naar de snelheid zodat onze chip het begrijpt (is nog niet in werking)
{
    float kp2 = 0.0005;                             // kind of scaled.
    float Proportional2= kp2*error2;
    
    float kd2 = 0.0004;                           // kind of scaled. 
    float VelocityError2 = (error2 - e_prev2)/Ts; 
    float Derivative2 = kd2*VelocityError2;
    e_prev2 = error2;
    
    float ki2 = 0.00005;                           // kind of scaled.
    e_int2 = e_int2+Ts*error2;
    float Integrator2 = ki2*e_int2;
    
    
    float motorValue2 = Proportional2 + Integrator2 + Derivative2;
    return motorValue2;
}


void SetMotor1(float motorValue)
{
    if (motorValue >= 0)
    {
        M1D = 0;                    //direction ...
    }
    else 
    {
        M1D = 1;                    //direction ...
    }

    if  (fabs(motorValue) > 1)    
    {
        M1E = 1;                    //de snelheid wordt teruggeschaald naar 8.4 rad/s (maximale snelheid, dus waarde 1)
    }
    else
    {    
        M1E = fabs(motorValue);      //de absolute snelheid wordt bepaald, de motor staat uit bij een waarde 0
    }
}

void SetMotor2(float motorValue2)
{
    if (motorValue2 >= 0)
    {
        M2D = 0;
    }
    else 
    {
        M2D = 1;
    }

    if  (fabs(motorValue2) > 1)    
    {
        M2E = 1;                    //de snelheid wordt teruggeschaald naar 8.4 rad/s (maximale snelheid, dus waarde 1)
    }
    else
    {    
        M2E = fabs(motorValue2);      //de absolute snelheid wordt bepaald, de motor staat uit bij een waarde 0
    }
}

float Encoder ()
{
    float Huidigepositie = motor1.getPosition ();
    return Huidigepositie;             // huidige positie = current position
}

float Encoder2 ()
{
    float Huidigepositie2 = motor2.getPosition ();
    return Huidigepositie2;             // huidige positie = current position
}

void Autodemo_or_demo()
{
    if (autodemo_done == 0)
    {
    AutoSetpointRobotForward ();       //verander de se
    MeasureAndControl ();
    AutoSetpointRobotHome ();
    MeasureAndControl ();   
    AutoSetpointRobotDown ();
    MeasureAndControl ();
    AutoSetpointRobotHome ();
    MeasureAndControl ();
    autodemo_done = true;
    }
        
    else if (autodemo_done == 1)
    {
    SetpointRobot();
    MeasureAndControl ();
    }
    
}
    
    
    
void MeasureAndControl(void)
{
     // RKI aanroepen
    RKI();
    
    // hier the control of the control system
    //float refP = GetReferencePosition(); 
    float Huidigepositie = Encoder(); 
    float error = (Motor1Set - Huidigepositie);// make an error
    float motorValue = FeedBackControl(error, e_prev, e_int);
    SetMotor1(motorValue);

    // hier the control of the control system
    //float refP2 = GetReferencePosition2(); 
    float Huidigepositie2 = Encoder2(); 
    float error2 = (Motor2Set - Huidigepositie2);// make an error
    float motorValue2 = FeedBackControl2(error2, e_prev2, e_int2);
    SetMotor2(motorValue2);
}


int main()
{
    M1E.period(PwmPeriod);
    Treecko.attach(&Autodemo_or_demo, Ts);   //Elke 1 seconde zorgt de ticker voor het runnen en uitlezen van de verschillende 
                                            //functies en analoge signalen. Veranderingen worden elke 1 seconde doorgevoerd.
    pc.baud(115200);
     
     
    while(1) 
    {
        //wait(0.2);
        float B = motor1.getPosition();
        //float positie = B%4096;
        //pc.printf("pos: %d, speed %f, potmeter = %f V, \r\n",motor1.getPosition(), motor1.getSpeed(),(potMeter2.read()*3.3)); //potmeter uitlezen. tussen 0-1. voltage, dus *3.3V
        //pc.printf("q1 = %f, q2 = %f, Motor1Set = %f, Motor2Set = %f \r\n", q1, q2, Motor1Set, Motor2Set);   
    }
}