Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: src/adi_sense_1000.c
- Revision:
- 7:4dbae381f693
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/adi_sense_1000.c Fri Oct 20 15:58:01 2017 +0000
@@ -0,0 +1,1766 @@
+/*!
+ ******************************************************************************
+ * @file: adi_sense_1000.c
+ * @brief: ADI Sense API implementation for ADI Sense 1000
+ *-----------------------------------------------------------------------------
+ */
+
+/******************************************************************************
+Copyright (c) 2017 Emutex Ltd. / Analog Devices, Inc.
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+ - Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+ - Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+ - Modified versions of the software must be conspicuously marked as such.
+ - This software is licensed solely and exclusively for use with processors
+ manufactured by or for Analog Devices, Inc.
+ - This software may not be combined or merged with other code in any manner
+ that would cause the software to become subject to terms and conditions
+ which differ from those listed here.
+ - Neither the name of Analog Devices, Inc. nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+ - The use of this software may or may not infringe the patent rights of one
+ or more patent holders. This license does not release you from the
+ requirement that you obtain separate licenses from these patent holders
+ to use this software.
+
+THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES, INC. AND CONTRIBUTORS "AS IS" AND ANY
+EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
+TITLE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+NO EVENT SHALL ANALOG DEVICES, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, DAMAGES ARISING OUT OF CLAIMS OF INTELLECTUAL
+PROPERTY RIGHTS INFRINGEMENT; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *****************************************************************************/
+#include <float.h>
+#include <math.h>
+
+#include "inc/adi_sense_api.h"
+#include "inc/adi_sense_platform.h"
+
+#include "adi_sense_1000/ADISENSE1000_REGISTERS_typedefs.h"
+#include "adi_sense_1000/ADISENSE1000_REGISTERS.h"
+
+#include "crc16.h"
+
+#define REG_READ_DELAY_USEC (20)
+
+#define ADI_SENSE_CHANNEL_IS_ADC(c) \
+ ((c) >= ADI_SENSE_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_CHANNEL_ID_CURRENT_0)
+
+#define ADI_SENSE_CHANNEL_IS_ADC_CJC(c) \
+ ((c) >= ADI_SENSE_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_CHANNEL_ID_CJC_1)
+
+#define ADI_SENSE_CHANNEL_IS_ADC_SENSOR(c) \
+ ((c) >= ADI_SENSE_CHANNEL_ID_SENSOR_0 && (c) <= ADI_SENSE_CHANNEL_ID_SENSOR_3)
+
+#define ADI_SENSE_CHANNEL_IS_ADC_VOLTAGE(c) \
+ ((c) == ADI_SENSE_CHANNEL_ID_VOLTAGE_0)
+
+#define ADI_SENSE_CHANNEL_IS_ADC_CURRENT(c) \
+ ((c) == ADI_SENSE_CHANNEL_ID_CURRENT_0)
+
+typedef struct
+{
+ unsigned nDeviceIndex;
+ ADI_SENSE_SPI_HANDLE hSpi;
+ ADI_SENSE_GPIO_HANDLE hGpio;
+} ADI_SENSE_DEVICE_CONTEXT;
+
+static ADI_SENSE_DEVICE_CONTEXT gDeviceCtx[ADI_SENSE_MAX_DEVICES];
+
+/*
+ * Open an ADI Sense device instance.
+ */
+ADI_SENSE_RESULT adi_sense_Open(
+ unsigned const nDeviceIndex,
+ ADI_SENSE_CONNECTION * const pConnectionInfo,
+ ADI_SENSE_DEVICE_HANDLE * const phDevice)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx;
+ ADI_SENSE_RESULT eRet;
+
+ if (nDeviceIndex >= ADI_SENSE_MAX_DEVICES)
+ return ADI_SENSE_INVALID_DEVICE_NUM;
+
+ pCtx = &gDeviceCtx[nDeviceIndex];
+ pCtx->nDeviceIndex = nDeviceIndex;
+
+ eRet = adi_sense_LogOpen();
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ eRet = adi_sense_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ eRet = adi_sense_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ *phDevice = pCtx;
+ return ADI_SENSE_SUCCESS;
+}
+
+/*
+ * Get the current state of the specified GPIO input signal.
+ */
+ADI_SENSE_RESULT adi_sense_GetGpioState(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_GPIO_PIN const ePinId,
+ bool_t * const pbAsserted)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+ return adi_sense_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
+}
+
+/*
+ * Register an application-defined callback function for GPIO interrupts.
+ */
+ADI_SENSE_RESULT adi_sense_RegisterGpioCallback(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_GPIO_PIN const ePinId,
+ ADI_SENSE_GPIO_CALLBACK const callbackFunction,
+ void * const pCallbackParam)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+ if (callbackFunction)
+ {
+ return adi_sense_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
+ pCallbackParam);
+ }
+ else
+ {
+ return adi_sense_GpioIrqDisable(pCtx->hGpio, ePinId);
+ }
+}
+
+/*
+ * Reset the specified ADI Sense device.
+ */
+ADI_SENSE_RESULT adi_sense_Reset(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ ADI_SENSE_RESULT eRet;
+
+ /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
+ eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, false);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ adi_sense_TimeDelayUsec(4);
+
+ eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, true);
+ if (eRet != ADI_SENSE_SUCCESS)
+ return eRet;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+
+/*!
+ * @brief Get general status of ADISense module.
+ *
+ * @param[in]
+ * @param[out] pStatus : Pointer to CORE Status struct.
+ *
+ * @return Status
+ * - #ADI_SENSE_SUCCESS Call completed successfully.
+ * - #ADI_SENSE_FAILURE If status register read fails.
+ *
+ * @details Read the general status register for the ADISense
+ * module. Indicates Error, Alert conditions, data ready
+ * and command running.
+ *
+ */
+ADI_SENSE_RESULT adi_sense_GetStatus(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_STATUS * const pStatus)
+{
+ ADI_ADISENSE_CORE_Status_t statusReg;
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_STATUS,
+ &statusReg, sizeof(statusReg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ pStatus->deviceStatus = 0;
+
+ if (statusReg.Cmd_Running)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_BUSY;
+
+ if (statusReg.Drdy)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_DATAREADY;
+
+ if (statusReg.Error)
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ERROR;
+
+ if (statusReg.Alert_Limit)
+ {
+ pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ALERT;
+
+ ADI_ADISENSE_CORE_Channel_Alert_Status_t channelAlertStatusReg;
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_CHANNEL_ALERT_STATUS,
+ &channelAlertStatusReg,
+ sizeof(channelAlertStatusReg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ for (unsigned i = 0; i < ADI_SENSE_MAX_CHANNELS; i++)
+ {
+ pStatus->channelAlerts[i] = 0;
+
+ if (channelAlertStatusReg.VALUE16 & (1 << i))
+ {
+ ADI_ADISENSE_CORE_Alert_Detail_Ch_t alertDetailReg;
+ eRet = adi_sense_ReadRegister(hDevice,
+ REG_ADISENSE_CORE_ALERT_DETAIL_CHn(i),
+ &alertDetailReg,
+ sizeof(alertDetailReg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ if (alertDetailReg.Time_Out)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_TIMEOUT;
+ if (alertDetailReg.Under_Range)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_RANGE;
+ if (alertDetailReg.Over_Range)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_RANGE;
+ if (alertDetailReg.Low_Limit)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LOW_LIMIT;
+ if (alertDetailReg.High_Limit)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_HIGH_LIMIT;
+ if (alertDetailReg.Sensor_Open)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_OPEN;
+ if (alertDetailReg.Ref_Detect)
+ pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_REF_DETECT;
+ }
+ }
+ }
+
+ /* TODO - fill diagnosticsStatus field */
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetCommandRunningState(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ bool_t *pbCommandRunning)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_ADISENSE_CORE_Status_t statusReg;
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_STATUS,
+ &statusReg, sizeof(statusReg));
+ if (eRet)
+ return eRet;
+
+ *pbCommandRunning = statusReg.Cmd_Running;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+
+static ADI_SENSE_RESULT executeCommand(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_ADISENSE_CORE_Command_Special_Command const command,
+ bool_t const bWaitForCompletion)
+{
+ ADI_ADISENSE_CORE_Command_t commandReg = {
+ .Special_Command = command
+ };
+ bool_t bCommandRunning;
+ ADI_SENSE_RESULT eRet;
+
+ /*
+ * Don't allow another command to be issued if one is already running, but
+ * make an exception for ADISENSE_CORE_COMMAND_NOP which can be used to
+ * request a running command to be stopped (e.g. continuous measurement)
+ */
+ if (command != ADISENSE_CORE_COMMAND_NOP)
+ {
+ eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning);
+ if (eRet)
+ return eRet;
+
+ if (bCommandRunning)
+ return ADI_SENSE_IN_USE;
+ }
+
+ eRet = adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_COMMAND,
+ &commandReg, sizeof(commandReg));
+ if (eRet)
+ return eRet;
+
+ if (bWaitForCompletion)
+ {
+ do {
+ eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning);
+ if (eRet)
+ return eRet;
+ } while (bCommandRunning);
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_ApplyConfigUpdates(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LATCH_CONFIG, true);
+}
+
+/*!
+ * @brief Start a measurement cycle.
+ *
+ * @param[out]
+ *
+ * @return Status
+ * - #ADI_SENSE_SUCCESS Call completed successfully.
+ * - #ADI_SENSE_FAILURE
+ *
+ * @details Sends the latch config command. Configuration for channels in
+ * conversion cycle should be completed before this function.
+ * Channel enabled bit should be set before this function.
+ * Starts a conversion and configures the format of the sample.
+ *
+ */
+ADI_SENSE_RESULT adi_sense_StartMeasurement(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_CONVERT_WITH_RAW, false);
+}
+
+/*
+ * Store the configuration settings to persistent memory on the device.
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADI_SENSE_RESULT adi_sense_SaveConfig(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_CONFIG, true);
+}
+
+/*
+ * Restore the configuration settings from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RestoreConfig(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_CONFIG, true);
+}
+
+/*
+ * Stop the measurement cycles on the device.
+ * To be used only if a measurement command is currently running.
+ */
+ADI_SENSE_RESULT adi_sense_StopMeasurement(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_NOP, true);
+}
+
+/*
+ * Run built-in diagnostic checks on the device.
+ * Diagnostics are executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RunDiagnostics(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, ADISENSE_CORE_COMMAND_RUN_DIAGNOSTICS, true);
+}
+
+/*
+ * Read a set of data samples from the device.
+ * This may be called at any time.
+ */
+ADI_SENSE_RESULT adi_sense_GetData(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_DATA_SAMPLE * const pSamples,
+ uint32_t const nRequested,
+ uint32_t * const pnReturned)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = REG_ADISENSE_CORE_DATA_FIFO;
+ uint8_t commandData[sizeof(command)] = {
+ command >> 8,
+ command & 0xFF
+ };
+ unsigned nValidSamples = 0;
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, NULL,
+ sizeof(command), false);
+ if (eRet)
+ return eRet;
+
+ adi_sense_TimeDelayUsec(REG_READ_DELAY_USEC);
+
+ for (unsigned i = 0; i < nRequested; i++)
+ {
+ ADI_ADISENSE_CORE_Data_FIFO_t dataFifoReg;
+ bool_t bHoldCs = true;
+
+ /* Keep the CS signal asserted for all but the last sample */
+ if ((i + 1) == nRequested)
+ bHoldCs = false;
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, &dataFifoReg,
+ sizeof(dataFifoReg), bHoldCs);
+ if (eRet)
+ return eRet;
+
+ if (! dataFifoReg.Ch_Valid)
+ {
+ ADI_SENSE_LOG_WARN("Read invalid data sample");
+ continue;
+ }
+
+ ADI_SENSE_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
+
+ pSample->status = 0;
+ if (dataFifoReg.Ch_Error)
+ pSample->status |= ADI_SENSE_DEVICE_STATUS_ERROR;
+ if (dataFifoReg.Ch_Alert)
+ pSample->status |= ADI_SENSE_DEVICE_STATUS_ALERT;
+
+ if (dataFifoReg.Ch_Raw)
+ pSample->rawValue = dataFifoReg.Raw_Sample;
+ else
+ pSample->rawValue = 0;
+
+ pSample->channelId = dataFifoReg.Channel_ID;
+ pSample->processedValue = dataFifoReg.Sensor_Result;
+
+ nValidSamples++;
+ }
+ *pnReturned = nValidSamples;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+/*
+ * Close the given ADI Sense device.
+ */
+ADI_SENSE_RESULT adi_sense_Close(
+ ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+ adi_sense_GpioClose(pCtx->hGpio);
+ adi_sense_SpiClose(pCtx->hSpi);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_WriteRegister(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ uint16_t nAddress,
+ void *pData,
+ unsigned nLength)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = 0x8000 | (nAddress & 0x7FFF);
+ uint8_t commandData[sizeof(command)] = {
+ command >> 8,
+ command & 0xFF
+ };
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, NULL,
+ sizeof(commandData), false);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return adi_sense_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
+}
+
+ADI_SENSE_RESULT adi_sense_ReadRegister(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ uint16_t nAddress,
+ void *pData,
+ unsigned nLength)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = nAddress & 0x7FFF;
+ uint8_t commandData[sizeof(command)] = {
+ command >> 8,
+ command & 0xFF
+ };
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, NULL,
+ sizeof(command), false);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ adi_sense_TimeDelayUsec(REG_READ_DELAY_USEC);
+
+ eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetDeviceReadyState(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ bool_t * const bReady)
+{
+ ADI_ADISENSE_SPI_Chip_Type_t chipTypeReg;
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_SPI_CHIP_TYPE, &chipTypeReg,
+ sizeof(chipTypeReg));
+ if (eRet)
+ {
+ ADI_SENSE_LOG_ERROR("Failed to read chip-type register");
+ return eRet;
+ }
+
+ /* If we read this register successfully, assume the device is ready */
+ *bReady = (chipTypeReg.VALUE8 == REG_ADISENSE_SPI_CHIP_TYPE_RESET);
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetDataPublishingInfo(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_OPERATING_MODE * const peOperatingMode,
+ ADI_SENSE_DATA_PUBLISH_MODE * const peDataPublishMode,
+ uint32_t * const pnSamplesPerDataready,
+ uint32_t * const pnSamplesPerCycle)
+{
+ ADI_ADISENSE_CORE_Channel_Count_t channelCountReg;
+ ADI_ADISENSE_CORE_Mode_t modeReg;
+ ADI_SENSE_RESULT eRet;
+
+ unsigned nChannelsEnabled = 0;
+ unsigned nSamplesPerCycle = 0;
+ for (ADI_SENSE_CHANNEL_ID chId = 0; chId < ADI_SENSE_MAX_CHANNELS; chId++)
+ {
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_CHANNEL_COUNTn(chId),
+ &channelCountReg,
+ sizeof(channelCountReg));
+ if (eRet)
+ return eRet;
+
+ if (channelCountReg.Channel_Enable)
+ {
+ nChannelsEnabled++;
+ nSamplesPerCycle += (channelCountReg.Channel_Count + 1);
+ }
+ }
+
+ if (nChannelsEnabled == 0)
+ {
+ *pnSamplesPerDataready = 0;
+ *pnSamplesPerCycle = 0;
+ return ADI_SENSE_SUCCESS;
+ }
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_MODE,
+ &modeReg, sizeof(modeReg));
+ if (eRet)
+ return eRet;
+
+ *pnSamplesPerCycle = nSamplesPerCycle;
+ if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION)
+ {
+ *pnSamplesPerDataready = 1;
+ }
+ else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE)
+ {
+ *pnSamplesPerDataready = nSamplesPerCycle;
+ }
+ else
+ {
+ ADI_ADISENSE_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_FIFO_NUM_CYCLES,
+ &fifoNumCyclesReg,
+ sizeof(fifoNumCyclesReg));
+ if (eRet)
+ return eRet;
+
+ *pnSamplesPerDataready =
+ nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
+ }
+
+ if (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_SINGLECYCLE)
+ *peOperatingMode = ADI_SENSE_OPERATING_MODE_SINGLECYCLE;
+ else if (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_MULTICYCLE)
+ *peOperatingMode = ADI_SENSE_OPERATING_MODE_MULTICYCLE;
+ else
+ *peOperatingMode = ADI_SENSE_OPERATING_MODE_CONTINUOUS;
+
+ if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION)
+ *peDataPublishMode = ADI_SENSE_DATA_PUBLISH_PER_CONVERSION;
+ else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE)
+ *peDataPublishMode = ADI_SENSE_DATA_PUBLISH_PER_CYCLE;
+ else
+ *peDataPublishMode = ADI_SENSE_DATA_PUBLISH_PER_MULTICYCLE_BURST;
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetProductID(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_PRODUCT_ID *pProductId)
+{
+ ADI_ADISENSE_SPI_Product_ID_L_t productIdLoReg;
+ ADI_ADISENSE_SPI_Product_ID_H_t productIdHiReg;
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_SPI_PRODUCT_ID_L,
+ &productIdLoReg, sizeof(productIdLoReg));
+ if (eRet)
+ return eRet;
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_SPI_PRODUCT_ID_H,
+ &productIdHiReg, sizeof(productIdHiReg));
+ if (eRet)
+ return eRet;
+
+ *pProductId = (productIdHiReg.VALUE8 << 8) | productIdLoReg.VALUE8;
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetPowerMode(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_POWER_MODE powerMode)
+{
+ ADI_ADISENSE_CORE_Power_Config_t powerConfigReg;
+
+ if (powerMode == ADI_SENSE_POWER_MODE_LOW)
+ {
+ powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_LOW_POWER;
+ /* TODO - we need an enum in the register map for the MCU power modes */
+ powerConfigReg.Power_Mode_MCU = 0x0;
+ }
+ else if (powerMode == ADI_SENSE_POWER_MODE_MID)
+ {
+ powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_MID_POWER;
+ powerConfigReg.Power_Mode_MCU = 0x1;
+ }
+ else if (powerMode == ADI_SENSE_POWER_MODE_FULL)
+ {
+ powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_FULL_POWER;
+ powerConfigReg.Power_Mode_MCU = 0x2;
+ }
+ else
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_POWER_CONFIG,
+ &powerConfigReg, sizeof(powerConfigReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetVddVoltage(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ float32_t vddVoltage)
+{
+ ADI_ADISENSE_CORE_AVDD_Voltage_t avddVoltageReg = {
+ .Avdd_Voltage = vddVoltage
+ };
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_AVDD_VOLTAGE,
+ &avddVoltageReg, sizeof(avddVoltageReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetPowerConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_POWER_CONFIG *pPowerConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetPowerMode(hDevice, pPowerConfig->powerMode);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return adi_sense_SetVddVoltage(hDevice, pPowerConfig->supplyVoltage);
+}
+
+static ADI_SENSE_RESULT adi_sense_SetMode(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_OPERATING_MODE eOperatingMode,
+ ADI_SENSE_DATA_PUBLISH_MODE ePublishMode)
+{
+ ADI_ADISENSE_CORE_Mode_t modeReg = { .VALUE8 = 0 };
+
+ if (eOperatingMode == ADI_SENSE_OPERATING_MODE_SINGLECYCLE)
+ {
+ modeReg.Conversion_Mode = ADISENSE_CORE_MODE_SINGLECYCLE;
+ }
+ else if (eOperatingMode == ADI_SENSE_OPERATING_MODE_CONTINUOUS)
+ {
+ modeReg.Conversion_Mode = ADISENSE_CORE_MODE_CONTINUOUS;
+ }
+ else if (eOperatingMode == ADI_SENSE_OPERATING_MODE_MULTICYCLE)
+ {
+ modeReg.Conversion_Mode = ADISENSE_CORE_MODE_MULTICYCLE;
+ }
+ else
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ if (ePublishMode == ADI_SENSE_DATA_PUBLISH_PER_CONVERSION)
+ {
+ modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CONVERSION;
+ }
+ else if (ePublishMode == ADI_SENSE_DATA_PUBLISH_PER_CYCLE)
+ {
+ modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CYCLE;
+ }
+ else if (ePublishMode == ADI_SENSE_DATA_PUBLISH_PER_MULTICYCLE_BURST)
+ {
+ if (eOperatingMode != ADI_SENSE_OPERATING_MODE_MULTICYCLE)
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ else
+ {
+ modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_FIFO_FILL;
+ }
+ }
+ else
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_MODE,
+ &modeReg, sizeof(modeReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetCycleInterval(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ uint32_t nCycleInterval)
+{
+ ADI_ADISENSE_CORE_Cycle_Control_t cycleControlReg;
+
+ if (nCycleInterval < (1 << 12))
+ {
+ cycleControlReg.Cycle_Time = nCycleInterval;
+ cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MICROSECONDS;
+ }
+ else if (nCycleInterval < (1000 * (1 << 12)))
+ {
+ cycleControlReg.Cycle_Time = nCycleInterval / 1000;
+ cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MILLISECONDS;
+ }
+ else
+ {
+ cycleControlReg.Cycle_Time = nCycleInterval / 1000000;
+ cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_SECONDS;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_CYCLE_CONTROL,
+ &cycleControlReg, sizeof(cycleControlReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetMultiCycleConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_MULTICYCLE_CONFIG *pMultiCycleConfig)
+{
+ ADI_ADISENSE_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg = {
+ .VALUE8 = REG_ADISENSE_CORE_FIFO_NUM_CYCLES_RESET
+ };
+ ADI_ADISENSE_CORE_Multi_Cycle_Repeat_Interval_t multiCycleIntervalReg = {
+ .VALUE32 = REG_ADISENSE_CORE_MULTI_CYCLE_REPEAT_INTERVAL_RESET
+ };
+ ADI_SENSE_RESULT eRet;
+
+ fifoNumCyclesReg.Fifo_Num_Cycles = pMultiCycleConfig->cyclesPerBurst;
+ eRet = adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_FIFO_NUM_CYCLES,
+ &fifoNumCyclesReg,
+ sizeof(fifoNumCyclesReg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ multiCycleIntervalReg.Multi_Cycle_Repeat_Interval = pMultiCycleConfig->burstInterval;
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_MULTI_CYCLE_REPEAT_INTERVAL,
+ &multiCycleIntervalReg,
+ sizeof(multiCycleIntervalReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetExternalReferenceValues(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ float32_t externalRef1Value,
+ float32_t externalRef2Value)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_ADISENSE_CORE_External_Reference1_t externalReference1Reg = {
+ .Ext_Refin1_Value = externalRef1Value
+ };
+ ADI_ADISENSE_CORE_External_Reference2_t externalReference2Reg = {
+ .Ext_Refin2_Value = externalRef2Value
+ };
+
+ eRet = adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_EXTERNAL_REFERENCE1,
+ &externalReference1Reg,
+ sizeof(externalReference1Reg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_EXTERNAL_REFERENCE2,
+ &externalReference2Reg,
+ sizeof(externalReference2Reg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetMeasurementConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_MEASUREMENT_CONFIG *pMeasConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetMode(hDevice,
+ pMeasConfig->operatingMode,
+ pMeasConfig->dataPublishMode);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ if (pMeasConfig->operatingMode != ADI_SENSE_OPERATING_MODE_SINGLECYCLE)
+ {
+ eRet = adi_sense_SetCycleInterval(hDevice, pMeasConfig->cycleInterval);
+ if (eRet)
+ {
+ return eRet;
+ }
+ }
+
+ if (pMeasConfig->operatingMode == ADI_SENSE_OPERATING_MODE_MULTICYCLE)
+ {
+ eRet = adi_sense_SetMultiCycleConfig(hDevice,
+ &pMeasConfig->multiCycleConfig);
+ if (eRet)
+ {
+ return eRet;
+ }
+ }
+
+ return adi_sense_SetExternalReferenceValues(hDevice,
+ pMeasConfig->externalRef1Value,
+ pMeasConfig->externalRef2Value);
+}
+
+ADI_SENSE_RESULT adi_sense_SetDiagnosticsConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
+{
+ ADI_ADISENSE_CORE_Diagnostics_Control_t diagnosticsControlReg = {
+ .VALUE16 = REG_ADISENSE_CORE_DIAGNOSTICS_CONTROL_RESET
+ };
+
+ if (pDiagnosticsConfig->enableGlobalDiag)
+ diagnosticsControlReg.Diag_Global_En = 1;
+
+ if (pDiagnosticsConfig->enableMeasurementDiag)
+ {
+ diagnosticsControlReg.Diag_Meas_En = 1;
+
+ switch (pDiagnosticsConfig->openCircuitDetectionFreq)
+ {
+ case ADI_SENSE_OCD_DISABLED:
+ diagnosticsControlReg.Diag_OCD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_OFF;
+ break;
+ case ADI_SENSE_OCD_PER_CYCLE:
+ diagnosticsControlReg.Diag_OCD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE;
+ break;
+ case ADI_SENSE_OCD_PER_100_CYCLES:
+ diagnosticsControlReg.Diag_OCD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES;
+ break;
+ case ADI_SENSE_OCD_PER_1000_CYCLES:
+ diagnosticsControlReg.Diag_OCD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES;
+ break;
+ default:
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ }
+
+ /* TODO - what should be set in the REG_ADISENSE_CORE_DIAGNOSTICS_EXTRA register? */
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_DIAGNOSTICS_CONTROL,
+ &diagnosticsControlReg,
+ sizeof(diagnosticsControlReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetChannelCount(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ uint32_t nMeasurementsPerCycle)
+{
+ ADI_ADISENSE_CORE_Channel_Count_t channelCountReg = {
+ .VALUE8 = REG_ADISENSE_CORE_CHANNEL_COUNTn_RESET
+ };
+
+ if (nMeasurementsPerCycle > 0)
+ {
+ channelCountReg.Channel_Enable = 1;
+ channelCountReg.Channel_Count = nMeasurementsPerCycle - 1;
+ }
+ else
+ {
+ channelCountReg.Channel_Enable = 0;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_CHANNEL_COUNTn(eChannelId),
+ &channelCountReg, sizeof(channelCountReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorType(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_ADC_SENSOR_TYPE sensorType)
+{
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg = {
+ .VALUE16 = REG_ADISENSE_CORE_SENSOR_TYPEn_RESET
+ };
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_J:
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_K:
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_T:
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_CUSTOM:
+ case ADI_SENSE_ADC_SENSOR_RTD_3WIRE_PT100:
+ case ADI_SENSE_ADC_SENSOR_RTD_3WIRE_PT1000:
+ case ADI_SENSE_ADC_SENSOR_RTD_3WIRE_CUSTOM:
+ case ADI_SENSE_ADC_SENSOR_RTD_4WIRE_PT100:
+ case ADI_SENSE_ADC_SENSOR_RTD_4WIRE_PT1000:
+ case ADI_SENSE_ADC_SENSOR_RTD_4WIRE_CUSTOM:
+ case ADI_SENSE_ADC_SENSOR_BRIDGE_4WIRE_TRANSDUCER:
+ case ADI_SENSE_ADC_SENSOR_BRIDGE_4WIRE_CUSTOM:
+ case ADI_SENSE_ADC_SENSOR_BRIDGE_6WIRE_TRANSDUCER:
+ case ADI_SENSE_ADC_SENSOR_BRIDGE_6WIRE_CUSTOM:
+ case ADI_SENSE_ADC_SENSOR_THERMISTOR_10K_NTC:
+ case ADI_SENSE_ADC_SENSOR_THERMISTOR_CUSTOM:
+ if (! ADI_SENSE_CHANNEL_IS_ADC_SENSOR(eChannelId))
+ return ADI_SENSE_INVALID_PARAM;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_2WIRE_PT100:
+ case ADI_SENSE_ADC_SENSOR_RTD_2WIRE_PT1000:
+ case ADI_SENSE_ADC_SENSOR_RTD_2WIRE_CUSTOM:
+ if (! ADI_SENSE_CHANNEL_IS_ADC_SENSOR(eChannelId) &&
+ ! ADI_SENSE_CHANNEL_IS_ADC_CJC(eChannelId))
+ return ADI_SENSE_INVALID_PARAM;
+ break;
+ case ADI_SENSE_ADC_SENSOR_VOLTAGE_PRESSURE_1:
+ case ADI_SENSE_ADC_SENSOR_VOLTAGE_PRESSURE_2:
+ case ADI_SENSE_ADC_SENSOR_VOLTAGE_PRESSURE_CUSTOM:
+ if (! ADI_SENSE_CHANNEL_IS_ADC_VOLTAGE(eChannelId))
+ return ADI_SENSE_INVALID_PARAM;
+ break;
+ case ADI_SENSE_ADC_SENSOR_CURRENT_PRESSURE_1:
+ case ADI_SENSE_ADC_SENSOR_CURRENT_PRESSURE_CUSTOM:
+ if (! ADI_SENSE_CHANNEL_IS_ADC_CURRENT(eChannelId))
+ return ADI_SENSE_INVALID_PARAM;
+ break;
+ default:
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch(sensorType)
+ {
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_T:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_T_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_J:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_J_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_THERMOCOUPLE_K:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_K_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_2WIRE_PT100:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_RTD_2W_PT100_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_2WIRE_PT1000:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_RTD_2W_PT1000_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_3WIRE_PT100:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_RTD_3W_PT100_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_3WIRE_PT1000:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_RTD_3W_PT1000_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_4WIRE_PT100:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_RTD_4W_PT100_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_RTD_4WIRE_PT1000:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_RTD_4W_PT1000_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_BRIDGE_4WIRE_TRANSDUCER:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_BRIDGE_4W_1_DEF_L2;
+ break;
+ case ADI_SENSE_ADC_SENSOR_BRIDGE_6WIRE_TRANSDUCER:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_BRIDGE_6W_1_DEF_L2;
+ break;
+ case ADI_SENSE_ADC_SENSOR_THERMISTOR_10K_NTC:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_THERMISTOR_A_10K_DEF_L1;
+ break;
+ case ADI_SENSE_ADC_SENSOR_VOLTAGE_PRESSURE_1:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_VOLTAGE_PRESSURE_HONEYWELL_TRUSTABILITY;
+ break;
+ case ADI_SENSE_ADC_SENSOR_VOLTAGE_PRESSURE_2:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_VOLTAGE_PRESSURE_AMPHENOL_NPA300X;
+ break;
+ case ADI_SENSE_ADC_SENSOR_CURRENT_PRESSURE_1:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_CURRENT_PRESSURE_HONEYWELL_PX2;
+ break;
+ default:
+ /* TODO - add support for custom sensor types? */
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_SENSOR_TYPEn(eChannelId),
+ &sensorTypeReg, sizeof(sensorTypeReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorDetails(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_CHANNEL_CONFIG *pChannelConfig)
+/*
+ * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
+ * General details:
+ * - Measurement_Units
+ * - Compensation_Channel
+ * - CJC_Publish (if "CJC" was removed from the name)
+ * ADC-specific details:
+ * - PGA_Gain
+ * - Reference_Select
+ * - Reference_Buffer_Disable
+ * - Vbias
+ */
+{
+ ADI_SENSE_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
+ ADI_SENSE_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference;
+ ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg = {
+ .VALUE32 = REG_ADISENSE_CORE_SENSOR_DETAILSn_RESET
+ };
+
+/* TODO - measurementType will most likely be replaced with a unit-conversion option */
+#if 0
+ switch(pChannelConfig->eMeasurementType)
+ {
+ case ADI_SENSE_MEASUREMENT_TEMPERATURE_CELCIUS:
+ sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
+ break;
+ case ADI_SENSE_MEASUREMENT_TEMPERATURE_FAHRENHEIT:
+ sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
+ break;
+ /* TODO - register map needs to define measurement units for the following options: */
+ case ADI_SENSE_MEASUREMENT_HUMIDITY_RH:
+ case ADI_SENSE_MEASUREMENT_PRESSURE_BAR:
+ case ADI_SENSE_MEASUREMENT_PRESSURE_PSI:
+ case ADI_SENSE_MEASUREMENT_ACCELERATION_G:
+ default:
+ return ADI_SENSE_INVALID_PARAM;
+ }
+#endif
+
+ sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
+
+ switch(pRefConfig->type)
+ {
+ case ADI_SENSE_ADC_REFERENCE_RESISTOR_INTERNAL_1:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT1;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_RESISTOR_INTERNAL_2:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT2;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_VOLTAGE_INTERNAL:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_INT;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_VOLTAGE_AVDD:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_AVDD;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_RESISTOR_EXTERNAL_1:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT1;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_RESISTOR_EXTERNAL_2:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT2;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT1;
+ break;
+ case ADI_SENSE_ADC_REFERENCE_VOLTAGE_EXTERNAL_2:
+ sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT2;
+ break;
+ default:
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch(pAdcChannelConfig->gain)
+ {
+ case ADI_SENSE_ADC_GAIN_1X:
+ /* TODO - add enum for gain options in register map headers */
+ sensorDetailsReg.PGA_Gain = 0;
+ break;
+ case ADI_SENSE_ADC_GAIN_2X:
+ sensorDetailsReg.PGA_Gain = 1;
+ break;
+ case ADI_SENSE_ADC_GAIN_4X:
+ sensorDetailsReg.PGA_Gain = 2;
+ break;
+ case ADI_SENSE_ADC_GAIN_8X:
+ sensorDetailsReg.PGA_Gain = 3;
+ break;
+ case ADI_SENSE_ADC_GAIN_16X:
+ sensorDetailsReg.PGA_Gain = 4;
+ break;
+ case ADI_SENSE_ADC_GAIN_32X:
+ sensorDetailsReg.PGA_Gain = 5;
+ break;
+ case ADI_SENSE_ADC_GAIN_64X:
+ sensorDetailsReg.PGA_Gain = 6;
+ break;
+ case ADI_SENSE_ADC_GAIN_128X:
+ sensorDetailsReg.PGA_Gain = 7;
+ break;
+ default:
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ if (pAdcChannelConfig->enableVbias)
+ sensorDetailsReg.Vbias = 1;
+ else
+ sensorDetailsReg.Vbias = 0;
+
+ if (pAdcChannelConfig->reference.disableBuffer)
+ sensorDetailsReg.Reference_Buffer_Disable = 1;
+ else
+ sensorDetailsReg.Reference_Buffer_Disable = 0;
+
+ if (pChannelConfig->disablePublishing)
+ sensorDetailsReg.Do_Not_Publish = 1;
+ else
+ sensorDetailsReg.Do_Not_Publish = 0;
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_SENSOR_DETAILSn(eChannelId),
+ &sensorDetailsReg, sizeof(sensorDetailsReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcFilter(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_ADC_FILTER_CONFIG *pFilterConfig)
+{
+ ADI_ADISENSE_CORE_Filter_Select_t filterSelectReg = {
+ .VALUE32 = REG_ADISENSE_CORE_FILTER_SELECTn_RESET
+ };
+
+ if (pFilterConfig->type == ADI_SENSE_ADC_FILTER_SINC4)
+ {
+ filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_SINC4;
+ filterSelectReg.ADC_FS = pFilterConfig->fs;
+ }
+ else if (pFilterConfig->type == ADI_SENSE_ADC_FILTER_FIR_20SPS)
+ {
+ filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_20SPS;
+ }
+ else if (pFilterConfig->type == ADI_SENSE_ADC_FILTER_FIR_25SPS)
+ {
+ filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_25SPS;
+ }
+ else
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_FILTER_SELECTn(eChannelId),
+ &filterSelectReg, sizeof(filterSelectReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcCurrentConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_ADC_CURRENT_CONFIG *pCurrentConfig)
+{
+ ADI_ADISENSE_CORE_Channel_Excitation_t channelExcitationReg = {
+ .VALUE8 = REG_ADISENSE_CORE_CHANNEL_EXCITATIONn_RESET
+ };
+
+ if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_NONE)
+ {
+ /* TODO - how should the IOUT0/1 Disable options be represented on the API? */
+ channelExcitationReg.IOUT0_Disable = 1;
+ channelExcitationReg.IOUT1_Disable = 1;
+
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_OFF;
+ }
+ else
+ {
+ channelExcitationReg.IOUT0_Disable = 0;
+ channelExcitationReg.IOUT1_Disable = 0;
+
+ if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_50uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_50UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_100uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_100UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_250uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_250UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_500uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_500UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_750uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_750UA;
+ else if (pCurrentConfig->outputLevel == ADI_SENSE_ADC_CURRENT_LEVEL_1000uA)
+ channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_1000UA;
+ else
+ return ADI_SENSE_INVALID_PARAM;
+
+ if (pCurrentConfig->sourceOption == ADI_SENSE_ADC_CURRENT_SOURCE_DEFAULT)
+ {
+ channelExcitationReg.IOUT_Dont_Swap_3Wire = 1;
+ channelExcitationReg.IOUT_Static_Swap_3Wire = 0;
+ }
+ else if (pCurrentConfig->sourceOption == ADI_SENSE_ADC_CURRENT_SOURCE_SWAP_STATIC)
+ {
+ channelExcitationReg.IOUT_Dont_Swap_3Wire = 1;
+ channelExcitationReg.IOUT_Static_Swap_3Wire = 1;
+ }
+ else if (pCurrentConfig->sourceOption == ADI_SENSE_ADC_CURRENT_SOURCE_SWAP_DYNAMIC)
+ {
+ channelExcitationReg.IOUT_Dont_Swap_3Wire = 0;
+ channelExcitationReg.IOUT_Static_Swap_3Wire = 0;
+ }
+ else
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+ }
+
+ return adi_sense_WriteRegister(hDevice,
+ REG_ADISENSE_CORE_CHANNEL_EXCITATIONn(eChannelId),
+ &channelExcitationReg,
+ sizeof(channelExcitationReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetAdcChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_SENSE_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
+ &pChannelConfig->adcChannelConfig;
+
+ eRet = adi_sense_SetChannelAdcSensorType(hDevice, eChannelId,
+ pAdcChannelConfig->sensor);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelAdcSensorDetails(hDevice, eChannelId,
+ pChannelConfig);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelAdcFilter(hDevice, eChannelId,
+ &pAdcChannelConfig->filter);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelAdcCurrentConfig(hDevice, eChannelId,
+ &pAdcChannelConfig->current);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorType(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_I2C_SENSOR_TYPE sensorType)
+{
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg = {
+ .VALUE16 = REG_ADISENSE_CORE_SENSOR_TYPEn_RESET
+ };
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADI_SENSE_I2C_SENSOR_HUMIDITY_HONEYWELL_HIH:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_HONEYWELL_HUMIDICON;
+ break;
+ case ADI_SENSE_I2C_SENSOR_HUMIDITY_SENSIRION_SHT35:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_SENSIRION_SHT3X;
+ break;
+ default:
+ /* TODO - add support for custom I2C sensors */
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_SENSOR_TYPEn(eChannelId),
+ &sensorTypeReg, sizeof(sensorTypeReg));
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorAddress(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ uint32_t deviceAddress)
+{
+ ADI_ADISENSE_CORE_Digital_Sensor_Address_t sensorAddressReg = {
+ .VALUE8 = REG_ADISENSE_CORE_DIGITAL_SENSOR_ADDRESSn_RESET
+ };
+
+ sensorAddressReg.Digital_Sensor_Address = deviceAddress;
+
+ return adi_sense_WriteRegister(hDevice,
+ REG_ADISENSE_CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId),
+ &sensorAddressReg, sizeof(sensorAddressReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetI2cChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_I2C_CHANNEL_CONFIG *pI2cChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetChannelI2cSensorType(hDevice, eChannelId,
+ pI2cChannelConfig->sensor);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelI2cSensorAddress(hDevice, eChannelId,
+ pI2cChannelConfig->deviceAddress);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelSpiSensorType(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_SPI_SENSOR_TYPE sensorType)
+{
+ ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg = {
+ .VALUE16 = REG_ADISENSE_CORE_SENSOR_TYPEn_RESET
+ };
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADI_SENSE_SPI_SENSOR_PRESSURE_HONEYWELL_HSCDRN1:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_PRESSURE_HONEYWELL_TRUSTABILITY;
+ break;
+ case ADI_SENSE_SPI_SENSOR_PRESSURE_ADI_ADXL362:
+ sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1;
+ break;
+ default:
+ /* TODO - add support for custom SPI sensors */
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_SENSOR_TYPEn(eChannelId),
+ &sensorTypeReg, sizeof(sensorTypeReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetSpiChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_SPI_CHANNEL_CONFIG *pSpiChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_SetChannelSpiSensorType(hDevice, eChannelId,
+ pSpiChannelConfig->sensor);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetChannelThresholdLimits(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ float32_t highThresholdLimit,
+ float32_t lowThresholdLimit)
+{
+ ADI_ADISENSE_CORE_High_Threshold_Limit_t highLimitReg = {
+ .High_Threshold = highThresholdLimit
+ };
+ ADI_ADISENSE_CORE_Low_Threshold_Limit_t lowLimitReg = {
+ .Low_Threshold = lowThresholdLimit
+ };
+ ADI_SENSE_RESULT eRet;
+
+ eRet = adi_sense_WriteRegister(hDevice,
+ REG_ADISENSE_CORE_HIGH_THRESHOLD_LIMITn(eChannelId),
+ &highLimitReg, sizeof(highLimitReg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return adi_sense_WriteRegister(hDevice,
+ REG_ADISENSE_CORE_LOW_THRESHOLD_LIMITn(eChannelId),
+ &lowLimitReg, sizeof(lowLimitReg));;
+}
+
+ADI_SENSE_RESULT adi_sense_SetChannelSettlingTime(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ uint32_t settlingTime)
+{
+ ADI_ADISENSE_CORE_Settling_Time_t settlingTimeReg = {
+ .VALUE16 = REG_ADISENSE_CORE_SETTLING_TIMEn_RESET
+ };
+
+ settlingTimeReg.Settling_Time = settlingTime;
+
+ return adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_SETTLING_TIMEn(eChannelId),
+ &settlingTimeReg, sizeof(settlingTimeReg));
+}
+
+ADI_SENSE_RESULT adi_sense_SetChannelConfig(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ ADI_SENSE_CHANNEL_ID eChannelId,
+ ADI_SENSE_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADI_SENSE_RESULT eRet;
+
+ /* If the channel is not enabled, disable it and return */
+ if (! pChannelConfig->enableChannel)
+ return adi_sense_SetChannelCount(hDevice, eChannelId, 0);
+
+ eRet = adi_sense_SetChannelCount(hDevice, eChannelId,
+ pChannelConfig->measurementsPerCycle);
+ if (eRet)
+ return eRet;
+
+ switch (eChannelId)
+ {
+ case ADI_SENSE_CHANNEL_ID_CJC_0:
+ case ADI_SENSE_CHANNEL_ID_CJC_1:
+ case ADI_SENSE_CHANNEL_ID_SENSOR_0:
+ case ADI_SENSE_CHANNEL_ID_SENSOR_1:
+ case ADI_SENSE_CHANNEL_ID_SENSOR_2:
+ case ADI_SENSE_CHANNEL_ID_SENSOR_3:
+ case ADI_SENSE_CHANNEL_ID_VOLTAGE_0:
+ case ADI_SENSE_CHANNEL_ID_CURRENT_0:
+ eRet = adi_sense_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
+ break;
+ case ADI_SENSE_CHANNEL_ID_I2C_0:
+ case ADI_SENSE_CHANNEL_ID_I2C_1:
+ eRet = adi_sense_SetI2cChannelConfig(hDevice, eChannelId,
+ &pChannelConfig->i2cChannelConfig);
+ break;
+ case ADI_SENSE_CHANNEL_ID_SPI_0:
+ eRet = adi_sense_SetSpiChannelConfig(hDevice, eChannelId,
+ &pChannelConfig->spiChannelConfig);
+ break;
+ default:
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ eRet = adi_sense_SetChannelThresholdLimits(hDevice, eChannelId,
+ pChannelConfig->measurementMaxValue,
+ pChannelConfig->measurementMinValue);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetChannelSettlingTime(hDevice, eChannelId,
+ pChannelConfig->extraSettlingTime);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetDeviceConfig(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_CONFIG * const pConfig)
+{
+ ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+ ADI_SENSE_DEVICE_CONFIG *pDeviceConfig;
+ ADI_SENSE_PRODUCT_ID productId;
+ ADI_SENSE_RESULT eRet;
+
+ if (pCtx->nDeviceIndex >= pConfig->numDevices)
+ {
+ return ADI_SENSE_INVALID_DEVICE_NUM;
+ }
+ pDeviceConfig = &pConfig->devices[pCtx->nDeviceIndex];
+
+ /* Check that the Product ID is a match? */
+ eRet = adi_sense_GetProductID(hDevice, &productId);
+ if (eRet)
+ {
+ return eRet;
+ }
+ if (pDeviceConfig->productId != productId)
+ {
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ eRet = adi_sense_SetPowerConfig(hDevice, &pDeviceConfig->power);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ for (ADI_SENSE_CHANNEL_ID id = 0; id < ADI_SENSE_MAX_CHANNELS; id++)
+ {
+ eRet = adi_sense_SetChannelConfig(hDevice, id,
+ &pDeviceConfig->channels[id]);
+ if (eRet)
+ {
+ return eRet;
+ }
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetDspData(
+ ADI_SENSE_DEVICE_HANDLE const hDevice,
+ ADI_SENSE_DSP_LUT_RAW * const pDspData)
+{
+ ADI_SENSE_DSP_LUT *pLut = (ADI_SENSE_DSP_LUT *)pDspData;
+ ADI_SENSE_DSP_LUT_TABLE *pLutTable = pLut->tables;
+ unsigned actualLength = 0;
+
+ if (pLut->header.signature != ADI_SENSE_DSP_LUT_SIGNATURE)
+ {
+ ADI_SENSE_LOG_ERROR("DSP LUT signature incorrect (expected 0x%X, actual 0x%X)",
+ ADI_SENSE_DSP_LUT_SIGNATURE, pLut->header.signature);
+ return ADI_SENSE_INVALID_SIGNATURE;
+ }
+
+ for (unsigned i = 0; i < pLut->header.numTables; i++)
+ {
+ ADI_SENSE_DSP_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
+ unsigned short calculatedCrc;
+
+ switch (pDesc->geometry)
+ {
+ case ADI_SENSE_DSP_LUT_GEOMETRY_COEFFICIENT_LIST:
+ case ADI_SENSE_DSP_LUT_GEOMETRY_EQUALLY_SPACED_1D:
+ case ADI_SENSE_DSP_LUT_GEOMETRY_EQUALLY_SPACED_2D:
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid geometry %u specified for DSP LUT table %u",
+ pDesc->geometry, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch (pDesc->equation)
+ {
+ case ADI_SENSE_DSP_LUT_EQUATION_NONE:
+ case ADI_SENSE_DSP_LUT_EQUATION_POLYNOMIAL:
+ case ADI_SENSE_DSP_LUT_EQUATION_POLYNOMIAL_EXPONENTIAL:
+ case ADI_SENSE_DSP_LUT_EQUATION_QUADRATIC:
+ case ADI_SENSE_DSP_LUT_EQUATION_EXPONENTIAL:
+ case ADI_SENSE_DSP_LUT_EQUATION_LOGARITHMIC:
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid equation %u specified for DSP LUT table %u",
+ pDesc->equation, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch (pDesc->function)
+ {
+ case ADI_SENSE_DSP_LUT_FUNCTION_TCJ_MV2C:
+ case ADI_SENSE_DSP_LUT_FUNCTION_TCJ_C2MV:
+ case ADI_SENSE_DSP_LUT_FUNCTION_TCK_MV2C:
+ case ADI_SENSE_DSP_LUT_FUNCTION_TCK_C2MV:
+ case ADI_SENSE_DSP_LUT_FUNCTION_TCT_MV2C:
+ case ADI_SENSE_DSP_LUT_FUNCTION_TCT_C2MV:
+ case ADI_SENSE_DSP_LUT_FUNCTION_RTD_OHM2C:
+ case ADI_SENSE_DSP_LUT_FUNCTION_VOUT_V2BAR:
+ case ADI_SENSE_DSP_LUT_FUNCTION_VOUT_V2PSI:
+ case ADI_SENSE_DSP_LUT_FUNCTION_IOUT_MA2PSI:
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid function %u specified for DSP LUT table %u",
+ pDesc->function, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ switch (pDesc->vectorFormat)
+ {
+ case ADI_SENSE_DSP_LUT_VECTOR_FORMAT_FLOAT32:
+ case ADI_SENSE_DSP_LUT_VECTOR_FORMAT_FLOAT64:
+ break;
+ default:
+ ADI_SENSE_LOG_ERROR("Invalid vector format %u specified for DSP LUT table %u",
+ pDesc->vectorFormat, i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ if (((pDesc->rangeMin != NAN) && (pDesc->rangeMax != NAN)) &&
+ (pDesc->rangeMax <= pDesc->rangeMin))
+ {
+ ADI_SENSE_LOG_ERROR("Invalid range specified for DSP LUT table %u", i);
+ return ADI_SENSE_INVALID_PARAM;
+ }
+
+ calculatedCrc = crc16_ccitt(pLutTable->data, pDesc->dataLength);
+ if (calculatedCrc != pDesc->crc16)
+ {
+ ADI_SENSE_LOG_ERROR("CRC validation failed on DSP LUT table %u (expected 0x%04X, actual 0x%04X)",
+ i, pDesc->crc16, calculatedCrc);
+ return ADI_SENSE_CRC_ERROR;
+ }
+
+ actualLength += sizeof(*pDesc) + pDesc->dataLength;
+
+ /* Move to the next look-up table */
+ pLutTable = (ADI_SENSE_DSP_LUT_TABLE *)(pLutTable->data + pDesc->dataLength);
+ }
+
+ if (actualLength != pLut->header.totalLength)
+ {
+ ADI_SENSE_LOG_ERROR("DSP LUT table length mismatch (expected %u, actual %u)",
+ pLut->header.totalLength, actualLength);
+ return ADI_SENSE_WRONG_SIZE;
+ }
+
+ /* TODO - add a check to ensure that the total length doesn't exceed the maximum internal LUT storage size (TBD) */
+
+ /* TODO - write the LUT data to the device */
+
+ return ADI_SENSE_SUCCESS;
+}
+
+#define CAL_TABLE_ROWS 56
+#define CAL_TABLE_COLS 3
+#define CAL_TABLE_SIZE (sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS)
+
+/*!
+ * @brief Read the contents of the ADISense internal calibration table
+ *
+ * Calibration coefficients/gains/offsets are stored internally in a table
+ * of 56x3 32-bit floating point values
+ *
+ * @param[in] uint8_t* : Pointer to destination buffer for the calibration data
+ * @param[in] maxLen : The buffer capacity in bytes (minimum 672 bytes)
+ * @param[out] dataLen : The number of bytes written to the buffer
+ * @param[out] nRows : The number of rows in the table (56)
+ * @param[out] nRows : The number of columns in the table (3)
+ *
+ * @return Status
+ * - #ADI_SENSE_SUCCESS Call completed successfully.
+ * - #ADI_SENSE_FAILURE
+ * - #ADI_SENSE_INVALID_OPERATION Invalid register identifier.
+ */
+ADI_SENSE_RESULT adi_sense_ReadCalTable(
+ ADI_SENSE_DEVICE_HANDLE hDevice,
+ float *buffer,
+ unsigned maxLen,
+ unsigned *dataLen,
+ unsigned *nRows,
+ unsigned *nColumns)
+{
+ ADI_SENSE_RESULT eRet;
+ ADI_ADISENSE_CORE_CAL_Offset_t calOffsetReg;
+
+ *dataLen = 0;
+ *nRows = CAL_TABLE_ROWS;
+ *nColumns = CAL_TABLE_COLS;
+ /* Read back in 256-byte chunks due to limitation in underlying layer */
+ for (unsigned offset = 0; offset < CAL_TABLE_SIZE; offset += 256)
+ {
+ unsigned readSize = 256;
+
+ if (readSize > maxLen)
+ readSize = maxLen;
+
+ if (readSize > (CAL_TABLE_SIZE - offset))
+ readSize = CAL_TABLE_SIZE - offset;
+
+ calOffsetReg.CAL_Offset = offset;
+ eRet = adi_sense_WriteRegister(hDevice, REG_ADISENSE_CORE_CAL_OFFSET,
+ &calOffsetReg, sizeof(calOffsetReg));
+ if (eRet)
+ {
+ return eRet;
+ }
+
+ eRet = adi_sense_ReadRegister(hDevice, REG_ADISENSE_CORE_CAL_DATA,
+ (uint8_t *)buffer + offset, readSize);
+ if (eRet)
+ {
+ return eRet;
+ }
+ *dataLen += readSize;
+ }
+
+ return ADI_SENSE_SUCCESS;
+}
+