Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: src/adi_sense_1000.c
- Revision:
- 12:97457cf77bcb
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/adi_sense_1000.c Mon Nov 27 13:10:11 2017 +0000
@@ -0,0 +1,2269 @@
+/*!
+ ******************************************************************************
+ * @file: adi_sense_1000.c
+ * @brief: ADI Sense API implementation for ADI Sense 1000
+ *-----------------------------------------------------------------------------
+ */
+
+/******************************************************************************
+Copyright (c) 2017 Emutex Ltd. / Analog Devices, Inc.
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+ - Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+ - Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ - Modified versions of the software must be conspicuously marked as such.
+ - This software is licensed solely and exclusively for use with processors
+ manufactured by or for Analog Devices, Inc.
+ - This software may not be combined or merged with other code in any manner
+ that would cause the software to become subject to terms and conditions
+ which differ from those listed here.
+ - Neither the name of Analog Devices, Inc. nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+ - The use of this software may or may not infringe the patent rights of one
+ or more patent holders. This license does not release you from the
+ requirement that you obtain separate licenses from these patent holders
+ to use this software.
+
+THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES, INC. AND CONTRIBUTORS "AS IS" AND ANY
+EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
+TITLE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+NO EVENT SHALL ANALOG DEVICES, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, DAMAGES ARISING OUT OF CLAIMS OF INTELLECTUAL
+PROPERTY RIGHTS INFRINGEMENT; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *****************************************************************************/
+#include <float.h>
+#include <math.h>
+#include <string.h>
+
+#include "inc/adi_sense_platform.h"
+#include "inc/adi_sense_api.h"
+#include "inc/adi_sense_1000/adi_sense_1000_api.h"
+
+#include "adi_sense_1000/ADISENSE1000_REGISTERS_typedefs.h"
+#include "adi_sense_1000/ADISENSE1000_REGISTERS.h"
+#include "adi_sense_1000/adi_sense_1000_lut_data.h"
+#include "adi_sense_1000/adi_sense_1000_calibration.h"
+
+#include "crc16.h"
+
+#define REG_READ_DELAY_USEC (20)
+
+/*
+ * The following macros are used to encapsulate the register access code
+ * to improve readability in the functions further below in this file
+ */
+#define STRINGIFY(name) #name
+
+/* Expand the full name of the reset value macro for the specified register */
+#define REG_RESET_VAL(_name) REG_ADISENSE_##_name##_RESET
+
+/* Checks if a value is outside the bounds of the specified register field */
+#define CHECK_REG_FIELD_VAL(_field, _val) \
+ do { \
+ uint32_t _mask = BITM_ADISENSE_##_field; \
+ uint32_t _shift = BITP_ADISENSE_##_field; \
+ if ((((_val) << _shift) & ~(_mask)) != 0) { \
+ ADI_SENSE_LOG_ERROR("Value 0x%08X invalid for register field %s", \
+ (uint32_t)(_val), \
+ STRINGIFY(ADISENSE_##_field)); \
+ return ADI_SENSE_INVALID_PARAM; \
+ } \
+ } while(false)
+
+/*
+ * Encapsulates the write to a specified register
+ * NOTE - this will cause the calling function to return on error
+ */
+#define WRITE_REG(_hdev, _val, _name, _type) \
+ do { \
+ ADI_SENSE_RESULT _res; \
+ _type _regval = _val; \
+ _res = adi_sense_1000_WriteRegister((_hdev), \
+ REG_ADISENSE_##_name, \
+ &_regval, sizeof(_regval)); \
+ if (_res != ADI_SENSE_SUCCESS) \
+ return _res; \
+ } while(false)
+
+/* Wrapper macro to write a value to a uint32_t register */
+#define WRITE_REG_U32(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, uint32_t)
+/* Wrapper macro to write a value to a uint16_t register */
+#define WRITE_REG_U16(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, uint16_t)
+/* Wrapper macro to write a value to a uint8_t register */
+#define WRITE_REG_U8(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, uint8_t)
+/* Wrapper macro to write a value to a float32_t register */
+#define WRITE_REG_FLOAT(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, float32_t)
+
+/*
+ * Encapsulates the read from a specified register
+ * NOTE - this will cause the calling function to return on error
+ */
+#define READ_REG(_hdev, _val, _name, _type) \
+ do { \
+ ADI_SENSE_RESULT _res; \
+ _type _regval; \
+ _res = adi_sense_1000_ReadRegister((_hdev), \
+ REG_ADISENSE_##_name, \
+ &_regval, sizeof(_regval)); \
+ if (_res != ADI_SENSE_SUCCESS) \
+ return _res; \
+ _val = _regval; \
+ } while(false)
+
+/* Wrapper macro to read a value from a uint32_t register */
+#define READ_REG_U32(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, uint32_t)
+/* Wrapper macro to read a value from a uint16_t register */
+#define READ_REG_U16(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, uint16_t)
+/* Wrapper macro to read a value from a uint8_t register */
+#define READ_REG_U8(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, uint8_t)
+/* Wrapper macro to read a value from a float32_t register */
+#define READ_REG_FLOAT(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, float32_t)
+
+/*
+ * Wrapper macro to write an array of values to a uint8_t register
+ * NOTE - this is intended only for writing to a keyhole data register
+ */
+#define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
+ do { \
+ ADI_SENSE_RESULT _res; \
+ _res = adi_sense_1000_WriteRegister(_hdev, \
+ REG_ADISENSE_##_name, \
+ _arr, _len); \
+ if (_res != ADI_SENSE_SUCCESS) \
+ return _res; \
+ } while(false)
+
+/*
+ * Wrapper macro to read an array of values from a uint8_t register
+ * NOTE - this is intended only for reading from a keyhole data register
+ */
+#define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
+ do { \
+ ADI_SENSE_RESULT _res; \
+ _res = adi_sense_1000_ReadRegister((_hdev), \
+ REG_ADISENSE_##_name, \
+ _arr, _len); \
+ if (_res != ADI_SENSE_SUCCESS) \
+ return _res; \
+ } while(false)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC(c) \
+ ((c) >= ADI_SENSE_1000_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_CURRENT_0)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_CJC(c) \
+ ((c) >= ADI_SENSE_1000_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_CJC_1)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(c) \
+ ((c) >= ADI_SENSE_1000_CHANNEL_ID_SENSOR_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_SENSOR_3)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_VOLTAGE(c) \
+ ((c) == ADI_SENSE_1000_CHANNEL_ID_VOLTAGE_0)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_CURRENT(c) \
+ ((c) == ADI_SENSE_1000_CHANNEL_ID_CURRENT_0)
+
+#define ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(c) \
+ ((c) == ADI_SENSE_1000_CHANNEL_ID_SPI_1 || (c) == ADI_SENSE_1000_CHANNEL_ID_SPI_2)
+
+typedef struct
+{
+ unsigned nDeviceIndex;
+ ADI_SENSE_SPI_HANDLE hSpi;
+ ADI_SENSE_GPIO_HANDLE hGpio;
+} ADI_SENSE_DEVICE_CONTEXT;
+
+static ADI_SENSE_DEVICE_CONTEXT gDeviceCtx[ADI_SENSE_PLATFORM_MAX_DEVICES];
+
+/*
+ * Open an ADI Sense device instance.
+ */
+ADI_SENSE_RESULT adi_sense_Open(
+ unsigned const nDeviceIndex,
+ ADI_SENSE_CONNECTION * const pConnectionInfo,
+ ADI_SENSE_DEVICE_HANDLE * const phDevice)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx;
+ ADI_SENSE_RESULT eRet;
+
+ if (nDeviceIndex >= ADI_SENSE_PLATFORM_MAX_DEVICES)
+ return ADI_SENSE_INVALID_DEVICE_NUM;
+
+ pCtx = &gDeviceCtx[nDeviceIndex];
+ pCtx->nDeviceIndex = nDeviceIndex;
+
+ eRet = adi_sense_LogOpen();
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ eRet = adi_sense_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ eRet = adi_sense_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ *phDevice = pCtx;
+ return ADI_SENSE_SUCCESS;
+}
+
+/*
+ * Get the current state of the specified GPIO input signal.
+ */
+ADI_SENSE_RESULT adi_sense_GetGpioState(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_GPIO_PIN const ePinId,
+ bool_t * const pbAsserted)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+ return adi_sense_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
+}
+
+/*
+ * Register an application-defined callback function for GPIO interrupts.
+ */
+ADI_SENSE_RESULT adi_sense_RegisterGpioCallback(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_GPIO_PIN const ePinId,
+ ADI_SENSE_GPIO_CALLBACK const callbackFunction,
+ void * const pCallbackParam)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+ if (callbackFunction)
+ {
+ return adi_sense_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
+ pCallbackParam);
+ }
+ else
+ {
+ return adi_sense_GpioIrqDisable(pCtx->hGpio, ePinId);
+ }
+}
+
+/*
+ * Reset the specified ADI Sense device.
+ */
+ADI_SENSE_RESULT adi_sense_Reset(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ ADI_SENSE_RESULT eRet;
+
+ /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
+ eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, false);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ adi_sense_TimeDelayUsec(4);
+
+ eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, true);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+
+/*!
+ * @brief Get general status of ADISense module.
+ *
+ * @param[in]
+ * @param[out] pStatus : Pointer to CORE Status struct.
+ *
+ * @return Status
+ * - #ADI_SENSE_SUCCESS Call completed successfully.
+ * - #ADI_SENSE_FAILURE If status register read fails.
+ *
+ * @details Read the general status register for the ADISense
+ * module. Indicates Error, Alert conditions, data ready
+ * and command running.
+ *
+ */
+ADI_SENSE_RESULT adi_sense_GetStatus(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_STATUS * const pStatus)
+{
+ ADI_ADISENSE_CORE_Status_t statusReg;
+ READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
+
+ memset(pStatus, 0, sizeof(*pStatus));
+
+ if (!statusReg.Cmd_Running) /* Active-low, so invert it */
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_BUSY;
+ if (statusReg.Drdy)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_DATAREADY;
+ if (statusReg.FIFO_Error)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_FIFO_ERROR;
+ if (statusReg.Alert_Active)
+ {
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ALERT;
+
+ ADI_ADISENSE_CORE_Alert_Code_t alertCodeReg;
+ READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE);
+ pStatus->alertCode = alertCodeReg.Alert_Code;
+
+ ADI_ADISENSE_CORE_Channel_Alert_Status_t channelAlertStatusReg;
+ READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
+ CORE_CHANNEL_ALERT_STATUS);
+
+ for (unsigned i = 0; i < ADI_SENSE_1000_MAX_CHANNELS; i++)
+ {
+ if (channelAlertStatusReg.VALUE16 & (1 << i))
+ {
+ ADI_ADISENSE_CORE_Alert_Code_Ch_t channelAlertCodeReg;
+ READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i));
+ pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch;
+
+ ADI_ADISENSE_CORE_Alert_Detail_Ch_t alertDetailReg;
+ READ_REG_U16(hDevice, alertDetailReg.VALUE16,
+ CORE_ALERT_DETAIL_CHn(i));
+
+ if (alertDetailReg.Time_Out)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_TIMEOUT;
+ if (alertDetailReg.Under_Range)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_RANGE;
+ if (alertDetailReg.Over_Range)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_RANGE;
+ if (alertDetailReg.Low_Limit)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LOW_LIMIT;
+ if (alertDetailReg.High_Limit)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_HIGH_LIMIT;
+ if (alertDetailReg.Sensor_Open)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_OPEN;
+ if (alertDetailReg.Ref_Detect)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_REF_DETECT;
+ if (alertDetailReg.Config_Err)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_CONFIG_ERR;
+ if (alertDetailReg.LUT_Error_Ch)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_ERR;
+ if (alertDetailReg.Sensor_Not_Ready)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_NOT_READY;
+ if (alertDetailReg.Comp_Not_Ready)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_COMP_NOT_READY;
+ if (alertDetailReg.Under_Voltage)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_VOLTAGE;
+ if (alertDetailReg.Over_Voltage)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_VOLTAGE;
+ if (alertDetailReg.Correction_UnderRange)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_UNDER_RANGE;
+ if (alertDetailReg.Correction_OverRange)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_OVER_RANGE;
+ }
+ }
+
+ ADI_ADISENSE_CORE_Alert_Status_2_t alert2Reg;
+ READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2);
+ if (alert2Reg.Configuration_Error)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_CONFIG_ERROR;
+ if (alert2Reg.LUT_Error)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_LUT_ERROR;
+ }
+
+ if (statusReg.Error)
+ {
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ERROR;
+
+ ADI_ADISENSE_CORE_Error_Code_t errorCodeReg;
+ READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
+ pStatus->errorCode = errorCodeReg.Error_Code;
+
+ ADI_ADISENSE_CORE_Diagnostics_Status_t diagStatusReg;
+ READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS);
+
+ if (diagStatusReg.Diag_Checksum_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CHECKSUM_ERROR;
+ if (diagStatusReg.Diag_Comms_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_COMMS_ERROR;
+ if (diagStatusReg.Diag_Supply_Monitor_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_SUPPLY_MONITOR_ERROR;
+ if (diagStatusReg.Diag_Supply_Cap_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_SUPPLY_CAP_ERROR;
+ if (diagStatusReg.Diag_Ainm_UV_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINM_UV_ERROR;
+ if (diagStatusReg.Diag_Ainm_OV_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINM_OV_ERROR;
+ if (diagStatusReg.Diag_Ainp_UV_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINP_UV_ERROR;
+ if (diagStatusReg.Diag_Ainp_OV_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINP_OV_ERROR;
+ if (diagStatusReg.Diag_Conversion_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CONVERSION_ERROR;
+ if (diagStatusReg.Diag_Calibration_Error)
+ pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CALIBRATION_ERROR;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetCommandRunningState(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ bool_t *pbCommandRunning)
+{
+ ADI_ADISENSE_CORE_Status_t statusReg;
+
+ READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
+
+ /* We should never normally see 0xFF here if the module is operational */
+ if (statusReg.VALUE8 == 0xFF)
+ return ADI_SENSE_ERR_NOT_INITIALIZED;
+
+ *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT executeCommand(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_ADISENSE_CORE_Command_Special_Command const command,
+ bool_t const bWaitForCompletion)
+{
+ ADI_ADISENSE_CORE_Command_t commandReg;
+ bool_t bCommandRunning;
+ ADI_SENSE_RESULT eRet;
+
+ /*
+ * Don't allow another command to be issued if one is already running, but
+ * make an exception for ADISENSE_CORE_COMMAND_NOP which can be used to
+ * request a running command to be stopped (e.g. continuous measurement)
+ */
+ if (command != ADISENSE_CORE_COMMAND_NOP)
+ {
+ eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning);
+ if (eRet)
+ return eRet;
+
+ if (bCommandRunning)
+ return ADI_SENSE_IN_USE;
+ }
+
+ commandReg.Special_Command = command;
+ WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
+
+ if (bWaitForCompletion)
+ {
+ do {
+ eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning);
+ if (eRet)
+ return eRet;
+ } while (bCommandRunning);
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_ApplyConfigUpdates(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LATCH_CONFIG, true);
+}
+
+/*!
+ * @brief Start a measurement cycle.
+ *
+ * @param[out]
+ *
+ * @return Status
+ * - #ADI_SENSE_SUCCESS Call completed successfully.
+ * - #ADI_SENSE_FAILURE
+ *
+ * @details Sends the latch config command. Configuration for channels in
+ * conversion cycle should be completed before this function.
+ * Channel enabled bit should be set before this function.
+ * Starts a conversion and configures the format of the sample.
+ *
+ */
+ADI_SENSE_RESULT adi_sense_StartMeasurement(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ bool_t const bHealthCheckMode)
+{
+ if (bHealthCheckMode)
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SYSTEM_CHECK, false);
+ else
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_CONVERT_WITH_RAW, false);
+}
+
+/*
+ * Store the configuration settings to persistent memory on the device.
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADI_SENSE_RESULT adi_sense_SaveConfig(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_CONFIG, true);
+}
+
+/*
+ * Restore the configuration settings from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RestoreConfig(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_CONFIG, true);
+}
+
+/*
+ * Store the LUT data to persistent memory on the device.
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADI_SENSE_RESULT adi_sense_SaveLutData(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_LUT2, true);
+}
+
+/*
+ * Restore the LUT data from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RestoreLutData(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_LUT, true);
+}
+
+/*
+ * Stop the measurement cycles on the device.
+ * To be used only if a measurement command is currently running.
+ */
+ADI_SENSE_RESULT adi_sense_StopMeasurement(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_NOP, true);
+}
+
+/*
+ * Run built-in diagnostic checks on the device.
+ * Diagnostics are executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RunDiagnostics(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_RUN_DIAGNOSTICS, true);
+}
+
+/*
+ * Run self-calibration routines on the device.
+ * Calibration is executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RunCalibration(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SELF_CALIBRATION, true);
+}
+
+/*
+ * Read a set of data samples from the device.
+ * This may be called at any time.
+ */
+ADI_SENSE_RESULT adi_sense_GetData(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_DATA_SAMPLE * const pSamples,
+ uint32_t const nRequested,
+ uint32_t * const pnReturned)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = REG_ADISENSE_CORE_DATA_FIFO;
+ uint8_t commandData[sizeof(command)] = {
+ command >> 8,
+ command & 0xFF
+ };
+ unsigned nValidSamples = 0;
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, NULL,
+ sizeof(command), false);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to send read command for FIFO register");
+ return eRet;
+ }
+
+ adi_sense_TimeDelayUsec(REG_READ_DELAY_USEC);
+
+ for (unsigned i = 0; i < nRequested; i++)
+ {
+ ADI_ADISENSE_CORE_Data_FIFO_t dataFifoReg;
+ bool_t bHoldCs = true;
+
+ /* Keep the CS signal asserted for all but the last sample */
+ if ((i + 1) == nRequested)
+ bHoldCs = false;
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, &dataFifoReg,
+ sizeof(dataFifoReg), bHoldCs);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to read data from FIFO register");
+ return eRet;
+ }
+
+ if (! dataFifoReg.Ch_Valid)
+ {
+ ADI_SENSE_LOG_WARN("Read invalid data sample");
+ continue;
+ }
+
+ ADI_SENSE_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
+
+ pSample->status = 0;
+ if (dataFifoReg.Ch_Error)
+ pSample->status |= ADI_SENSE_DEVICE_STATUS_ERROR;
+ if (dataFifoReg.Ch_Alert)
+ pSample->status |= ADI_SENSE_DEVICE_STATUS_ALERT;
+
+ if (dataFifoReg.Ch_Raw)
+ pSample->rawValue = dataFifoReg.Raw_Sample;
+ else
+ pSample->rawValue = 0;
+
+ pSample->channelId = dataFifoReg.Channel_ID;
+ pSample->processedValue = dataFifoReg.Sensor_Result;
+
+ nValidSamples++;
+ }
+ *pnReturned = nValidSamples;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+/*
+ * Close the given ADI Sense device.
+ */
+ADI_SENSE_RESULT adi_sense_Close(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+ adi_sense_GpioClose(pCtx->hGpio);
+ adi_sense_SpiClose(pCtx->hSpi);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_WriteRegister(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ uint16_t nAddress,
+ void *pData,
+ unsigned nLength)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = 0x8000 | (nAddress & 0x7FFF);
+ uint8_t commandData[sizeof(command)] = {
+ command >> 8,
+ command & 0xFF
+ };
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, NULL,
+ sizeof(commandData), false);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to send write command for register %u",
+ nAddress);
+ return eRet;
+ }
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to write data (%dB) to register %u",
+ nLength, nAddress);
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_ReadRegister(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ uint16_t nAddress,
+ void *pData,
+ unsigned nLength)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = nAddress & 0x7FFF;
+ uint8_t commandData[sizeof(command)] = {
+ command >> 8,
+ command & 0xFF
+ };
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, NULL,
+ sizeof(command), false);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to send read command for register %u",
+ nAddress);
+ return eRet;
+ }
+
+ adi_sense_TimeDelayUsec(REG_READ_DELAY_USEC);
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to read data (%uB) from register %u",
+ nLength, nAddress);
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetDeviceReadyState(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ bool_t * const bReady)
+{
+ ADI_ADISENSE_SPI_Chip_Type_t chipTypeReg;
+
+ READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
+ /* If we read this register successfully, assume the device is ready */
+ *bReady = (chipTypeReg.VALUE8 == REG_ADISENSE_SPI_CHIP_TYPE_RESET);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_GetDataReadyModeInfo(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ bool_t const bTestMode,
+ ADI_SENSE_1000_OPERATING_MODE * const peOperatingMode,
+ ADI_SENSE_1000_DATAREADY_MODE * const peDataReadyMode,
+ uint32_t * const pnSamplesPerDataready,
+ uint32_t * const pnSamplesPerCycle)
+{
+ unsigned nChannelsEnabled = 0;
+ unsigned nSamplesPerCycle = 0;
+
+ for (ADI_SENSE_1000_CHANNEL_ID chId = 0; chId < ADI_SENSE_1000_MAX_CHANNELS; chId++)
+ {
+ ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg;
+ ADI_ADISENSE_CORE_Channel_Count_t channelCountReg;
+
+ if (ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(chId))
+ continue;
+
+ READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
+ READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
+
+ if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish)
+ {
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+ unsigned nActualChannels = 1;
+
+ READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
+
+ if (chId == ADI_SENSE_1000_CHANNEL_ID_SPI_0)
+ {
+ /* Some sensors automatically generate samples on additional "virtual" channels
+ * so these channels must be counted as active when those sensors are selected
+ * and we use the count from the corresponding "physical" channel */
+ if (sensorTypeReg.Sensor_Type ==
+ ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1)
+ nActualChannels += 2;
+ }
+
+ nChannelsEnabled += nActualChannels;
+ if (bTestMode) /* Assume a single sample per channel in test mode */
+ nSamplesPerCycle += nActualChannels;
+ else
+ nSamplesPerCycle += nActualChannels *
+ (channelCountReg.Channel_Count + 1);
+ }
+ }
+
+ if (nChannelsEnabled == 0)
+ {
+ *pnSamplesPerDataready = 0;
+ *pnSamplesPerCycle = 0;
+ return ADI_SENSE_SUCCESS;
+ }
+
+ ADI_ADISENSE_CORE_Mode_t modeReg;
+ READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+ *pnSamplesPerCycle = nSamplesPerCycle;
+
+ if (bTestMode || /* Assume DRDY_PER_CONVERSION behaviour in test mode */
+ (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION))
+ {
+ *pnSamplesPerDataready = 1;
+ }
+ else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE)
+ {
+ *pnSamplesPerDataready = nSamplesPerCycle;
+ }
+ else
+ {
+ ADI_ADISENSE_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
+ READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
+
+ *pnSamplesPerDataready =
+ nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
+ }
+
+ if (bTestMode || /* Assume SINGLECYCLE in test mode */
+ (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_SINGLECYCLE))
+ *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE;
+ else if (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_MULTICYCLE)
+ *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE;
+ else
+ *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_CONTINUOUS;
+
+ if (bTestMode || /* Assume DRDY_PER_CONVERSION behaviour in test mode */
+ (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION))
+ *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_CONVERSION;
+ else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE)
+ *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_CYCLE;
+ else
+ *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_MULTICYCLE_BURST;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetProductID(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_PRODUCT_ID *pProductId)
+{
+ ADI_ADISENSE_SPI_Product_ID_L_t productIdLoReg;
+ ADI_ADISENSE_SPI_Product_ID_H_t productIdHiReg;
+
+ READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
+ READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
+
+ *pProductId = (productIdHiReg.VALUE8 << 8) | productIdLoReg.VALUE8;
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetPowerMode(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_POWER_MODE powerMode)
+{
+ ADI_ADISENSE_CORE_Power_Config_t powerConfigReg;
+
+ if (powerMode == ADI_SENSE_1000_POWER_MODE_LOW)
+ {
+ powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_LOW_POWER;
+ /* TODO - we need an enum in the register map for the MCU power modes */
+ powerConfigReg.Power_Mode_MCU = 0x0;
+ }
+ else if (powerMode == ADI_SENSE_1000_POWER_MODE_MID)
+ {
+ powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_MID_POWER;
+ powerConfigReg.Power_Mode_MCU = 0x1;
+ }
+ else if (powerMode == ADI_SENSE_1000_POWER_MODE_FULL)
+ {
+ powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_FULL_POWER;
+ powerConfigReg.Power_Mode_MCU = 0x2;
+ }
+ else
+ {
+ ADI_SENSE_LOG_ERROR("Invalid power mode %d specified", powerMode);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetVddVoltage(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ float32_t vddVoltage)
+{
+ WRITE_REG_FLOAT(hDevice, vddVoltage, CORE_AVDD_VOLTAGE);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetPowerConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_POWER_CONFIG *pPowerConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetPowerMode(hDevice, pPowerConfig->powerMode);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set power mode");
+ return eRet;
+ }
+
+ eRet = adi_sense_SetVddVoltage(hDevice, pPowerConfig->supplyVoltage);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set AVdd voltage");
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetMode(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_OPERATING_MODE eOperatingMode,
+ ADI_SENSE_1000_DATAREADY_MODE eDataReadyMode)
+{
+ ADI_ADISENSE_CORE_Mode_t modeReg;
+
+ modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
+
+ if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE)
+ {
+ modeReg.Conversion_Mode = ADISENSE_CORE_MODE_SINGLECYCLE;
+ }
+ else if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_CONTINUOUS)
+ {
+ modeReg.Conversion_Mode = ADISENSE_CORE_MODE_CONTINUOUS;
+ }
+ else if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE)
+ {
+ modeReg.Conversion_Mode = ADISENSE_CORE_MODE_MULTICYCLE;
+ }
+ else
+ {
+ ADI_SENSE_LOG_ERROR("Invalid operating mode %d specified",
+ eOperatingMode);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_CONVERSION)
+ {
+ modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CONVERSION;
+ }
+ else if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_CYCLE)
+ {
+ modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CYCLE;
+ }
+ else if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_MULTICYCLE_BURST)
+ {
+ if (eOperatingMode != ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE)
+ {
+ ADI_SENSE_LOG_ERROR(
+ "Data-ready mode %d cannot be used with operating mode %d",
+ eDataReadyMode, eOperatingMode);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ else
+ {
+ modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_FIFO_FILL;
+ }
+ }
+ else
+ {
+ ADI_SENSE_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetCycleInterval(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ uint32_t nCycleInterval)
+{
+ ADI_ADISENSE_CORE_Cycle_Control_t cycleControlReg;
+
+ cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
+
+ if (nCycleInterval < (1 << 12))
+ {
+ cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MICROSECONDS;
+ }
+ else if (nCycleInterval < (1000 * (1 << 12)))
+ {
+ cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MILLISECONDS;
+ nCycleInterval /= 1000;
+ }
+ else
+ {
+ cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_SECONDS;
+ nCycleInterval /= 1000000;
+ }
+
+ CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
+ cycleControlReg.Cycle_Time = nCycleInterval;
+
+ WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetMultiCycleConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_MULTICYCLE_CONFIG *pMultiCycleConfig)
+{
+ CHECK_REG_FIELD_VAL(CORE_FIFO_NUM_CYCLES_FIFO_NUM_CYCLES,
+ pMultiCycleConfig->cyclesPerBurst);
+
+ WRITE_REG_U8(hDevice, pMultiCycleConfig->cyclesPerBurst,
+ CORE_FIFO_NUM_CYCLES);
+
+ WRITE_REG_U32(hDevice, pMultiCycleConfig->burstInterval,
+ CORE_MULTI_CYCLE_REPEAT_INTERVAL);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetExternalReferenceValues(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ float32_t externalRef1Value,
+ float32_t externalRef2Value)
+{
+ WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE1);
+ WRITE_REG_FLOAT(hDevice, externalRef2Value, CORE_EXTERNAL_REFERENCE2);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetMeasurementConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_MEASUREMENT_CONFIG *pMeasConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetMode(hDevice,
+ pMeasConfig->operatingMode,
+ pMeasConfig->dataReadyMode);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set operating mode");
+ return eRet;
+ }
+
+ if (pMeasConfig->operatingMode != ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE)
+ {
+ eRet = adi_sense_SetCycleInterval(hDevice, pMeasConfig->cycleInterval);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set cycle interval");
+ return eRet;
+ }
+ }
+
+ if (pMeasConfig->operatingMode == ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE)
+ {
+ eRet = adi_sense_SetMultiCycleConfig(hDevice,
+ &pMeasConfig->multiCycleConfig);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set multi-cycle configuration");
+ return eRet;
+ }
+ }
+
+ eRet = adi_sense_SetExternalReferenceValues(hDevice,
+ pMeasConfig->externalRef1Value,
+ pMeasConfig->externalRef2Value);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set external reference values");
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetDiagnosticsConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
+{
+ ADI_ADISENSE_CORE_Diagnostics_Control_t diagnosticsControlReg;
+
+ diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
+
+ if (pDiagnosticsConfig->disableGlobalDiag)
+ diagnosticsControlReg.Diag_Global_En = 0;
+ else
+ diagnosticsControlReg.Diag_Global_En = 1;
+
+ if (pDiagnosticsConfig->disableMeasurementDiag)
+ diagnosticsControlReg.Diag_Meas_En = 0;
+ else
+ diagnosticsControlReg.Diag_Meas_En = 1;
+
+ switch (pDiagnosticsConfig->osdFrequency)
+ {
+ case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_DISABLED:
+ diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_OFF;
+ break;
+ case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE:
+ diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE;
+ break;
+ case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES:
+ diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES;
+ break;
+ case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES:
+ diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES;
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
+ pDiagnosticsConfig->osdFrequency);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelCount(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ uint32_t nMeasurementsPerCycle)
+{
+ ADI_ADISENSE_CORE_Channel_Count_t channelCountReg;
+
+ channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
+
+ if (nMeasurementsPerCycle > 0)
+ {
+ nMeasurementsPerCycle -= 1;
+
+ CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
+ nMeasurementsPerCycle);
+
+ channelCountReg.Channel_Enable = 1;
+ channelCountReg.Channel_Count = nMeasurementsPerCycle;
+ }
+ else
+ {
+ channelCountReg.Channel_Enable = 0;
+ }
+
+ WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorType(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_ADC_SENSOR_TYPE sensorType)
+{
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_J_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_K_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_T_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_J_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_K_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_T_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_4_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT100_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT1000_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT100_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT1000_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_4_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT100_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT1000_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT100_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT1000_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_4_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_4_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_4_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_A_10K_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_B_10K_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_A_10K_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_B_10K_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_4_ADV_L2:
+ if (! ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(eChannelId))
+ {
+ ADI_SENSE_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ break;
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT100_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT1000_DEF_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_1_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_2_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_3_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_4_DEF_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT100_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT1000_ADV_L1:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_1_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_2_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_3_ADV_L2:
+ case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_4_ADV_L2:
+ if (! (ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(eChannelId) ||
+ ADI_SENSE_1000_CHANNEL_IS_ADC_CJC(eChannelId)))
+ {
+ ADI_SENSE_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ break;
+ case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE:
+ case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_HONEYWELL_TRUSTABILITY:
+ case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_AMPHENOL_NPA300X:
+ case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_3_DEF:
+ if (! ADI_SENSE_1000_CHANNEL_IS_ADC_VOLTAGE(eChannelId))
+ {
+ ADI_SENSE_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ break;
+ case ADI_SENSE_1000_ADC_SENSOR_CURRENT:
+ case ADI_SENSE_1000_ADC_SENSOR_CURRENT_PRESSURE_HONEYWELL_PX2:
+ case ADI_SENSE_1000_ADC_SENSOR_CURRENT_PRESSURE_2_DEF:
+ if (! ADI_SENSE_1000_CHANNEL_IS_ADC_CURRENT(eChannelId))
+ {
+ ADI_SENSE_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
+ sensorType);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ sensorTypeReg.Sensor_Type = sensorType;
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorDetails(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig)
+/*
+ * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
+ * General details:
+ * - Measurement_Units
+ * - Compensation_Channel
+ * - CJC_Publish (if "CJC" was removed from the name)
+ * ADC-specific details:
+ * - PGA_Gain
+ * - Reference_Select
+ * - Reference_Buffer_Disable
+ * - Vbias
+ */
+{
+ ADI_SENSE_1000_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
+ ADI_SENSE_1000_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference;
+ ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg;
+
+ sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
+
+ switch(pChannelConfig->measurementUnit)
+ {
+ case ADI_SENSE_1000_MEASUREMENT_UNIT_FAHRENHEIT:
+ sensorDetailsReg.Measurement_Units = ADISENSE_CORE_SENSOR_DETAILS_UNITS_DEGF;
+ break;
+ case ADI_SENSE_1000_MEASUREMENT_UNIT_CELSIUS:
+ case ADI_SENSE_1000_MEASUREMENT_UNIT_DEFAULT:
+ sensorDetailsReg.Measurement_Units = ADISENSE_CORE_SENSOR_DETAILS_UNITS_DEGC;
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid measurement unit %d specified",
+ pChannelConfig->measurementUnit);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
+
+ switch(pRefConfig->type)
+ {
+ case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_INTERNAL_1:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT1;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_INTERNAL_2:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT2;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_INTERNAL:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_INT;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_AVDD:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_AVDD;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_EXTERNAL_1:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT1;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_EXTERNAL_2:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT2;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT1;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_EXTERNAL_2:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT2;
+ break;
+ case ADI_SENSE_1000_ADC_REFERENCE_BRIDGE_EXCITATION:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_EXC;
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid ADC reference type %d specified",
+ pRefConfig->type);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch(pAdcChannelConfig->gain)
+ {
+ case ADI_SENSE_1000_ADC_GAIN_1X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_1;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_2X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_2;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_4X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_4;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_8X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_8;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_16X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_16;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_32X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_32;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_64X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_64;
+ break;
+ case ADI_SENSE_1000_ADC_GAIN_128X:
+ sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_128;
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid ADC gain %d specified",
+ pAdcChannelConfig->gain);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ if (pAdcChannelConfig->enableVbias)
+ sensorDetailsReg.Vbias = 1;
+ else
+ sensorDetailsReg.Vbias = 0;
+
+ if (pAdcChannelConfig->reference.disableBuffer)
+ sensorDetailsReg.Reference_Buffer_Disable = 1;
+ else
+ sensorDetailsReg.Reference_Buffer_Disable = 0;
+
+ if (pChannelConfig->disablePublishing)
+ sensorDetailsReg.Do_Not_Publish = 1;
+ else
+ sensorDetailsReg.Do_Not_Publish = 0;
+
+ WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcFilter(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_ADC_FILTER_CONFIG *pFilterConfig)
+{
+ ADI_ADISENSE_CORE_Filter_Select_t filterSelectReg;
+
+ filterSelectReg.VALUE32 = REG_RESET_VAL(CORE_FILTER_SELECTn);
+
+ if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_SINC4)
+ {
+ filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_SINC4;
+ filterSelectReg.ADC_FS = pFilterConfig->fs;
+ }
+ else if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_FIR_20SPS)
+ {
+ filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_20SPS;
+ }
+ else if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_FIR_25SPS)
+ {
+ filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_25SPS;
+ }
+ else
+ {
+ ADI_SENSE_LOG_ERROR("Invalid ADC filter type %d specified",
+ pFilterConfig->type);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ WRITE_REG_U32(hDevice, filterSelectReg.VALUE32, CORE_FILTER_SELECTn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcCurrentConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
+{
+ ADI_ADISENSE_CORE_Channel_Excitation_t channelExcitationReg;
+
+ channelExcitationReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
+
+ if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_NONE)
+ {
+ channelExcitationReg.IOUT0_Disable = 1;
+ channelExcitationReg.IOUT1_Disable = 1;
+
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_OFF;
+ }
+ else
+ {
+ channelExcitationReg.IOUT0_Disable = 0;
+ channelExcitationReg.IOUT1_Disable = 0;
+
+ if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_50uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_50UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_100uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_100UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_250uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_250UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_500uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_500UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_750uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_750UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_1000uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_1000UA;
+ else
+ {
+ ADI_SENSE_LOG_ERROR("Invalid ADC excitation current %d specified",
+ pCurrentConfig->outputLevel);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_DYNAMIC)
+ {
+ channelExcitationReg.IOUT_Dont_Swap_3Wire = 0;
+ channelExcitationReg.IOUT_Static_Swap_3Wire = 0;
+ }
+ else if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_STATIC)
+ {
+ channelExcitationReg.IOUT_Dont_Swap_3Wire = 1;
+ channelExcitationReg.IOUT_Static_Swap_3Wire = 1;
+ }
+ else if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_NONE)
+ {
+ channelExcitationReg.IOUT_Dont_Swap_3Wire = 1;
+ channelExcitationReg.IOUT_Static_Swap_3Wire = 0;
+ }
+ else
+ {
+ ADI_SENSE_LOG_ERROR(
+ "Invalid ADC excitation current swap option %d specified",
+ pCurrentConfig->swapOption);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ }
+
+ WRITE_REG_U8(hDevice, channelExcitationReg.VALUE8, CORE_CHANNEL_EXCITATIONn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetAdcChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_SENSE_1000_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
+ &pChannelConfig->adcChannelConfig;
+
+ eRet = adi_sense_SetChannelAdcSensorType(hDevice, eChannelId,
+ pAdcChannelConfig->sensor);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set ADC sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelAdcSensorDetails(hDevice, eChannelId,
+ pChannelConfig);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set ADC sensor details for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelAdcFilter(hDevice, eChannelId,
+ &pAdcChannelConfig->filter);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set ADC filter for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelAdcCurrentConfig(hDevice, eChannelId,
+ &pAdcChannelConfig->current);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set ADC current for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+
+static ADI_SENSE_RESULT adi_sense_SetDigitalSensorCommands(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_DIGITAL_SENSOR_COMMAND *pConfigCommand,
+ ADI_SENSE_1000_DIGITAL_SENSOR_COMMAND *pDataRequestCommand)
+{
+ ADI_ADISENSE_CORE_Digital_Sensor_Num_Cmds_t numCmdsReg;
+
+ numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn);
+
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS,
+ pConfigCommand->commandLength);
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS,
+ pDataRequestCommand->commandLength);
+
+ numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength;
+ numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength;
+
+ WRITE_REG_U8(hDevice, numCmdsReg.VALUE8,
+ CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId));
+
+ switch (pConfigCommand->commandLength)
+ {
+ /* NOTE - intentional fall-through cases below */
+ case 7:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[6],
+ CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId));
+ case 6:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[5],
+ CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId));
+ case 5:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[4],
+ CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId));
+ case 4:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[3],
+ CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId));
+ case 3:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[2],
+ CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId));
+ case 2:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[1],
+ CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId));
+ case 1:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[0],
+ CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId));
+ case 0:
+ default:
+ break;
+ };
+
+ switch (pDataRequestCommand->commandLength)
+ {
+ /* NOTE - intentional fall-through cases below */
+ case 7:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[6],
+ CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId));
+ case 6:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[5],
+ CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId));
+ case 5:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[4],
+ CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId));
+ case 4:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[3],
+ CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId));
+ case 3:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[2],
+ CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId));
+ case 2:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[1],
+ CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId));
+ case 1:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[0],
+ CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId));
+ case 0:
+ default:
+ break;
+ };
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorType(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_I2C_SENSOR_TYPE sensorType)
+{
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADI_SENSE_1000_I2C_SENSOR_HUMIDITY_HONEYWELL_HUMIDICON:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_HONEYWELL_HUMIDICON;
+ break;
+ case ADI_SENSE_1000_I2C_SENSOR_HUMIDITY_SENSIRION_SHT3X:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_SENSIRION_SHT3X;
+ break;
+ default:
+ /* TODO - add support for custom I2C sensors */
+ ADI_SENSE_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorAddress(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ uint32_t deviceAddress)
+{
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
+ WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetI2cChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_I2C_CHANNEL_CONFIG *pI2cChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetChannelI2cSensorType(hDevice, eChannelId,
+ pI2cChannelConfig->sensor);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set I2C sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelI2cSensorAddress(hDevice, eChannelId,
+ pI2cChannelConfig->deviceAddress);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set I2C sensor address for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = adi_sense_SetDigitalSensorCommands(hDevice, eChannelId,
+ &pI2cChannelConfig->configurationCommand,
+ &pI2cChannelConfig->dataRequestCommand);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set I2C sensor commands for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelSpiSensorType(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_SPI_SENSOR_TYPE sensorType)
+{
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADI_SENSE_1000_SPI_SENSOR_PRESSURE_HONEYWELL_TRUSTABILITY:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_PRESSURE_HONEYWELL_TRUSTABILITY;
+ break;
+ case ADI_SENSE_1000_SPI_SENSOR_ACCELEROMETER_ADI_ADXL362:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1;
+ break;
+ default:
+ /* TODO - add support for custom SPI sensors */
+ ADI_SENSE_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetSpiChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_SPI_CHANNEL_CONFIG *pSpiChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetChannelSpiSensorType(hDevice, eChannelId,
+ pSpiChannelConfig->sensor);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set SPI sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = adi_sense_SetDigitalSensorCommands(hDevice, eChannelId,
+ &pSpiChannelConfig->configurationCommand,
+ &pSpiChannelConfig->dataRequestCommand);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set SPI sensor commands for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelThresholdLimits(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ float32_t highThresholdLimit,
+ float32_t lowThresholdLimit)
+{
+ /*
+ * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
+ * that they are unset, or not required, and use infinity defaults instead
+ */
+ if (highThresholdLimit == 0.0 && lowThresholdLimit == 0.0)
+ {
+ highThresholdLimit = INFINITY;
+ lowThresholdLimit = -INFINITY;
+ }
+ else
+ {
+ if (isnan(highThresholdLimit))
+ highThresholdLimit = INFINITY;
+ if (isnan(lowThresholdLimit))
+ lowThresholdLimit = -INFINITY;
+ }
+
+ WRITE_REG_FLOAT(hDevice, highThresholdLimit,
+ CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
+ WRITE_REG_FLOAT(hDevice, lowThresholdLimit,
+ CORE_LOW_THRESHOLD_LIMITn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetOffsetGain(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ float32_t offsetAdjustment,
+ float32_t gainAdjustment)
+{
+ /* Replace with default values if NaNs are specified (or 0.0 for gain) */
+ if (isnan(gainAdjustment) || (gainAdjustment == 0.0))
+ gainAdjustment = 1.0;
+ if (isnan(offsetAdjustment))
+ offsetAdjustment = 0.0;
+
+ WRITE_REG_FLOAT(hDevice, gainAdjustment, CORE_SENSOR_GAINn(eChannelId));
+ WRITE_REG_FLOAT(hDevice, offsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelSettlingTime(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ uint32_t settlingTime)
+{
+ CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, settlingTime);
+
+ WRITE_REG_U16(hDevice, settlingTime, CORE_SETTLING_TIMEn(eChannelId));
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_1000_CHANNEL_ID eChannelId,
+ ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ if (! ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(eChannelId))
+ {
+ /* If the channel is not enabled, disable it and return */
+ if (! pChannelConfig->enableChannel)
+ return adi_sense_1000_SetChannelCount(hDevice, eChannelId, 0);
+
+ eRet = adi_sense_1000_SetChannelCount(hDevice, eChannelId,
+ pChannelConfig->measurementsPerCycle);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set measurement count for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ switch (eChannelId)
+ {
+ case ADI_SENSE_1000_CHANNEL_ID_CJC_0:
+ case ADI_SENSE_1000_CHANNEL_ID_CJC_1:
+ case ADI_SENSE_1000_CHANNEL_ID_SENSOR_0:
+ case ADI_SENSE_1000_CHANNEL_ID_SENSOR_1:
+ case ADI_SENSE_1000_CHANNEL_ID_SENSOR_2:
+ case ADI_SENSE_1000_CHANNEL_ID_SENSOR_3:
+ case ADI_SENSE_1000_CHANNEL_ID_VOLTAGE_0:
+ case ADI_SENSE_1000_CHANNEL_ID_CURRENT_0:
+ eRet = adi_sense_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
+ break;
+ case ADI_SENSE_1000_CHANNEL_ID_I2C_0:
+ case ADI_SENSE_1000_CHANNEL_ID_I2C_1:
+ eRet = adi_sense_SetI2cChannelConfig(hDevice, eChannelId,
+ &pChannelConfig->i2cChannelConfig);
+ break;
+ case ADI_SENSE_1000_CHANNEL_ID_SPI_0:
+ eRet = adi_sense_SetSpiChannelConfig(hDevice, eChannelId,
+ &pChannelConfig->spiChannelConfig);
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ eRet = adi_sense_1000_SetChannelSettlingTime(hDevice, eChannelId,
+ pChannelConfig->extraSettlingTime);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set settling time for channel %d",
+ eChannelId);
+ return eRet;
+ }
+ }
+
+ if (pChannelConfig->enableChannel)
+ {
+ /* Threshold limits can be configured individually for virtual channels */
+ eRet = adi_sense_1000_SetChannelThresholdLimits(hDevice, eChannelId,
+ pChannelConfig->highThreshold,
+ pChannelConfig->lowThreshold);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set threshold limits for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ /* Offset and gain can be configured individually for virtual channels */
+ eRet = adi_sense_1000_SetOffsetGain(hDevice, eChannelId,
+ pChannelConfig->offsetAdjustment,
+ pChannelConfig->gainAdjustment);
+ if (eRet != ADI_SENSE_SUCCESS)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set offset/gain for channel %d",
+ eChannelId);
+ return eRet;
+ }
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetConfig(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_CONFIG * const pConfig)
+{
+ ADI_SENSE_1000_CONFIG *pDeviceConfig;
+ ADI_SENSE_PRODUCT_ID productId;
+ ADI_SENSE_RESULT eRet;
+
+ if (pConfig->productId != ADI_SENSE_PRODUCT_ID_1000)
+ {
+ ADI_SENSE_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
+ pConfig->productId, ADI_SENSE_PRODUCT_ID_1000);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ /* Check that the actual Product ID is a match? */
+ eRet = adi_sense_GetProductID(hDevice, &productId);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to read device Product ID register");
+ return eRet;
+ }
+ if (pConfig->productId != productId)
+ {
+ ADI_SENSE_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
+ pConfig->productId, productId);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ pDeviceConfig = &pConfig->adisense1000;
+
+ eRet = adi_sense_1000_SetPowerConfig(hDevice, &pDeviceConfig->power);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set power configuration");
+ return eRet;
+ }
+
+ eRet = adi_sense_1000_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set measurement configuration");
+ return eRet;
+ }
+
+ eRet = adi_sense_1000_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set diagnostics configuration");
+ return eRet;
+ }
+
+ for (ADI_SENSE_1000_CHANNEL_ID id = 0; id < ADI_SENSE_1000_MAX_CHANNELS; id++)
+ {
+ eRet = adi_sense_1000_SetChannelConfig(hDevice, id,
+ &pDeviceConfig->channels[id]);
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to set channel %d configuration", id);
+ return eRet;
+ }
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetLutData(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_1000_LUT * const pLutData)
+{
+ ADI_SENSE_1000_LUT_HEADER *pLutHeader = &pLutData->header;
+ ADI_SENSE_1000_LUT_TABLE *pLutTable = pLutData->tables;
+ unsigned actualLength = 0;
+
+ if (pLutData->header.signature != ADI_SENSE_LUT_SIGNATURE)
+ {
+ ADI_SENSE_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
+ ADI_SENSE_LUT_SIGNATURE, pLutHeader->signature);
+ return ADI_SENSE_INVALID_SIGNATURE;
+ }
+
+ for (unsigned i = 0; i < pLutHeader->numTables; i++)
+ {
+ ADI_SENSE_1000_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
+ ADI_SENSE_1000_LUT_TABLE_DATA *pData = &pLutTable->data;
+ unsigned short calculatedCrc;
+
+ switch (pDesc->geometry)
+ {
+ case ADI_SENSE_1000_LUT_GEOMETRY_COEFFS:
+ switch (pDesc->equation)
+ {
+ case ADI_SENSE_1000_LUT_EQUATION_POLYN:
+ case ADI_SENSE_1000_LUT_EQUATION_POLYNEXP:
+ case ADI_SENSE_1000_LUT_EQUATION_QUADRATIC:
+ case ADI_SENSE_1000_LUT_EQUATION_STEINHART:
+ case ADI_SENSE_1000_LUT_EQUATION_LOGARITHMIC:
+ case ADI_SENSE_1000_LUT_EQUATION_EXPONENTIAL:
+ case ADI_SENSE_1000_LUT_EQUATION_BIVARIATE_POLYN:
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid equation %u specified for LUT table %u",
+ pDesc->equation, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ break;
+ case ADI_SENSE_1000_LUT_GEOMETRY_NES_1D:
+ case ADI_SENSE_1000_LUT_GEOMETRY_NES_2D:
+ case ADI_SENSE_1000_LUT_GEOMETRY_ES_1D:
+ case ADI_SENSE_1000_LUT_GEOMETRY_ES_2D:
+ if (pDesc->equation != ADI_SENSE_1000_LUT_EQUATION_LUT) {
+ ADI_SENSE_LOG_ERROR("Invalid equation %u specified for LUT table %u",
+ pDesc->equation, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
+ pDesc->geometry, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch (pDesc->dataType)
+ {
+ case ADI_SENSE_1000_LUT_DATA_TYPE_FLOAT32:
+ case ADI_SENSE_1000_LUT_DATA_TYPE_FLOAT64:
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
+ pDesc->dataType, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ calculatedCrc = crc16_ccitt(pData, pDesc->length);
+ if (calculatedCrc != pDesc->crc16)
+ {
+ ADI_SENSE_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
+ i, pDesc->crc16, calculatedCrc);
+ return ADI_SENSE_CRC_ERROR;
+ }
+
+ actualLength += sizeof(*pDesc) + pDesc->length;
+
+ /* Move to the next look-up table */
+ pLutTable = (ADI_SENSE_1000_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
+ }
+
+ if (actualLength != pLutHeader->totalLength)
+ {
+ ADI_SENSE_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
+ pLutHeader->totalLength, actualLength);
+ return ADI_SENSE_WRONG_SIZE;
+ }
+
+ if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADI_SENSE_LUT_MAX_SIZE)
+ {
+ ADI_SENSE_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
+ ADI_SENSE_LUT_MAX_SIZE);
+ return ADI_SENSE_WRONG_SIZE;
+ }
+
+ /* Write the LUT data to the device */
+ unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
+ WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
+ WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetLutDataRaw(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_1000_LUT_RAW * const pLutData)
+{
+ return adi_sense_1000_SetLutData(hDevice,
+ (ADI_SENSE_1000_LUT * const)pLutData);
+}
+
+static ADI_SENSE_RESULT getLutTableSize(
+ ADI_SENSE_1000_LUT_DESCRIPTOR * const pDesc,
+ ADI_SENSE_1000_LUT_TABLE_DATA * const pData,
+ unsigned *pLength)
+{
+ switch (pDesc->geometry)
+ {
+ case ADI_SENSE_1000_LUT_GEOMETRY_COEFFS:
+ if (pDesc->equation == ADI_SENSE_1000_LUT_EQUATION_BIVARIATE_POLYN)
+ *pLength = ADI_SENSE_1000_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d);
+ else
+ *pLength = ADI_SENSE_1000_LUT_COEFF_LIST_SIZE(pData->coeffList);
+ break;
+ case ADI_SENSE_1000_LUT_GEOMETRY_NES_1D:
+ *pLength = ADI_SENSE_1000_LUT_1D_NES_SIZE(pData->lut1dNes);
+ break;
+ case ADI_SENSE_1000_LUT_GEOMETRY_NES_2D:
+ *pLength = ADI_SENSE_1000_LUT_2D_NES_SIZE(pData->lut2dNes);
+ break;
+ case ADI_SENSE_1000_LUT_GEOMETRY_ES_1D:
+ *pLength = ADI_SENSE_1000_LUT_1D_ES_SIZE(pData->lut1dEs);
+ break;
+ case ADI_SENSE_1000_LUT_GEOMETRY_ES_2D:
+ *pLength = ADI_SENSE_1000_LUT_2D_ES_SIZE(pData->lut2dEs);
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
+ pDesc->geometry);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_AssembleLutData(
+ ADI_SENSE_1000_LUT * pLutBuffer,
+ unsigned lutBufferSize,
+ unsigned const nNumTables,
+ ADI_SENSE_1000_LUT_DESCRIPTOR * const ppDesc[],
+ ADI_SENSE_1000_LUT_TABLE_DATA * const ppData[])
+{
+ ADI_SENSE_1000_LUT_HEADER *pHdr = &pLutBuffer->header;
+ uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
+
+ if (sizeof(*pHdr) > lutBufferSize)
+ {
+ ADI_SENSE_LOG_ERROR("Insufficient LUT buffer size provided");
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ /* First initialise the top-level header */
+ pHdr->signature = ADI_SENSE_LUT_SIGNATURE;
+ pHdr->version.major = 1;
+ pHdr->version.minor = 0;
+ pHdr->numTables = 0;
+ pHdr->totalLength = 0;
+
+ /*
+ * Walk through the list of table pointers provided, appending the table
+ * descriptor+data from each one to the provided LUT buffer
+ */
+ for (unsigned i = 0; i < nNumTables; i++)
+ {
+ ADI_SENSE_1000_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
+ ADI_SENSE_1000_LUT_TABLE_DATA * const pData = ppData[i];
+ ADI_SENSE_RESULT res;
+ unsigned dataLength = 0;
+
+ /* Calculate the length of the table data */
+ res = getLutTableSize(pDesc, pData, &dataLength);
+ if (res != ADI_SENSE_SUCCESS)
+ return res;
+
+ /* Fill in the table descriptor length and CRC fields */
+ pDesc->length = dataLength;
+ pDesc->crc16 = crc16_ccitt(pData, dataLength);
+
+ if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > lutBufferSize)
+ {
+ ADI_SENSE_LOG_ERROR("Insufficient LUT buffer size provided");
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ /* Append the table to the LUT buffer (desc + data) */
+ memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
+ pHdr->totalLength += sizeof(*pDesc);
+ memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
+ pHdr->totalLength += dataLength;
+
+ pHdr->numTables++;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+#define CAL_TABLE_ROWS ADI_SENSE_1000_CAL_NUM_TABLES
+#define CAL_TABLE_COLS ADI_SENSE_1000_CAL_NUM_TEMPS
+#define CAL_TABLE_SIZE (sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS)
+
+/*!
+ * @brief Read the contents of the ADISense internal calibration table
+ *
+ * Calibration coefficients/gains/offsets are stored internally in a table
+ * of 56x3 32-bit floating point values
+ *
+ * @param[in] uint8_t* : Pointer to destination buffer for the calibration data
+ * @param[in] maxLen : The buffer capacity in bytes (minimum 672 bytes)
+ * @param[out] dataLen : The number of bytes written to the buffer
+ * @param[out] nRows : The number of rows in the table (56)
+ * @param[out] nRows : The number of columns in the table (3)
+ *
+ * @return Status
+ * - #ADI_SENSE_SUCCESS Call completed successfully.
+ * - #ADI_SENSE_FAILURE
+ * - #ADI_SENSE_INVALID_OPERATION Invalid register identifier.
+ */
+ADI_SENSE_RESULT adi_sense_1000_ReadCalTable(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ float *buffer,
+ unsigned maxLen,
+ unsigned *dataLen,
+ unsigned *nRows,
+ unsigned *nColumns)
+{
+ *dataLen = sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS;
+ *nRows = CAL_TABLE_ROWS;
+ *nColumns = CAL_TABLE_COLS;
+
+ if (maxLen > *dataLen)
+ maxLen = *dataLen;
+
+ WRITE_REG_U16(hDevice, 0, CORE_CAL_OFFSET);
+ READ_REG_U8_ARRAY(hDevice, (uint8_t *)buffer, maxLen, CORE_CAL_DATA);
+
+ return ADI_SENSE_SUCCESS;
+}
+