MPU6050_Demo

Dependencies:   mbed

Committer:
AlexQian
Date:
Sun Mar 17 15:11:51 2019 +0000
Revision:
3:dd03d585a24f
Parent:
1:cea9d83b8636
MPU6050

Who changed what in which revision?

UserRevisionLine numberNew contents of line
onehorse 1:cea9d83b8636 1 #ifndef MPU6050_H
onehorse 1:cea9d83b8636 2 #define MPU6050_H
onehorse 1:cea9d83b8636 3
onehorse 1:cea9d83b8636 4 #include "mbed.h"
onehorse 1:cea9d83b8636 5 #include "math.h"
onehorse 1:cea9d83b8636 6
onehorse 1:cea9d83b8636 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
onehorse 1:cea9d83b8636 8 // Invensense Inc., www.invensense.com
onehorse 1:cea9d83b8636 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
onehorse 1:cea9d83b8636 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
onehorse 1:cea9d83b8636 11 //
onehorse 1:cea9d83b8636 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
onehorse 1:cea9d83b8636 13 #define YGOFFS_TC 0x01
onehorse 1:cea9d83b8636 14 #define ZGOFFS_TC 0x02
onehorse 1:cea9d83b8636 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
onehorse 1:cea9d83b8636 16 #define Y_FINE_GAIN 0x04
onehorse 1:cea9d83b8636 17 #define Z_FINE_GAIN 0x05
onehorse 1:cea9d83b8636 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
onehorse 1:cea9d83b8636 19 #define XA_OFFSET_L_TC 0x07
onehorse 1:cea9d83b8636 20 #define YA_OFFSET_H 0x08
onehorse 1:cea9d83b8636 21 #define YA_OFFSET_L_TC 0x09
onehorse 1:cea9d83b8636 22 #define ZA_OFFSET_H 0x0A
onehorse 1:cea9d83b8636 23 #define ZA_OFFSET_L_TC 0x0B
onehorse 1:cea9d83b8636 24 #define SELF_TEST_X 0x0D
onehorse 1:cea9d83b8636 25 #define SELF_TEST_Y 0x0E
onehorse 1:cea9d83b8636 26 #define SELF_TEST_Z 0x0F
onehorse 1:cea9d83b8636 27 #define SELF_TEST_A 0x10
onehorse 1:cea9d83b8636 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
onehorse 1:cea9d83b8636 29 #define XG_OFFS_USRL 0x14
onehorse 1:cea9d83b8636 30 #define YG_OFFS_USRH 0x15
onehorse 1:cea9d83b8636 31 #define YG_OFFS_USRL 0x16
onehorse 1:cea9d83b8636 32 #define ZG_OFFS_USRH 0x17
onehorse 1:cea9d83b8636 33 #define ZG_OFFS_USRL 0x18
onehorse 1:cea9d83b8636 34 #define SMPLRT_DIV 0x19
onehorse 1:cea9d83b8636 35 #define CONFIG 0x1A
onehorse 1:cea9d83b8636 36 #define GYRO_CONFIG 0x1B
onehorse 1:cea9d83b8636 37 #define ACCEL_CONFIG 0x1C
onehorse 1:cea9d83b8636 38 #define FF_THR 0x1D // Free-fall
onehorse 1:cea9d83b8636 39 #define FF_DUR 0x1E // Free-fall
onehorse 1:cea9d83b8636 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
onehorse 1:cea9d83b8636 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
onehorse 1:cea9d83b8636 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
onehorse 1:cea9d83b8636 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
onehorse 1:cea9d83b8636 44 #define FIFO_EN 0x23
onehorse 1:cea9d83b8636 45 #define I2C_MST_CTRL 0x24
onehorse 1:cea9d83b8636 46 #define I2C_SLV0_ADDR 0x25
onehorse 1:cea9d83b8636 47 #define I2C_SLV0_REG 0x26
onehorse 1:cea9d83b8636 48 #define I2C_SLV0_CTRL 0x27
onehorse 1:cea9d83b8636 49 #define I2C_SLV1_ADDR 0x28
onehorse 1:cea9d83b8636 50 #define I2C_SLV1_REG 0x29
onehorse 1:cea9d83b8636 51 #define I2C_SLV1_CTRL 0x2A
onehorse 1:cea9d83b8636 52 #define I2C_SLV2_ADDR 0x2B
onehorse 1:cea9d83b8636 53 #define I2C_SLV2_REG 0x2C
onehorse 1:cea9d83b8636 54 #define I2C_SLV2_CTRL 0x2D
onehorse 1:cea9d83b8636 55 #define I2C_SLV3_ADDR 0x2E
onehorse 1:cea9d83b8636 56 #define I2C_SLV3_REG 0x2F
onehorse 1:cea9d83b8636 57 #define I2C_SLV3_CTRL 0x30
onehorse 1:cea9d83b8636 58 #define I2C_SLV4_ADDR 0x31
onehorse 1:cea9d83b8636 59 #define I2C_SLV4_REG 0x32
onehorse 1:cea9d83b8636 60 #define I2C_SLV4_DO 0x33
onehorse 1:cea9d83b8636 61 #define I2C_SLV4_CTRL 0x34
onehorse 1:cea9d83b8636 62 #define I2C_SLV4_DI 0x35
onehorse 1:cea9d83b8636 63 #define I2C_MST_STATUS 0x36
onehorse 1:cea9d83b8636 64 #define INT_PIN_CFG 0x37
onehorse 1:cea9d83b8636 65 #define INT_ENABLE 0x38
onehorse 1:cea9d83b8636 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
onehorse 1:cea9d83b8636 67 #define INT_STATUS 0x3A
onehorse 1:cea9d83b8636 68 #define ACCEL_XOUT_H 0x3B
onehorse 1:cea9d83b8636 69 #define ACCEL_XOUT_L 0x3C
onehorse 1:cea9d83b8636 70 #define ACCEL_YOUT_H 0x3D
onehorse 1:cea9d83b8636 71 #define ACCEL_YOUT_L 0x3E
onehorse 1:cea9d83b8636 72 #define ACCEL_ZOUT_H 0x3F
onehorse 1:cea9d83b8636 73 #define ACCEL_ZOUT_L 0x40
onehorse 1:cea9d83b8636 74 #define TEMP_OUT_H 0x41
onehorse 1:cea9d83b8636 75 #define TEMP_OUT_L 0x42
onehorse 1:cea9d83b8636 76 #define GYRO_XOUT_H 0x43
onehorse 1:cea9d83b8636 77 #define GYRO_XOUT_L 0x44
onehorse 1:cea9d83b8636 78 #define GYRO_YOUT_H 0x45
onehorse 1:cea9d83b8636 79 #define GYRO_YOUT_L 0x46
onehorse 1:cea9d83b8636 80 #define GYRO_ZOUT_H 0x47
onehorse 1:cea9d83b8636 81 #define GYRO_ZOUT_L 0x48
onehorse 1:cea9d83b8636 82 #define EXT_SENS_DATA_00 0x49
onehorse 1:cea9d83b8636 83 #define EXT_SENS_DATA_01 0x4A
onehorse 1:cea9d83b8636 84 #define EXT_SENS_DATA_02 0x4B
onehorse 1:cea9d83b8636 85 #define EXT_SENS_DATA_03 0x4C
onehorse 1:cea9d83b8636 86 #define EXT_SENS_DATA_04 0x4D
onehorse 1:cea9d83b8636 87 #define EXT_SENS_DATA_05 0x4E
onehorse 1:cea9d83b8636 88 #define EXT_SENS_DATA_06 0x4F
onehorse 1:cea9d83b8636 89 #define EXT_SENS_DATA_07 0x50
onehorse 1:cea9d83b8636 90 #define EXT_SENS_DATA_08 0x51
onehorse 1:cea9d83b8636 91 #define EXT_SENS_DATA_09 0x52
onehorse 1:cea9d83b8636 92 #define EXT_SENS_DATA_10 0x53
onehorse 1:cea9d83b8636 93 #define EXT_SENS_DATA_11 0x54
onehorse 1:cea9d83b8636 94 #define EXT_SENS_DATA_12 0x55
onehorse 1:cea9d83b8636 95 #define EXT_SENS_DATA_13 0x56
onehorse 1:cea9d83b8636 96 #define EXT_SENS_DATA_14 0x57
onehorse 1:cea9d83b8636 97 #define EXT_SENS_DATA_15 0x58
onehorse 1:cea9d83b8636 98 #define EXT_SENS_DATA_16 0x59
onehorse 1:cea9d83b8636 99 #define EXT_SENS_DATA_17 0x5A
onehorse 1:cea9d83b8636 100 #define EXT_SENS_DATA_18 0x5B
onehorse 1:cea9d83b8636 101 #define EXT_SENS_DATA_19 0x5C
onehorse 1:cea9d83b8636 102 #define EXT_SENS_DATA_20 0x5D
onehorse 1:cea9d83b8636 103 #define EXT_SENS_DATA_21 0x5E
onehorse 1:cea9d83b8636 104 #define EXT_SENS_DATA_22 0x5F
onehorse 1:cea9d83b8636 105 #define EXT_SENS_DATA_23 0x60
onehorse 1:cea9d83b8636 106 #define MOT_DETECT_STATUS 0x61
onehorse 1:cea9d83b8636 107 #define I2C_SLV0_DO 0x63
onehorse 1:cea9d83b8636 108 #define I2C_SLV1_DO 0x64
onehorse 1:cea9d83b8636 109 #define I2C_SLV2_DO 0x65
onehorse 1:cea9d83b8636 110 #define I2C_SLV3_DO 0x66
onehorse 1:cea9d83b8636 111 #define I2C_MST_DELAY_CTRL 0x67
onehorse 1:cea9d83b8636 112 #define SIGNAL_PATH_RESET 0x68
onehorse 1:cea9d83b8636 113 #define MOT_DETECT_CTRL 0x69
onehorse 1:cea9d83b8636 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
onehorse 1:cea9d83b8636 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
onehorse 1:cea9d83b8636 116 #define PWR_MGMT_2 0x6C
onehorse 1:cea9d83b8636 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
onehorse 1:cea9d83b8636 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
onehorse 1:cea9d83b8636 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
onehorse 1:cea9d83b8636 120 #define DMP_REG_1 0x70
onehorse 1:cea9d83b8636 121 #define DMP_REG_2 0x71
onehorse 1:cea9d83b8636 122 #define FIFO_COUNTH 0x72
onehorse 1:cea9d83b8636 123 #define FIFO_COUNTL 0x73
onehorse 1:cea9d83b8636 124 #define FIFO_R_W 0x74
onehorse 1:cea9d83b8636 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
onehorse 1:cea9d83b8636 126
onehorse 1:cea9d83b8636 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
onehorse 1:cea9d83b8636 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
onehorse 1:cea9d83b8636 129 #define ADO 0
onehorse 1:cea9d83b8636 130 #if ADO
onehorse 1:cea9d83b8636 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
onehorse 1:cea9d83b8636 132 #else
onehorse 1:cea9d83b8636 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
onehorse 1:cea9d83b8636 134 #endif
AlexQian 3:dd03d585a24f 135 Timer t;
onehorse 1:cea9d83b8636 136 // Set initial input parameters
onehorse 1:cea9d83b8636 137 enum Ascale {
onehorse 1:cea9d83b8636 138 AFS_2G = 0,
onehorse 1:cea9d83b8636 139 AFS_4G,
onehorse 1:cea9d83b8636 140 AFS_8G,
onehorse 1:cea9d83b8636 141 AFS_16G
onehorse 1:cea9d83b8636 142 };
onehorse 1:cea9d83b8636 143
onehorse 1:cea9d83b8636 144 enum Gscale {
onehorse 1:cea9d83b8636 145 GFS_250DPS = 0,
onehorse 1:cea9d83b8636 146 GFS_500DPS,
onehorse 1:cea9d83b8636 147 GFS_1000DPS,
onehorse 1:cea9d83b8636 148 GFS_2000DPS
onehorse 1:cea9d83b8636 149 };
onehorse 1:cea9d83b8636 150
onehorse 1:cea9d83b8636 151 // Specify sensor full scale
onehorse 1:cea9d83b8636 152 int Gscale = GFS_250DPS;
onehorse 1:cea9d83b8636 153 int Ascale = AFS_2G;
onehorse 1:cea9d83b8636 154
onehorse 1:cea9d83b8636 155 //Set up I2C, (SDA,SCL)
AlexQian 3:dd03d585a24f 156 I2C i2c(PB_7,PB_6);
onehorse 1:cea9d83b8636 157
AlexQian 3:dd03d585a24f 158 //DigitalOut myled(LED1);
onehorse 1:cea9d83b8636 159
onehorse 1:cea9d83b8636 160 float aRes, gRes; // scale resolutions per LSB for the sensors
onehorse 1:cea9d83b8636 161
onehorse 1:cea9d83b8636 162 // Pin definitions
onehorse 1:cea9d83b8636 163 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
onehorse 1:cea9d83b8636 164
onehorse 1:cea9d83b8636 165 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
onehorse 1:cea9d83b8636 166 float ax, ay, az; // Stores the real accel value in g's
onehorse 1:cea9d83b8636 167 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
onehorse 1:cea9d83b8636 168 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
onehorse 1:cea9d83b8636 169 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
onehorse 1:cea9d83b8636 170 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
onehorse 1:cea9d83b8636 171 float temperature;
onehorse 1:cea9d83b8636 172 float SelfTest[6];
onehorse 1:cea9d83b8636 173
onehorse 1:cea9d83b8636 174 int delt_t = 0; // used to control display output rate
AlexQian 3:dd03d585a24f 175 int count1 = 0; // used to control display output rate
onehorse 1:cea9d83b8636 176
onehorse 1:cea9d83b8636 177 // parameters for 6 DoF sensor fusion calculations
onehorse 1:cea9d83b8636 178 float PI = 3.14159265358979323846f;
onehorse 1:cea9d83b8636 179 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
onehorse 1:cea9d83b8636 180 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
onehorse 1:cea9d83b8636 181 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
onehorse 1:cea9d83b8636 182 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
AlexQian 3:dd03d585a24f 183 //float pitch, yaw, roll;
onehorse 1:cea9d83b8636 184 float deltat = 0.0f; // integration interval for both filter schemes
onehorse 1:cea9d83b8636 185 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
onehorse 1:cea9d83b8636 186 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
onehorse 1:cea9d83b8636 187
onehorse 1:cea9d83b8636 188 class MPU6050 {
onehorse 1:cea9d83b8636 189
onehorse 1:cea9d83b8636 190 protected:
onehorse 1:cea9d83b8636 191
onehorse 1:cea9d83b8636 192 public:
onehorse 1:cea9d83b8636 193 //===================================================================================================================
onehorse 1:cea9d83b8636 194 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
onehorse 1:cea9d83b8636 195 //===================================================================================================================
onehorse 1:cea9d83b8636 196
AlexQian 3:dd03d585a24f 197 MPU6050(PinName SDA,PinName SCL)
AlexQian 3:dd03d585a24f 198 {
AlexQian 3:dd03d585a24f 199 I2C i2c(SDA,SCL);
AlexQian 3:dd03d585a24f 200 }
onehorse 1:cea9d83b8636 201 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
onehorse 1:cea9d83b8636 202 {
onehorse 1:cea9d83b8636 203 char data_write[2];
onehorse 1:cea9d83b8636 204 data_write[0] = subAddress;
onehorse 1:cea9d83b8636 205 data_write[1] = data;
onehorse 1:cea9d83b8636 206 i2c.write(address, data_write, 2, 0);
onehorse 1:cea9d83b8636 207 }
onehorse 1:cea9d83b8636 208
onehorse 1:cea9d83b8636 209 char readByte(uint8_t address, uint8_t subAddress)
onehorse 1:cea9d83b8636 210 {
onehorse 1:cea9d83b8636 211 char data[1]; // `data` will store the register data
onehorse 1:cea9d83b8636 212 char data_write[1];
onehorse 1:cea9d83b8636 213 data_write[0] = subAddress;
onehorse 1:cea9d83b8636 214 i2c.write(address, data_write, 1, 1); // no stop
onehorse 1:cea9d83b8636 215 i2c.read(address, data, 1, 0);
onehorse 1:cea9d83b8636 216 return data[0];
onehorse 1:cea9d83b8636 217 }
onehorse 1:cea9d83b8636 218
onehorse 1:cea9d83b8636 219 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
onehorse 1:cea9d83b8636 220 {
onehorse 1:cea9d83b8636 221 char data[14];
onehorse 1:cea9d83b8636 222 char data_write[1];
onehorse 1:cea9d83b8636 223 data_write[0] = subAddress;
onehorse 1:cea9d83b8636 224 i2c.write(address, data_write, 1, 1); // no stop
onehorse 1:cea9d83b8636 225 i2c.read(address, data, count, 0);
onehorse 1:cea9d83b8636 226 for(int ii = 0; ii < count; ii++) {
onehorse 1:cea9d83b8636 227 dest[ii] = data[ii];
onehorse 1:cea9d83b8636 228 }
onehorse 1:cea9d83b8636 229 }
onehorse 1:cea9d83b8636 230
onehorse 1:cea9d83b8636 231
onehorse 1:cea9d83b8636 232 void getGres() {
onehorse 1:cea9d83b8636 233 switch (Gscale)
onehorse 1:cea9d83b8636 234 {
onehorse 1:cea9d83b8636 235 // Possible gyro scales (and their register bit settings) are:
onehorse 1:cea9d83b8636 236 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
onehorse 1:cea9d83b8636 237 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
onehorse 1:cea9d83b8636 238 case GFS_250DPS:
onehorse 1:cea9d83b8636 239 gRes = 250.0/32768.0;
onehorse 1:cea9d83b8636 240 break;
onehorse 1:cea9d83b8636 241 case GFS_500DPS:
onehorse 1:cea9d83b8636 242 gRes = 500.0/32768.0;
onehorse 1:cea9d83b8636 243 break;
onehorse 1:cea9d83b8636 244 case GFS_1000DPS:
onehorse 1:cea9d83b8636 245 gRes = 1000.0/32768.0;
onehorse 1:cea9d83b8636 246 break;
onehorse 1:cea9d83b8636 247 case GFS_2000DPS:
onehorse 1:cea9d83b8636 248 gRes = 2000.0/32768.0;
onehorse 1:cea9d83b8636 249 break;
onehorse 1:cea9d83b8636 250 }
onehorse 1:cea9d83b8636 251 }
onehorse 1:cea9d83b8636 252
onehorse 1:cea9d83b8636 253 void getAres() {
onehorse 1:cea9d83b8636 254 switch (Ascale)
onehorse 1:cea9d83b8636 255 {
onehorse 1:cea9d83b8636 256 // Possible accelerometer scales (and their register bit settings) are:
onehorse 1:cea9d83b8636 257 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
onehorse 1:cea9d83b8636 258 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
onehorse 1:cea9d83b8636 259 case AFS_2G:
onehorse 1:cea9d83b8636 260 aRes = 2.0/32768.0;
onehorse 1:cea9d83b8636 261 break;
onehorse 1:cea9d83b8636 262 case AFS_4G:
onehorse 1:cea9d83b8636 263 aRes = 4.0/32768.0;
onehorse 1:cea9d83b8636 264 break;
onehorse 1:cea9d83b8636 265 case AFS_8G:
onehorse 1:cea9d83b8636 266 aRes = 8.0/32768.0;
onehorse 1:cea9d83b8636 267 break;
onehorse 1:cea9d83b8636 268 case AFS_16G:
onehorse 1:cea9d83b8636 269 aRes = 16.0/32768.0;
onehorse 1:cea9d83b8636 270 break;
onehorse 1:cea9d83b8636 271 }
onehorse 1:cea9d83b8636 272 }
onehorse 1:cea9d83b8636 273
onehorse 1:cea9d83b8636 274
onehorse 1:cea9d83b8636 275 void readAccelData(int16_t * destination)
onehorse 1:cea9d83b8636 276 {
onehorse 1:cea9d83b8636 277 uint8_t rawData[6]; // x/y/z accel register data stored here
onehorse 1:cea9d83b8636 278 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
onehorse 1:cea9d83b8636 279 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
onehorse 1:cea9d83b8636 280 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
onehorse 1:cea9d83b8636 281 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
onehorse 1:cea9d83b8636 282 }
onehorse 1:cea9d83b8636 283
onehorse 1:cea9d83b8636 284 void readGyroData(int16_t * destination)
onehorse 1:cea9d83b8636 285 {
onehorse 1:cea9d83b8636 286 uint8_t rawData[6]; // x/y/z gyro register data stored here
onehorse 1:cea9d83b8636 287 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
onehorse 1:cea9d83b8636 288 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
onehorse 1:cea9d83b8636 289 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
onehorse 1:cea9d83b8636 290 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
onehorse 1:cea9d83b8636 291 }
onehorse 1:cea9d83b8636 292
onehorse 1:cea9d83b8636 293 int16_t readTempData()
onehorse 1:cea9d83b8636 294 {
onehorse 1:cea9d83b8636 295 uint8_t rawData[2]; // x/y/z gyro register data stored here
onehorse 1:cea9d83b8636 296 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
onehorse 1:cea9d83b8636 297 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
onehorse 1:cea9d83b8636 298 }
onehorse 1:cea9d83b8636 299
onehorse 1:cea9d83b8636 300
onehorse 1:cea9d83b8636 301
onehorse 1:cea9d83b8636 302 // Configure the motion detection control for low power accelerometer mode
onehorse 1:cea9d83b8636 303 void LowPowerAccelOnly()
onehorse 1:cea9d83b8636 304 {
onehorse 1:cea9d83b8636 305
onehorse 1:cea9d83b8636 306 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
onehorse 1:cea9d83b8636 307 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
onehorse 1:cea9d83b8636 308 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
onehorse 1:cea9d83b8636 309 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
onehorse 1:cea9d83b8636 310 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
onehorse 1:cea9d83b8636 311
onehorse 1:cea9d83b8636 312 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
onehorse 1:cea9d83b8636 313 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
onehorse 1:cea9d83b8636 314 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
onehorse 1:cea9d83b8636 315
onehorse 1:cea9d83b8636 316 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
onehorse 1:cea9d83b8636 317 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
onehorse 1:cea9d83b8636 318 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
onehorse 1:cea9d83b8636 319
onehorse 1:cea9d83b8636 320 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
onehorse 1:cea9d83b8636 321 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
onehorse 1:cea9d83b8636 322 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
onehorse 1:cea9d83b8636 323 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
onehorse 1:cea9d83b8636 324
onehorse 1:cea9d83b8636 325 c = readByte(MPU6050_ADDRESS, CONFIG);
onehorse 1:cea9d83b8636 326 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
onehorse 1:cea9d83b8636 327 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
onehorse 1:cea9d83b8636 328
onehorse 1:cea9d83b8636 329 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
onehorse 1:cea9d83b8636 330 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
onehorse 1:cea9d83b8636 331 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
onehorse 1:cea9d83b8636 332
onehorse 1:cea9d83b8636 333 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
onehorse 1:cea9d83b8636 334 // for at least the counter duration
onehorse 1:cea9d83b8636 335 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
onehorse 1:cea9d83b8636 336 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
onehorse 1:cea9d83b8636 337
onehorse 1:cea9d83b8636 338 wait(0.1); // Add delay for accumulation of samples
onehorse 1:cea9d83b8636 339
onehorse 1:cea9d83b8636 340 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
onehorse 1:cea9d83b8636 341 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
onehorse 1:cea9d83b8636 342 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
onehorse 1:cea9d83b8636 343
onehorse 1:cea9d83b8636 344 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
onehorse 1:cea9d83b8636 345 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
onehorse 1:cea9d83b8636 346 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
onehorse 1:cea9d83b8636 347
onehorse 1:cea9d83b8636 348 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
onehorse 1:cea9d83b8636 349 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
onehorse 1:cea9d83b8636 350 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
onehorse 1:cea9d83b8636 351
onehorse 1:cea9d83b8636 352 }
onehorse 1:cea9d83b8636 353
onehorse 1:cea9d83b8636 354
onehorse 1:cea9d83b8636 355 void resetMPU6050() {
onehorse 1:cea9d83b8636 356 // reset device
onehorse 1:cea9d83b8636 357 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
onehorse 1:cea9d83b8636 358 wait(0.1);
onehorse 1:cea9d83b8636 359 }
onehorse 1:cea9d83b8636 360
onehorse 1:cea9d83b8636 361
onehorse 1:cea9d83b8636 362 void initMPU6050()
onehorse 1:cea9d83b8636 363 {
onehorse 1:cea9d83b8636 364 // Initialize MPU6050 device
onehorse 1:cea9d83b8636 365 // wake up device
onehorse 1:cea9d83b8636 366 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
onehorse 1:cea9d83b8636 367 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
onehorse 1:cea9d83b8636 368
onehorse 1:cea9d83b8636 369 // get stable time source
onehorse 1:cea9d83b8636 370 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
onehorse 1:cea9d83b8636 371
onehorse 1:cea9d83b8636 372 // Configure Gyro and Accelerometer
onehorse 1:cea9d83b8636 373 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
onehorse 1:cea9d83b8636 374 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
onehorse 1:cea9d83b8636 375 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
onehorse 1:cea9d83b8636 376 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
onehorse 1:cea9d83b8636 377
onehorse 1:cea9d83b8636 378 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
onehorse 1:cea9d83b8636 379 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
onehorse 1:cea9d83b8636 380
onehorse 1:cea9d83b8636 381 // Set gyroscope full scale range
onehorse 1:cea9d83b8636 382 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
onehorse 1:cea9d83b8636 383 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
onehorse 1:cea9d83b8636 384 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
onehorse 1:cea9d83b8636 385 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
onehorse 1:cea9d83b8636 386 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
onehorse 1:cea9d83b8636 387
onehorse 1:cea9d83b8636 388 // Set accelerometer configuration
onehorse 1:cea9d83b8636 389 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
onehorse 1:cea9d83b8636 390 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
onehorse 1:cea9d83b8636 391 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
onehorse 1:cea9d83b8636 392 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
onehorse 1:cea9d83b8636 393
onehorse 1:cea9d83b8636 394 // Configure Interrupts and Bypass Enable
onehorse 1:cea9d83b8636 395 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
onehorse 1:cea9d83b8636 396 // can join the I2C bus and all can be controlled by the Arduino as master
onehorse 1:cea9d83b8636 397 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
onehorse 1:cea9d83b8636 398 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
onehorse 1:cea9d83b8636 399 }
onehorse 1:cea9d83b8636 400
onehorse 1:cea9d83b8636 401 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
onehorse 1:cea9d83b8636 402 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
onehorse 1:cea9d83b8636 403 void calibrateMPU6050(float * dest1, float * dest2)
onehorse 1:cea9d83b8636 404 {
onehorse 1:cea9d83b8636 405 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
onehorse 1:cea9d83b8636 406 uint16_t ii, packet_count, fifo_count;
onehorse 1:cea9d83b8636 407 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
onehorse 1:cea9d83b8636 408
onehorse 1:cea9d83b8636 409 // reset device, reset all registers, clear gyro and accelerometer bias registers
onehorse 1:cea9d83b8636 410 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
onehorse 1:cea9d83b8636 411 wait(0.1);
onehorse 1:cea9d83b8636 412
onehorse 1:cea9d83b8636 413 // get stable time source
onehorse 1:cea9d83b8636 414 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
onehorse 1:cea9d83b8636 415 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
onehorse 1:cea9d83b8636 416 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
onehorse 1:cea9d83b8636 417 wait(0.2);
onehorse 1:cea9d83b8636 418
onehorse 1:cea9d83b8636 419 // Configure device for bias calculation
onehorse 1:cea9d83b8636 420 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
onehorse 1:cea9d83b8636 421 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
onehorse 1:cea9d83b8636 422 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
onehorse 1:cea9d83b8636 423 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
onehorse 1:cea9d83b8636 424 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
onehorse 1:cea9d83b8636 425 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
onehorse 1:cea9d83b8636 426 wait(0.015);
onehorse 1:cea9d83b8636 427
onehorse 1:cea9d83b8636 428 // Configure MPU6050 gyro and accelerometer for bias calculation
onehorse 1:cea9d83b8636 429 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
onehorse 1:cea9d83b8636 430 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
onehorse 1:cea9d83b8636 431 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
onehorse 1:cea9d83b8636 432 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
onehorse 1:cea9d83b8636 433
onehorse 1:cea9d83b8636 434 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
onehorse 1:cea9d83b8636 435 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
onehorse 1:cea9d83b8636 436
onehorse 1:cea9d83b8636 437 // Configure FIFO to capture accelerometer and gyro data for bias calculation
onehorse 1:cea9d83b8636 438 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
onehorse 1:cea9d83b8636 439 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
onehorse 1:cea9d83b8636 440 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
onehorse 1:cea9d83b8636 441
onehorse 1:cea9d83b8636 442 // At end of sample accumulation, turn off FIFO sensor read
onehorse 1:cea9d83b8636 443 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
onehorse 1:cea9d83b8636 444 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
onehorse 1:cea9d83b8636 445 fifo_count = ((uint16_t)data[0] << 8) | data[1];
onehorse 1:cea9d83b8636 446 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
onehorse 1:cea9d83b8636 447
onehorse 1:cea9d83b8636 448 for (ii = 0; ii < packet_count; ii++) {
onehorse 1:cea9d83b8636 449 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
onehorse 1:cea9d83b8636 450 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
onehorse 1:cea9d83b8636 451 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
onehorse 1:cea9d83b8636 452 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
onehorse 1:cea9d83b8636 453 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
onehorse 1:cea9d83b8636 454 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
onehorse 1:cea9d83b8636 455 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
onehorse 1:cea9d83b8636 456 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
onehorse 1:cea9d83b8636 457
onehorse 1:cea9d83b8636 458 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
onehorse 1:cea9d83b8636 459 accel_bias[1] += (int32_t) accel_temp[1];
onehorse 1:cea9d83b8636 460 accel_bias[2] += (int32_t) accel_temp[2];
onehorse 1:cea9d83b8636 461 gyro_bias[0] += (int32_t) gyro_temp[0];
onehorse 1:cea9d83b8636 462 gyro_bias[1] += (int32_t) gyro_temp[1];
onehorse 1:cea9d83b8636 463 gyro_bias[2] += (int32_t) gyro_temp[2];
onehorse 1:cea9d83b8636 464
onehorse 1:cea9d83b8636 465 }
onehorse 1:cea9d83b8636 466 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
onehorse 1:cea9d83b8636 467 accel_bias[1] /= (int32_t) packet_count;
onehorse 1:cea9d83b8636 468 accel_bias[2] /= (int32_t) packet_count;
onehorse 1:cea9d83b8636 469 gyro_bias[0] /= (int32_t) packet_count;
onehorse 1:cea9d83b8636 470 gyro_bias[1] /= (int32_t) packet_count;
onehorse 1:cea9d83b8636 471 gyro_bias[2] /= (int32_t) packet_count;
onehorse 1:cea9d83b8636 472
onehorse 1:cea9d83b8636 473 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
onehorse 1:cea9d83b8636 474 else {accel_bias[2] += (int32_t) accelsensitivity;}
onehorse 1:cea9d83b8636 475
onehorse 1:cea9d83b8636 476 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
onehorse 1:cea9d83b8636 477 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
onehorse 1:cea9d83b8636 478 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
onehorse 1:cea9d83b8636 479 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
onehorse 1:cea9d83b8636 480 data[3] = (-gyro_bias[1]/4) & 0xFF;
onehorse 1:cea9d83b8636 481 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
onehorse 1:cea9d83b8636 482 data[5] = (-gyro_bias[2]/4) & 0xFF;
onehorse 1:cea9d83b8636 483
onehorse 1:cea9d83b8636 484 // Push gyro biases to hardware registers
onehorse 1:cea9d83b8636 485 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
onehorse 1:cea9d83b8636 486 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
onehorse 1:cea9d83b8636 487 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
onehorse 1:cea9d83b8636 488 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
onehorse 1:cea9d83b8636 489 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
onehorse 1:cea9d83b8636 490 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
onehorse 1:cea9d83b8636 491
onehorse 1:cea9d83b8636 492 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
onehorse 1:cea9d83b8636 493 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
onehorse 1:cea9d83b8636 494 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
onehorse 1:cea9d83b8636 495
onehorse 1:cea9d83b8636 496 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
onehorse 1:cea9d83b8636 497 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
onehorse 1:cea9d83b8636 498 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
onehorse 1:cea9d83b8636 499 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
onehorse 1:cea9d83b8636 500 // the accelerometer biases calculated above must be divided by 8.
onehorse 1:cea9d83b8636 501
onehorse 1:cea9d83b8636 502 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
onehorse 1:cea9d83b8636 503 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
onehorse 1:cea9d83b8636 504 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
onehorse 1:cea9d83b8636 505 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
onehorse 1:cea9d83b8636 506 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
onehorse 1:cea9d83b8636 507 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
onehorse 1:cea9d83b8636 508 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
onehorse 1:cea9d83b8636 509
onehorse 1:cea9d83b8636 510 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
onehorse 1:cea9d83b8636 511 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
onehorse 1:cea9d83b8636 512
onehorse 1:cea9d83b8636 513 for(ii = 0; ii < 3; ii++) {
onehorse 1:cea9d83b8636 514 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
onehorse 1:cea9d83b8636 515 }
onehorse 1:cea9d83b8636 516
onehorse 1:cea9d83b8636 517 // Construct total accelerometer bias, including calculated average accelerometer bias from above
onehorse 1:cea9d83b8636 518 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
onehorse 1:cea9d83b8636 519 accel_bias_reg[1] -= (accel_bias[1]/8);
onehorse 1:cea9d83b8636 520 accel_bias_reg[2] -= (accel_bias[2]/8);
onehorse 1:cea9d83b8636 521
onehorse 1:cea9d83b8636 522 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
onehorse 1:cea9d83b8636 523 data[1] = (accel_bias_reg[0]) & 0xFF;
onehorse 1:cea9d83b8636 524 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 1:cea9d83b8636 525 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
onehorse 1:cea9d83b8636 526 data[3] = (accel_bias_reg[1]) & 0xFF;
onehorse 1:cea9d83b8636 527 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 1:cea9d83b8636 528 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
onehorse 1:cea9d83b8636 529 data[5] = (accel_bias_reg[2]) & 0xFF;
onehorse 1:cea9d83b8636 530 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 1:cea9d83b8636 531
onehorse 1:cea9d83b8636 532 // Push accelerometer biases to hardware registers
onehorse 1:cea9d83b8636 533 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
onehorse 1:cea9d83b8636 534 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
onehorse 1:cea9d83b8636 535 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
onehorse 1:cea9d83b8636 536 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
onehorse 1:cea9d83b8636 537 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
onehorse 1:cea9d83b8636 538 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
onehorse 1:cea9d83b8636 539
onehorse 1:cea9d83b8636 540 // Output scaled accelerometer biases for manual subtraction in the main program
onehorse 1:cea9d83b8636 541 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
onehorse 1:cea9d83b8636 542 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
onehorse 1:cea9d83b8636 543 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
onehorse 1:cea9d83b8636 544 }
onehorse 1:cea9d83b8636 545
onehorse 1:cea9d83b8636 546
onehorse 1:cea9d83b8636 547 // Accelerometer and gyroscope self test; check calibration wrt factory settings
onehorse 1:cea9d83b8636 548 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
onehorse 1:cea9d83b8636 549 {
onehorse 1:cea9d83b8636 550 uint8_t rawData[4] = {0, 0, 0, 0};
onehorse 1:cea9d83b8636 551 uint8_t selfTest[6];
onehorse 1:cea9d83b8636 552 float factoryTrim[6];
onehorse 1:cea9d83b8636 553
onehorse 1:cea9d83b8636 554 // Configure the accelerometer for self-test
onehorse 1:cea9d83b8636 555 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
onehorse 1:cea9d83b8636 556 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
onehorse 1:cea9d83b8636 557 wait(0.25); // Delay a while to let the device execute the self-test
onehorse 1:cea9d83b8636 558 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
onehorse 1:cea9d83b8636 559 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
onehorse 1:cea9d83b8636 560 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
onehorse 1:cea9d83b8636 561 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
onehorse 1:cea9d83b8636 562 // Extract the acceleration test results first
onehorse 1:cea9d83b8636 563 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
onehorse 1:cea9d83b8636 564 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
onehorse 1:cea9d83b8636 565 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
onehorse 1:cea9d83b8636 566 // Extract the gyration test results first
onehorse 1:cea9d83b8636 567 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
onehorse 1:cea9d83b8636 568 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
onehorse 1:cea9d83b8636 569 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
onehorse 1:cea9d83b8636 570 // Process results to allow final comparison with factory set values
onehorse 1:cea9d83b8636 571 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
onehorse 1:cea9d83b8636 572 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
onehorse 1:cea9d83b8636 573 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
onehorse 1:cea9d83b8636 574 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
onehorse 1:cea9d83b8636 575 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
onehorse 1:cea9d83b8636 576 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
onehorse 1:cea9d83b8636 577
onehorse 1:cea9d83b8636 578 // Output self-test results and factory trim calculation if desired
onehorse 1:cea9d83b8636 579 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
onehorse 1:cea9d83b8636 580 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
onehorse 1:cea9d83b8636 581 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
onehorse 1:cea9d83b8636 582 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
onehorse 1:cea9d83b8636 583
onehorse 1:cea9d83b8636 584 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
onehorse 1:cea9d83b8636 585 // To get to percent, must multiply by 100 and subtract result from 100
onehorse 1:cea9d83b8636 586 for (int i = 0; i < 6; i++) {
onehorse 1:cea9d83b8636 587 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
onehorse 1:cea9d83b8636 588 }
onehorse 1:cea9d83b8636 589
onehorse 1:cea9d83b8636 590 }
onehorse 1:cea9d83b8636 591
onehorse 1:cea9d83b8636 592
onehorse 1:cea9d83b8636 593 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
onehorse 1:cea9d83b8636 594 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
onehorse 1:cea9d83b8636 595 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
onehorse 1:cea9d83b8636 596 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
onehorse 1:cea9d83b8636 597 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
onehorse 1:cea9d83b8636 598 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
onehorse 1:cea9d83b8636 599 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
onehorse 1:cea9d83b8636 600 {
onehorse 1:cea9d83b8636 601 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
onehorse 1:cea9d83b8636 602 float norm; // vector norm
onehorse 1:cea9d83b8636 603 float f1, f2, f3; // objective funcyion elements
onehorse 1:cea9d83b8636 604 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
onehorse 1:cea9d83b8636 605 float qDot1, qDot2, qDot3, qDot4;
onehorse 1:cea9d83b8636 606 float hatDot1, hatDot2, hatDot3, hatDot4;
onehorse 1:cea9d83b8636 607 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
onehorse 1:cea9d83b8636 608
onehorse 1:cea9d83b8636 609 // Auxiliary variables to avoid repeated arithmetic
onehorse 1:cea9d83b8636 610 float _halfq1 = 0.5f * q1;
onehorse 1:cea9d83b8636 611 float _halfq2 = 0.5f * q2;
onehorse 1:cea9d83b8636 612 float _halfq3 = 0.5f * q3;
onehorse 1:cea9d83b8636 613 float _halfq4 = 0.5f * q4;
onehorse 1:cea9d83b8636 614 float _2q1 = 2.0f * q1;
onehorse 1:cea9d83b8636 615 float _2q2 = 2.0f * q2;
onehorse 1:cea9d83b8636 616 float _2q3 = 2.0f * q3;
onehorse 1:cea9d83b8636 617 float _2q4 = 2.0f * q4;
onehorse 1:cea9d83b8636 618 // float _2q1q3 = 2.0f * q1 * q3;
onehorse 1:cea9d83b8636 619 // float _2q3q4 = 2.0f * q3 * q4;
onehorse 1:cea9d83b8636 620
onehorse 1:cea9d83b8636 621 // Normalise accelerometer measurement
onehorse 1:cea9d83b8636 622 norm = sqrt(ax * ax + ay * ay + az * az);
onehorse 1:cea9d83b8636 623 if (norm == 0.0f) return; // handle NaN
onehorse 1:cea9d83b8636 624 norm = 1.0f/norm;
onehorse 1:cea9d83b8636 625 ax *= norm;
onehorse 1:cea9d83b8636 626 ay *= norm;
onehorse 1:cea9d83b8636 627 az *= norm;
onehorse 1:cea9d83b8636 628
onehorse 1:cea9d83b8636 629 // Compute the objective function and Jacobian
onehorse 1:cea9d83b8636 630 f1 = _2q2 * q4 - _2q1 * q3 - ax;
onehorse 1:cea9d83b8636 631 f2 = _2q1 * q2 + _2q3 * q4 - ay;
onehorse 1:cea9d83b8636 632 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
onehorse 1:cea9d83b8636 633 J_11or24 = _2q3;
onehorse 1:cea9d83b8636 634 J_12or23 = _2q4;
onehorse 1:cea9d83b8636 635 J_13or22 = _2q1;
onehorse 1:cea9d83b8636 636 J_14or21 = _2q2;
onehorse 1:cea9d83b8636 637 J_32 = 2.0f * J_14or21;
onehorse 1:cea9d83b8636 638 J_33 = 2.0f * J_11or24;
onehorse 1:cea9d83b8636 639
onehorse 1:cea9d83b8636 640 // Compute the gradient (matrix multiplication)
onehorse 1:cea9d83b8636 641 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
onehorse 1:cea9d83b8636 642 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
onehorse 1:cea9d83b8636 643 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
onehorse 1:cea9d83b8636 644 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
onehorse 1:cea9d83b8636 645
onehorse 1:cea9d83b8636 646 // Normalize the gradient
onehorse 1:cea9d83b8636 647 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
onehorse 1:cea9d83b8636 648 hatDot1 /= norm;
onehorse 1:cea9d83b8636 649 hatDot2 /= norm;
onehorse 1:cea9d83b8636 650 hatDot3 /= norm;
onehorse 1:cea9d83b8636 651 hatDot4 /= norm;
onehorse 1:cea9d83b8636 652
onehorse 1:cea9d83b8636 653 // Compute estimated gyroscope biases
onehorse 1:cea9d83b8636 654 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
onehorse 1:cea9d83b8636 655 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
onehorse 1:cea9d83b8636 656 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
onehorse 1:cea9d83b8636 657
onehorse 1:cea9d83b8636 658 // Compute and remove gyroscope biases
onehorse 1:cea9d83b8636 659 gbiasx += gerrx * deltat * zeta;
onehorse 1:cea9d83b8636 660 gbiasy += gerry * deltat * zeta;
onehorse 1:cea9d83b8636 661 gbiasz += gerrz * deltat * zeta;
onehorse 1:cea9d83b8636 662 // gx -= gbiasx;
onehorse 1:cea9d83b8636 663 // gy -= gbiasy;
onehorse 1:cea9d83b8636 664 // gz -= gbiasz;
onehorse 1:cea9d83b8636 665
onehorse 1:cea9d83b8636 666 // Compute the quaternion derivative
onehorse 1:cea9d83b8636 667 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
onehorse 1:cea9d83b8636 668 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
onehorse 1:cea9d83b8636 669 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
onehorse 1:cea9d83b8636 670 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
onehorse 1:cea9d83b8636 671
onehorse 1:cea9d83b8636 672 // Compute then integrate estimated quaternion derivative
onehorse 1:cea9d83b8636 673 q1 += (qDot1 -(beta * hatDot1)) * deltat;
onehorse 1:cea9d83b8636 674 q2 += (qDot2 -(beta * hatDot2)) * deltat;
onehorse 1:cea9d83b8636 675 q3 += (qDot3 -(beta * hatDot3)) * deltat;
onehorse 1:cea9d83b8636 676 q4 += (qDot4 -(beta * hatDot4)) * deltat;
onehorse 1:cea9d83b8636 677
onehorse 1:cea9d83b8636 678 // Normalize the quaternion
onehorse 1:cea9d83b8636 679 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
onehorse 1:cea9d83b8636 680 norm = 1.0f/norm;
onehorse 1:cea9d83b8636 681 q[0] = q1 * norm;
onehorse 1:cea9d83b8636 682 q[1] = q2 * norm;
onehorse 1:cea9d83b8636 683 q[2] = q3 * norm;
onehorse 1:cea9d83b8636 684 q[3] = q4 * norm;
onehorse 1:cea9d83b8636 685
onehorse 1:cea9d83b8636 686 }
AlexQian 3:dd03d585a24f 687 int Init()
AlexQian 3:dd03d585a24f 688 {
AlexQian 3:dd03d585a24f 689 i2c.frequency(400000); // use fast (400 kHz) I2C
AlexQian 3:dd03d585a24f 690
AlexQian 3:dd03d585a24f 691 t.start();
AlexQian 3:dd03d585a24f 692
AlexQian 3:dd03d585a24f 693
AlexQian 3:dd03d585a24f 694 // Read the WHO_AM_I register, this is a good test of communication
AlexQian 3:dd03d585a24f 695 uint8_t whoami = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
AlexQian 3:dd03d585a24f 696 //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
AlexQian 3:dd03d585a24f 697
AlexQian 3:dd03d585a24f 698 if (whoami == 0x68) // WHO_AM_I should always be 0x68
AlexQian 3:dd03d585a24f 699 {
AlexQian 3:dd03d585a24f 700 //pc.printf("MPU6050 is online...");
AlexQian 3:dd03d585a24f 701 wait(1);
AlexQian 3:dd03d585a24f 702
AlexQian 3:dd03d585a24f 703
AlexQian 3:dd03d585a24f 704 MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
AlexQian 3:dd03d585a24f 705 //pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
AlexQian 3:dd03d585a24f 706 // pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
AlexQian 3:dd03d585a24f 707 // pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
AlexQian 3:dd03d585a24f 708 // pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
AlexQian 3:dd03d585a24f 709 // pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
AlexQian 3:dd03d585a24f 710 // pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
AlexQian 3:dd03d585a24f 711 wait(1);
AlexQian 3:dd03d585a24f 712
AlexQian 3:dd03d585a24f 713 if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
AlexQian 3:dd03d585a24f 714 {
AlexQian 3:dd03d585a24f 715 resetMPU6050(); // Reset registers to default in preparation for device calibration
AlexQian 3:dd03d585a24f 716 calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
AlexQian 3:dd03d585a24f 717 initMPU6050(); //pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
AlexQian 3:dd03d585a24f 718 wait(2);
AlexQian 3:dd03d585a24f 719 }
AlexQian 3:dd03d585a24f 720 else
AlexQian 3:dd03d585a24f 721 {
AlexQian 3:dd03d585a24f 722 //pc.printf("Device did not the pass self-test!\n\r");
AlexQian 3:dd03d585a24f 723 return 1;
AlexQian 3:dd03d585a24f 724 }
AlexQian 3:dd03d585a24f 725 }
AlexQian 3:dd03d585a24f 726 else
AlexQian 3:dd03d585a24f 727 {
AlexQian 3:dd03d585a24f 728 // pc.printf("Could not connect to MPU6050: \n\r");
AlexQian 3:dd03d585a24f 729 // pc.printf("%#x \n", whoami);
AlexQian 3:dd03d585a24f 730 return 1;
AlexQian 3:dd03d585a24f 731 // while(1) ; // Loop forever if communication doesn't happen
AlexQian 3:dd03d585a24f 732 }
AlexQian 3:dd03d585a24f 733 return 0;
AlexQian 3:dd03d585a24f 734 }
AlexQian 3:dd03d585a24f 735 void receiveData(float *yaw, float *pitch , float *roll )
AlexQian 3:dd03d585a24f 736 {
AlexQian 3:dd03d585a24f 737 if(readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
AlexQian 3:dd03d585a24f 738 readAccelData(accelCount); // Read the x/y/z adc values
AlexQian 3:dd03d585a24f 739 getAres();
AlexQian 3:dd03d585a24f 740
AlexQian 3:dd03d585a24f 741 // Now we'll calculate the accleration value into actual g's
AlexQian 3:dd03d585a24f 742 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
AlexQian 3:dd03d585a24f 743 ay = (float)accelCount[1]*aRes - accelBias[1];
AlexQian 3:dd03d585a24f 744 az = (float)accelCount[2]*aRes - accelBias[2];
AlexQian 3:dd03d585a24f 745
AlexQian 3:dd03d585a24f 746 readGyroData(gyroCount); // Read the x/y/z adc values
AlexQian 3:dd03d585a24f 747 getGres();
AlexQian 3:dd03d585a24f 748
AlexQian 3:dd03d585a24f 749 // Calculate the gyro value into actual degrees per second
AlexQian 3:dd03d585a24f 750 gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
AlexQian 3:dd03d585a24f 751 gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
AlexQian 3:dd03d585a24f 752 gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
AlexQian 3:dd03d585a24f 753
AlexQian 3:dd03d585a24f 754 tempCount = readTempData(); // Read the x/y/z adc values
AlexQian 3:dd03d585a24f 755 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
AlexQian 3:dd03d585a24f 756 }
AlexQian 3:dd03d585a24f 757
AlexQian 3:dd03d585a24f 758 Now = t.read_us();
AlexQian 3:dd03d585a24f 759 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
AlexQian 3:dd03d585a24f 760 lastUpdate = Now;
AlexQian 3:dd03d585a24f 761
AlexQian 3:dd03d585a24f 762 // sum += deltat;
AlexQian 3:dd03d585a24f 763 // sumCount++;
AlexQian 3:dd03d585a24f 764
AlexQian 3:dd03d585a24f 765 if(lastUpdate - firstUpdate > 10000000.0f) {
AlexQian 3:dd03d585a24f 766 beta = 0.04; // decrease filter gain after stabilized
AlexQian 3:dd03d585a24f 767 zeta = 0.015; // increasey bias drift gain after stabilized
AlexQian 3:dd03d585a24f 768 }
AlexQian 3:dd03d585a24f 769
AlexQian 3:dd03d585a24f 770 // Pass gyro rate as rad/s
AlexQian 3:dd03d585a24f 771 MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
AlexQian 3:dd03d585a24f 772
AlexQian 3:dd03d585a24f 773 // Serial print and/or display at 0.5 s rate independent of data rates
AlexQian 3:dd03d585a24f 774 delt_t = t.read_ms() - count1;
AlexQian 3:dd03d585a24f 775 if (delt_t > 500) { // update LCD once per half-second independent of read rate
AlexQian 3:dd03d585a24f 776
AlexQian 3:dd03d585a24f 777 // pc.printf("ax = %f", 1000*ax);
AlexQian 3:dd03d585a24f 778 // pc.printf(" ay = %f", 1000*ay);
AlexQian 3:dd03d585a24f 779 // pc.printf(" az = %f mg\n\r", 1000*az);
AlexQian 3:dd03d585a24f 780 //
AlexQian 3:dd03d585a24f 781 // pc.printf("gx = %f", gx);
AlexQian 3:dd03d585a24f 782 // pc.printf(" gy = %f", gy);
AlexQian 3:dd03d585a24f 783 // pc.printf(" gz = %f deg/s\n\r", gz);
AlexQian 3:dd03d585a24f 784 //
AlexQian 3:dd03d585a24f 785 // pc.printf(" temperature = %f C\n\r", temperature);
AlexQian 3:dd03d585a24f 786 //
AlexQian 3:dd03d585a24f 787 // pc.printf("q0 = %f\n\r", q[0]);
AlexQian 3:dd03d585a24f 788 // pc.printf("q1 = %f\n\r", q[1]);
AlexQian 3:dd03d585a24f 789 // pc.printf("q2 = %f\n\r", q[2]);
AlexQian 3:dd03d585a24f 790 // pc.printf("q3 = %f\n\r", q[3]);
AlexQian 3:dd03d585a24f 791
AlexQian 3:dd03d585a24f 792 *yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
AlexQian 3:dd03d585a24f 793 *pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
AlexQian 3:dd03d585a24f 794 *roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
AlexQian 3:dd03d585a24f 795 *pitch *= 180.0f / PI;
AlexQian 3:dd03d585a24f 796 *yaw *= 180.0f / PI;
AlexQian 3:dd03d585a24f 797 *roll *= 180.0f / PI;
AlexQian 3:dd03d585a24f 798
AlexQian 3:dd03d585a24f 799 //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
AlexQian 3:dd03d585a24f 800
AlexQian 3:dd03d585a24f 801 count1 = t.read_ms();
AlexQian 3:dd03d585a24f 802 }
AlexQian 3:dd03d585a24f 803 }
onehorse 1:cea9d83b8636 804
onehorse 1:cea9d83b8636 805
onehorse 1:cea9d83b8636 806 };
AlexQian 3:dd03d585a24f 807
onehorse 1:cea9d83b8636 808 #endif