Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Revision 3:dd03d585a24f, committed 2019-03-17
- Comitter:
- AlexQian
- Date:
- Sun Mar 17 15:11:51 2019 +0000
- Parent:
- 2:e0381ca0edac
- Commit message:
- MPU6050
Changed in this revision
--- a/MPU6050.h Sun Jun 29 21:53:23 2014 +0000
+++ b/MPU6050.h Sun Mar 17 15:11:51 2019 +0000
@@ -132,7 +132,7 @@
#else
#define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
#endif
-
+Timer t;
// Set initial input parameters
enum Ascale {
AFS_2G = 0,
@@ -153,9 +153,9 @@
int Ascale = AFS_2G;
//Set up I2C, (SDA,SCL)
-I2C i2c(I2C_SDA, I2C_SCL);
+I2C i2c(PB_7,PB_6);
-DigitalOut myled(LED1);
+//DigitalOut myled(LED1);
float aRes, gRes; // scale resolutions per LSB for the sensors
@@ -172,7 +172,7 @@
float SelfTest[6];
int delt_t = 0; // used to control display output rate
-int count = 0; // used to control display output rate
+int count1 = 0; // used to control display output rate
// parameters for 6 DoF sensor fusion calculations
float PI = 3.14159265358979323846f;
@@ -180,7 +180,7 @@
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
-float pitch, yaw, roll;
+//float pitch, yaw, roll;
float deltat = 0.0f; // integration interval for both filter schemes
int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
@@ -194,6 +194,10 @@
//====== Set of useful function to access acceleratio, gyroscope, and temperature data
//===================================================================================================================
+ MPU6050(PinName SDA,PinName SCL)
+{
+ I2C i2c(SDA,SCL);
+}
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
char data_write[2];
@@ -680,7 +684,125 @@
q[3] = q4 * norm;
}
+int Init()
+{
+ i2c.frequency(400000); // use fast (400 kHz) I2C
+
+ t.start();
+
+
+ // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
+ //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+
+ if (whoami == 0x68) // WHO_AM_I should always be 0x68
+ {
+ //pc.printf("MPU6050 is online...");
+ wait(1);
+
+
+ MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+ //pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
+// pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
+// pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
+// pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
+// pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
+// pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
+ wait(1);
+
+ if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
+ {
+ resetMPU6050(); // Reset registers to default in preparation for device calibration
+ calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+ initMPU6050(); //pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+ wait(2);
+ }
+ else
+ {
+ //pc.printf("Device did not the pass self-test!\n\r");
+ return 1;
+ }
+ }
+ else
+ {
+// pc.printf("Could not connect to MPU6050: \n\r");
+// pc.printf("%#x \n", whoami);
+ return 1;
+// while(1) ; // Loop forever if communication doesn't happen
+ }
+ return 0;
+}
+ void receiveData(float *yaw, float *pitch , float *roll )
+ {
+ if(readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
+ readAccelData(accelCount); // Read the x/y/z adc values
+ getAres();
+
+ // Now we'll calculate the accleration value into actual g's
+ ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
+ ay = (float)accelCount[1]*aRes - accelBias[1];
+ az = (float)accelCount[2]*aRes - accelBias[2];
+
+ readGyroData(gyroCount); // Read the x/y/z adc values
+ getGres();
+
+ // Calculate the gyro value into actual degrees per second
+ gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
+ gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+ gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+
+ tempCount = readTempData(); // Read the x/y/z adc values
+ temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+ }
+
+ Now = t.read_us();
+ deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+ lastUpdate = Now;
+
+ // sum += deltat;
+// sumCount++;
+
+ if(lastUpdate - firstUpdate > 10000000.0f) {
+ beta = 0.04; // decrease filter gain after stabilized
+ zeta = 0.015; // increasey bias drift gain after stabilized
+ }
+
+ // Pass gyro rate as rad/s
+ MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+ // Serial print and/or display at 0.5 s rate independent of data rates
+ delt_t = t.read_ms() - count1;
+ if (delt_t > 500) { // update LCD once per half-second independent of read rate
+
+// pc.printf("ax = %f", 1000*ax);
+// pc.printf(" ay = %f", 1000*ay);
+// pc.printf(" az = %f mg\n\r", 1000*az);
+//
+// pc.printf("gx = %f", gx);
+// pc.printf(" gy = %f", gy);
+// pc.printf(" gz = %f deg/s\n\r", gz);
+//
+// pc.printf(" temperature = %f C\n\r", temperature);
+//
+// pc.printf("q0 = %f\n\r", q[0]);
+// pc.printf("q1 = %f\n\r", q[1]);
+// pc.printf("q2 = %f\n\r", q[2]);
+// pc.printf("q3 = %f\n\r", q[3]);
+
+ *yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+ *pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+ *roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+ *pitch *= 180.0f / PI;
+ *yaw *= 180.0f / PI;
+ *roll *= 180.0f / PI;
+
+ //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+
+ count1 = t.read_ms();
+ }
+ }
};
+
#endif
\ No newline at end of file
--- a/N5110.lib Sun Jun 29 21:53:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/onehorse/code/MPU60506-axisMotionSensor/#313c258ada8a
--- a/main.cpp Sun Jun 29 21:53:23 2014 +0000
+++ b/main.cpp Sun Mar 17 15:11:51 2019 +0000
@@ -1,224 +1,28 @@
-
-/* MPU6050 Basic Example Code
- by: Kris Winer
- date: May 1, 2014
- license: Beerware - Use this code however you'd like. If you
- find it useful you can buy me a beer some time.
-
- Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
- parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
- No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
-
- SDA and SCL should have external pull-up resistors (to 3.3V).
- 10k resistors worked for me. They should be on the breakout
- board.
-
- Hardware setup:
- MPU6050 Breakout --------- Arduino
- 3.3V --------------------- 3.3V
- SDA ----------------------- A4
- SCL ----------------------- A5
- GND ---------------------- GND
-
- Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
- Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
- We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
- We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
- */
-
#include "mbed.h"
#include "MPU6050.h"
-#include "N5110.h"
-
-// Using NOKIA 5110 monochrome 84 x 48 pixel display
-// pin 9 - Serial clock out (SCLK)
-// pin 8 - Serial data out (DIN)
-// pin 7 - Data/Command select (D/C)
-// pin 5 - LCD chip select (CS)
-// pin 6 - LCD reset (RST)
-//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
-
-float sum = 0;
-uint32_t sumCount = 0;
-
- MPU6050 mpu6050;
-
- Timer t;
-
- Serial pc(USBTX, USBRX); // tx, rx
-
- // VCC, SCE, RST, D/C, MOSI,S CLK, LED
- N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
-
+DigitalOut myled(PC_13);
+MPU6050 mpu6050(PB_7,PB_6);
+Serial pc(PA_2, PA_3,9600);
+float yaw,pitch,roll;
+int counts;
int main()
-{
- pc.baud(9600);
-
- //Set up I2C
- i2c.frequency(400000); // use fast (400 kHz) I2C
-
- t.start();
-
- lcd.init();
- lcd.setBrightness(0.05);
-
-
- // Read the WHO_AM_I register, this is a good test of communication
- uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
- pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
-
- if (whoami == 0x68) // WHO_AM_I should always be 0x68
- {
- pc.printf("MPU6050 is online...");
- wait(1);
- lcd.clear();
- lcd.printString("MPU6050 OK", 0, 0);
-
-
- mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
- pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
- pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
- wait(1);
-
- if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
- {
- mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
- mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
- mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("pass self test", 0, 1);
- lcd.printString("initializing", 0, 2);
- wait(2);
- }
- else
- {
- pc.printf("Device did not the pass self-test!\n\r");
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("no pass", 0, 1);
- lcd.printString("self test", 0, 2);
- }
- }
- else
+{
+ pc.printf("Initializing...\n");
+ while(mpu6050.Init()) //初始化
{
- pc.printf("Could not connect to MPU6050: \n\r");
- pc.printf("%#x \n", whoami);
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("no connection", 0, 1);
- lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami);
-
- while(1) ; // Loop forever if communication doesn't happen
- }
-
-
-
- while(1) {
-
- // If data ready bit set, all data registers have new data
- if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
- mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
- mpu6050.getAres();
-
- // Now we'll calculate the accleration value into actual g's
- ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
- ay = (float)accelCount[1]*aRes - accelBias[1];
- az = (float)accelCount[2]*aRes - accelBias[2];
-
- mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
- mpu6050.getGres();
-
- // Calculate the gyro value into actual degrees per second
- gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
- gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
- gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
-
- tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
- temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
- }
-
- Now = t.read_us();
- deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
- lastUpdate = Now;
-
- sum += deltat;
- sumCount++;
-
- if(lastUpdate - firstUpdate > 10000000.0f) {
- beta = 0.04; // decrease filter gain after stabilized
- zeta = 0.015; // increasey bias drift gain after stabilized
+ counts+=1;
+ wait(1);
+ myled=!myled;
+ if(counts>10)
+ {
+ pc.printf("Initialation failed\n"); // 初始化失败
+ break;
+ }
}
-
- // Pass gyro rate as rad/s
- mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
-
- // Serial print and/or display at 0.5 s rate independent of data rates
- delt_t = t.read_ms() - count;
- if (delt_t > 500) { // update LCD once per half-second independent of read rate
-
- pc.printf("ax = %f", 1000*ax);
- pc.printf(" ay = %f", 1000*ay);
- pc.printf(" az = %f mg\n\r", 1000*az);
-
- pc.printf("gx = %f", gx);
- pc.printf(" gy = %f", gy);
- pc.printf(" gz = %f deg/s\n\r", gz);
-
- pc.printf(" temperature = %f C\n\r", temperature);
-
- pc.printf("q0 = %f\n\r", q[0]);
- pc.printf("q1 = %f\n\r", q[1]);
- pc.printf("q2 = %f\n\r", q[2]);
- pc.printf("q3 = %f\n\r", q[3]);
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("x y z", 0, 1);
- lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
- lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
- lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
-
-
- // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
- // In this coordinate system, the positive z-axis is down toward Earth.
- // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
- // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
- // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
- // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
- // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
- // applied in the correct order which for this configuration is yaw, pitch, and then roll.
- // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
- yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
- pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
- roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
- pitch *= 180.0f / PI;
- yaw *= 180.0f / PI;
- roll *= 180.0f / PI;
-
-// pc.printf("Yaw, Pitch, Roll: \n\r");
-// pc.printf("%f", yaw);
-// pc.printf(", ");
-// pc.printf("%f", pitch);
-// pc.printf(", ");
-// pc.printf("%f\n\r", roll);
-// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
-
- pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
- pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-
- myled= !myled;
- count = t.read_ms();
- sum = 0;
- sumCount = 0;
-}
-}
-
+ pc.printf("Initialized\n"); //初始化完成
+ while(1)
+ {
+ mpu6050.receiveData(&yaw,&pitch,&roll); //读取传感器姿态
+ pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+ }
}
\ No newline at end of file
--- a/mbed.bld Sun Jun 29 21:53:23 2014 +0000 +++ b/mbed.bld Sun Mar 17 15:11:51 2019 +0000 @@ -1,1 +1,1 @@ -http://mbed.org/users/mbed_official/code/mbed/builds/0b3ab51c8877 \ No newline at end of file +https://os.mbed.com/users/mbed_official/code/mbed/builds/65be27845400 \ No newline at end of file