Library for TFT via SPI
Dependents: mbed_projekt_tetris Ejemplo_TFT
Diff: SPI_TFT_ILI9341_NUCLEO.cpp
- Revision:
- 0:b8956708b92f
diff -r 000000000000 -r b8956708b92f SPI_TFT_ILI9341_NUCLEO.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SPI_TFT_ILI9341_NUCLEO.cpp Mon Jun 18 20:01:55 2018 +0000 @@ -0,0 +1,1048 @@ +/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller + * Copyright (c) 2013, 2014 Peter Drescher - DC2PD + * Special version for STM Nucleo -L152 + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + + // 24.06.14 initial version + // 25.06.14 add Nucleo F103RB + +// only include this file if target is L152 or F103RB : +#if defined TARGET_NUCLEO_L152RE || defined TARGET_NUCLEO_F103RB + +#include "SPI_TFT_ILI9341.h" +#include "mbed.h" + +#if defined TARGET_NUCLEO_L152RE +#include "stm32l1xx_dma.h" +#define use_ram +#endif + +#if defined TARGET_NUCLEO_F103RB +#include "stm32f10x_dma.h" +#endif + +#define BPP 16 // Bits per pixel + +//extern Serial pc; +//extern DigitalOut xx; // debug !! + +DMA_InitTypeDef DMA_InitStructure; + + +SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name) + : GraphicsDisplay(name), SPI(mosi,miso,sclk,NC), _cs(cs), _reset(reset), _dc(dc) +{ + + format(8,3); // 8 bit spi mode 3 + frequency(10000000); // 10 Mhz SPI clock : result 2 / 4 = 8 + orientation = 0; + char_x = 0; + if(_spi.spi == SPI_1){ // test which SPI is in use + spi_num = 1; + } + if(_spi.spi == SPI_2){ + spi_num = 2; + } + #ifdef SPI_3 // there is no SPI 3 on all devices + if(_spi.spi == SPI_3){ + spi_num = 3; + } + #endif + tft_reset(); +} + +// we define a fast write to the SPI port +// we use the bit banding address to get the flag without masking + +#define bit_SPI1_txe *((volatile unsigned int *)0x42260104) +#define SPI1_DR *((volatile unsigned int *)0x4001300C) +#define bit_SPI2_txe *((volatile unsigned int *)0x42070104) +#define SPI2_DR *((volatile unsigned int *)0x4000380C) +#define bit_SPI3_txe *((volatile unsigned int *)0x42078104) +#define SPI3_DR *((volatile unsigned int *)0x40003C0C) + +void SPI_TFT_ILI9341::f_write(int data){ + +switch(spi_num){ // used SPI port +case (1): + while(bit_SPI1_txe == 0); // wait for SPI1->SR TXE flag + SPI1_DR = data; + break; + +case (2): + while( bit_SPI2_txe == 0); // wait for SPI2->SR TXE flag + SPI2_DR = data; + break; + +case (3): + while( bit_SPI3_txe == 0); // wait for SPI3->SR TXE flag + SPI3_DR = data; + break; + + } +} + +// wait for SPI not busy +// we have to wait for the last bit to switch the cs off +// we use the bit banding address to get the flag without masking + +#define bit_SPI1_bsy *((volatile unsigned int *)0x4226011C) +#define bit_SPI2_bsy *((volatile unsigned int *)0x4207011C) +#define bit_SPI3_bsy *((volatile unsigned int *)0x4207811C) + +void inline SPI_TFT_ILI9341::spi_bsy(void){ +switch(spi_num){ // decide which SPI is to use +case (1): + while(bit_SPI1_bsy == 1); // SPI1->SR bit 7 + break; + +case (2): + while(bit_SPI2_bsy == 1); // SPI2->SR bit 7 + break; + +case (3): + while(bit_SPI3_bsy == 1); // SPI2->SR bit 7 + break; + } +} + + +// switch fast between 8 and 16 bit mode +#define bit_SPI1_dff *((volatile unsigned int *)0x4226002C) +#define bit_SPI2_dff *((volatile unsigned int *)0x4207002C) +#define bit_SPI3_dff *((volatile unsigned int *)0x4207802C) +void SPI_TFT_ILI9341::spi_16(bool s){ +switch(spi_num){ // decide which SPI is to use +case(1): + if(s) bit_SPI1_dff = 1; // switch to 16 bit Mode + else bit_SPI1_dff = 0; // switch to 8 bit Mode + break; + +case(2): + if(s) bit_SPI2_dff = 1; // switch to 16 bit Mode + else bit_SPI2_dff = 0; // switch to 8 bit Mode + break; + +case(3): + if(s) bit_SPI3_dff = 1; // switch to 16 bit Mode + else bit_SPI3_dff = 0; // switch to 8 bit Mode + break; + } +} + + +int SPI_TFT_ILI9341::width() +{ + if (orientation == 0 || orientation == 2) return 240; + else return 320; +} + + +int SPI_TFT_ILI9341::height() +{ + if (orientation == 0 || orientation == 2) return 320; + else return 240; +} + + +void SPI_TFT_ILI9341::set_orientation(unsigned int o) +{ + orientation = o; + wr_cmd(0x36); // MEMORY_ACCESS_CONTROL + switch (orientation) { + case 0: + f_write(0x48); + break; + case 1: + f_write(0x28); + break; + case 2: + f_write(0x88); + break; + case 3: + f_write(0xE8); + break; + } + spi_bsy(); // wait for end of transfer + _cs = 1; + WindowMax(); +} + + +// write command to tft register +// use fast command +void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd) +{ + _dc = 0; + _cs = 0; + f_write(cmd); + spi_bsy(); + _dc = 1; +} + +void SPI_TFT_ILI9341::wr_dat(unsigned char dat) +{ + f_write(dat); + spi_bsy(); // wait for SPI send +} + +// the ILI9341 can read +char SPI_TFT_ILI9341::rd_byte(unsigned char cmd) +{ + // has to change !! + return(0); +} + +// read 32 bit +int SPI_TFT_ILI9341::rd_32(unsigned char cmd) +{ + // has to change !!! + return(0); +} + +int SPI_TFT_ILI9341::Read_ID(void){ + int r; + r = rd_byte(0x0A); + r = rd_byte(0x0A); + r = rd_byte(0x0A); + r = rd_byte(0x0A); + return(r); +} + + +// Init code based on MI0283QT datasheet +// this code is called only at start +// no need to be optimized + +void SPI_TFT_ILI9341::tft_reset() +{ + _cs = 1; // cs high + _dc = 1; // dc high + _reset = 0; // display reset + + wait_us(50); + _reset = 1; // end hardware reset + wait_ms(5); + + wr_cmd(0x01); // SW reset + wait_ms(5); + wr_cmd(0x28); // display off + + /* Start Initial Sequence ----------------------------------------------------*/ + wr_cmd(0xCF); + f_write(0x00); + f_write(0x83); + f_write(0x30); + spi_bsy(); + _cs = 1; + + wr_cmd(0xED); + f_write(0x64); + f_write(0x03); + f_write(0x12); + f_write(0x81); + spi_bsy(); + _cs = 1; + + wr_cmd(0xE8); + f_write(0x85); + f_write(0x01); + f_write(0x79); + spi_bsy(); + _cs = 1; + + wr_cmd(0xCB); + f_write(0x39); + f_write(0x2C); + f_write(0x00); + f_write(0x34); + f_write(0x02); + spi_bsy(); + _cs = 1; + + wr_cmd(0xF7); + f_write(0x20); + spi_bsy(); + _cs = 1; + + wr_cmd(0xEA); + f_write(0x00); + f_write(0x00); + spi_bsy(); + _cs = 1; + + wr_cmd(0xC0); // POWER_CONTROL_1 + f_write(0x26); + spi_bsy(); + _cs = 1; + + wr_cmd(0xC1); // POWER_CONTROL_2 + f_write(0x11); + spi_bsy(); + _cs = 1; + + wr_cmd(0xC5); // VCOM_CONTROL_1 + f_write(0x35); + f_write(0x3E); + spi_bsy(); + _cs = 1; + + wr_cmd(0xC7); // VCOM_CONTROL_2 + f_write(0xBE); + spi_bsy(); + _cs = 1; + + wr_cmd(0x36); // MEMORY_ACCESS_CONTROL + f_write(0x48); + spi_bsy(); + _cs = 1; + + wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET + f_write(0x55); // 16 bit pixel + spi_bsy(); + _cs = 1; + + wr_cmd(0xB1); // Frame Rate + f_write(0x00); + f_write(0x1B); + spi_bsy(); + _cs = 1; + + wr_cmd(0xF2); // Gamma Function Disable + f_write(0x08); + spi_bsy(); + _cs = 1; + + wr_cmd(0x26); + f_write(0x01); // gamma set for curve 01/2/04/08 + spi_bsy(); + _cs = 1; + + wr_cmd(0xE0); // positive gamma correction + f_write(0x1F); + f_write(0x1A); + f_write(0x18); + f_write(0x0A); + f_write(0x0F); + f_write(0x06); + f_write(0x45); + f_write(0x87); + f_write(0x32); + f_write(0x0A); + f_write(0x07); + f_write(0x02); + f_write(0x07); + f_write(0x05); + f_write(0x00); + spi_bsy(); + _cs = 1; + + wr_cmd(0xE1); // negativ gamma correction + f_write(0x00); + f_write(0x25); + f_write(0x27); + f_write(0x05); + f_write(0x10); + f_write(0x09); + f_write(0x3A); + f_write(0x78); + f_write(0x4D); + f_write(0x05); + f_write(0x18); + f_write(0x0D); + f_write(0x38); + f_write(0x3A); + f_write(0x1F); + spi_bsy(); + _cs = 1; + + WindowMax (); + + //wr_cmd(0x34); // tearing effect off + //_cs = 1; + + //wr_cmd(0x35); // tearing effect on + //_cs = 1; + + wr_cmd(0xB7); // entry mode + f_write(0x07); + spi_bsy(); + _cs = 1; + + wr_cmd(0xB6); // display function control + f_write(0x0A); + f_write(0x82); + f_write(0x27); + f_write(0x00); + spi_bsy(); + _cs = 1; + + wr_cmd(0x11); // sleep out + spi_bsy(); + _cs = 1; + + wait_ms(100); + + wr_cmd(0x29); // display on + spi_bsy(); + _cs = 1; + + wait_ms(100); + + // Configure the DMA controller init-structure + DMA_StructInit(&DMA_InitStructure); + switch(spi_num){ // decide which SPI is to use + case (1): + RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 and SPI2 are using DMA 1 + DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI1->DR); + break; + case (2): + RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 and SPI2 are using DMA 1 + DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI2->DR); + break; + case (3): + RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE); // SPI3 is using DMA 2 + DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI3->DR); + break; + } + DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; + DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; + DMA_InitStructure.DMA_BufferSize = 0; + DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; + DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; + DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; + DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; + DMA_InitStructure.DMA_Priority = DMA_Priority_High; + } + + +// speed optimized +// write direct to SPI1 register ! +void SPI_TFT_ILI9341::pixel(int x, int y, int color) +{ + wr_cmd(0x2A); + spi_16(1); // switch to 8 bit Mode + f_write(x); + spi_bsy(); + _cs = 1; + + spi_16(0); // switch to 8 bit Mode + wr_cmd(0x2B); + spi_16(1); + f_write(y); + spi_bsy(); + _cs = 1; + spi_16(0); + + wr_cmd(0x2C); // send pixel + spi_16(1); + f_write(color); + spi_bsy(); + _cs = 1; + spi_16(0); +} + +// optimized +// write direct to SPI1 register ! +void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h) +{ + wr_cmd(0x2A); + spi_16(1); + f_write(x); + f_write(x+w-1); + spi_bsy(); + _cs = 1; + spi_16(0); + + wr_cmd(0x2B); + spi_16(1); + f_write(y) ; + f_write(y+h-1); + spi_bsy(); + _cs = 1; + spi_16(0); +} + + +void SPI_TFT_ILI9341::WindowMax (void) +{ + window (0, 0, width(), height()); +} + +// optimized +// use DMA to transfer pixel data to the screen +void SPI_TFT_ILI9341::cls (void) +{ + // we can use the fillrect function + fillrect(0,0,width()-1,height()-1,_background); +} + +void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color) +{ + + int x = -r, y = 0, err = 2-2*r, e2; + do { + pixel(x0-x, y0+y,color); + pixel(x0+x, y0+y,color); + pixel(x0+x, y0-y,color); + pixel(x0-x, y0-y,color); + e2 = err; + if (e2 <= y) { + err += ++y*2+1; + if (-x == y && e2 <= x) e2 = 0; + } + if (e2 > x) err += ++x*2+1; + } while (x <= 0); +} + +void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color) +{ + int x = -r, y = 0, err = 2-2*r, e2; + do { + vline(x0-x, y0-y, y0+y, color); + vline(x0+x, y0-y, y0+y, color); + e2 = err; + if (e2 <= y) { + err += ++y*2+1; + if (-x == y && e2 <= x) e2 = 0; + } + if (e2 > x) err += ++x*2+1; + } while (x <= 0); +} + + +// optimized for speed +void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color) +{ + int w,j; + w = x1 - x0 + 1; + window(x0,y,w,1); + _dc = 0; + _cs = 0; + f_write(0x2C); // send pixel + spi_bsy(); + _dc = 1; + spi_16(1); + + for (j=0; j<w; j++) { + f_write(color); + } + spi_bsy(); + spi_16(0); + _cs = 1; + WindowMax(); + return; +} + +// optimized for speed +void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color) +{ + int h,y; + h = y1 - y0 + 1; + window(x,y0,1,h); + _dc = 0; + _cs = 0; + f_write(0x2C); // send pixel + spi_bsy(); + _dc = 1; + spi_16(1); + // switch to 16 bit Mode 3 + for (y=0; y<h; y++) { + f_write(color); + } + spi_bsy(); + spi_16(0); + _cs = 1; + WindowMax(); + return; +} + + +void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color) +{ + //WindowMax(); + int dx = 0, dy = 0; + int dx_sym = 0, dy_sym = 0; + int dx_x2 = 0, dy_x2 = 0; + int di = 0; + + dx = x1-x0; + dy = y1-y0; + + if (dx == 0) { /* vertical line */ + if (y1 > y0) vline(x0,y0,y1,color); + else vline(x0,y1,y0,color); + return; + } + + if (dx > 0) { + dx_sym = 1; + } else { + dx_sym = -1; + } + if (dy == 0) { /* horizontal line */ + if (x1 > x0) hline(x0,x1,y0,color); + else hline(x1,x0,y0,color); + return; + } + + if (dy > 0) { + dy_sym = 1; + } else { + dy_sym = -1; + } + + dx = dx_sym*dx; + dy = dy_sym*dy; + + dx_x2 = dx*2; + dy_x2 = dy*2; + + if (dx >= dy) { + di = dy_x2 - dx; + while (x0 != x1) { + + pixel(x0, y0, color); + x0 += dx_sym; + if (di<0) { + di += dy_x2; + } else { + di += dy_x2 - dx_x2; + y0 += dy_sym; + } + } + pixel(x0, y0, color); + } else { + di = dx_x2 - dy; + while (y0 != y1) { + pixel(x0, y0, color); + y0 += dy_sym; + if (di < 0) { + di += dx_x2; + } else { + di += dx_x2 - dy_x2; + x0 += dx_sym; + } + } + pixel(x0, y0, color); + } + return; +} + + +void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color) +{ + + if (x1 > x0) hline(x0,x1,y0,color); + else hline(x1,x0,y0,color); + + if (y1 > y0) vline(x0,y0,y1,color); + else vline(x0,y1,y0,color); + + if (x1 > x0) hline(x0,x1,y1,color); + else hline(x1,x0,y1,color); + + if (y1 > y0) vline(x1,y0,y1,color); + else vline(x1,y1,y0,color); + + return; +} + + + +// optimized for speed +// use DMA +void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color) +{ + + int h = y1 - y0 + 1; + int w = x1 - x0 + 1; + int pixel = h * w; + unsigned int dma_transfer; + window(x0,y0,w,h); + + wr_cmd(0x2C); // send pixel + spi_16(1); + DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &color; + DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; + + switch(spi_num){ // decide which SPI is to use + case (1): + DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA + do{ + if(pixel < 0x10000) { + dma_transfer = pixel; + pixel = 0; + } + else { + dma_transfer = 0xffff; + pixel = pixel - 0xffff; + } + DMA_SetCurrDataCounter(DMA1_Channel3, dma_transfer); + SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); + DMA_Cmd(DMA1_Channel3, ENABLE); + while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer + DMA_Cmd(DMA1_Channel3, DISABLE); + }while(pixel > 0); + break; + + case (2): + DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA + do{ + if(pixel < 0x10000) { + dma_transfer = pixel; + pixel = 0; + } + else { + dma_transfer = 0xffff; + pixel = pixel - 0xffff; + } + DMA_SetCurrDataCounter(DMA1_Channel5, dma_transfer); + SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE); + DMA_Cmd(DMA1_Channel5, ENABLE); + while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer + DMA_Cmd(DMA1_Channel5, DISABLE); + }while(pixel > 0); + break; + + case (3): + DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA + do{ + if(pixel < 0x10000) { + dma_transfer = pixel; + pixel = 0; + } + else { + dma_transfer = 0xffff; + pixel = pixel - 0xffff; + } + DMA_SetCurrDataCounter(DMA2_Channel2, dma_transfer); + SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE); + DMA_Cmd(DMA2_Channel2, ENABLE); + while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer + DMA_Cmd(DMA2_Channel2, DISABLE); + }while(pixel > 0); + break; + } + spi_bsy(); + spi_16(0); + _cs = 1; + WindowMax(); + return; +} + +void SPI_TFT_ILI9341::locate(int x, int y) +{ + char_x = x; + char_y = y; +} + +int SPI_TFT_ILI9341::columns() +{ + return width() / font[1]; +} + + +int SPI_TFT_ILI9341::rows() +{ + return height() / font[2]; +} + + +int SPI_TFT_ILI9341::_putc(int value) +{ + if (value == '\n') { // new line + char_x = 0; + char_y = char_y + font[2]; + if (char_y >= height() - font[2]) { + char_y = 0; + } + } else { + character(char_x, char_y, value); + } + return value; +} + + +// speed optimized +// will use dma +void SPI_TFT_ILI9341::character(int x, int y, int c) +{ + unsigned int hor,vert,offset,bpl,j,i,b; + unsigned char* zeichen; + unsigned char z,w; + #ifdef use_ram + unsigned int pixel; + unsigned int p; + unsigned int dma_count,dma_off; + uint16_t *buffer; + #endif + + if ((c < 31) || (c > 127)) return; // test char range + + // read font parameter from start of array + offset = font[0]; // bytes / char + hor = font[1]; // get hor size of font + vert = font[2]; // get vert size of font + bpl = font[3]; // bytes per line + + if (char_x + hor > width()) { + char_x = 0; + char_y = char_y + vert; + if (char_y >= height() - font[2]) { + char_y = 0; + } + } + window(char_x, char_y,hor,vert); // setup char box + wr_cmd(0x2C); + spi_16(1); // switch to 16 bit Mode + #ifdef use_ram + pixel = hor * vert; // calculate buffer size + buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the font + if(buffer != NULL) { // there is memory space -> use dma + zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap + w = zeichen[0]; // width of actual char + p = 0; + // construct the font into the buffer + for (j=0; j<vert; j++) { // vert line + for (i=0; i<hor; i++) { // horz line + z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; + b = 1 << (j & 0x07); + if (( z & b ) == 0x00) { + buffer[p] = _background; + } else { + buffer[p] = _foreground; + } + p++; + } + } + // copy the buffer with DMA SPI to display + dma_off = 0; // offset for DMA transfer + DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) (buffer + dma_off); + DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; + + switch(spi_num){ // decide which SPI is to use + case (1): + DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA + // start DMA + do { + if (pixel > 0X10000) { // this is a giant font ! + dma_count = 0Xffff; + pixel = pixel - 0Xffff; + } else { + dma_count = pixel; + pixel = 0; + } + DMA_SetCurrDataCounter(DMA1_Channel3, dma_count); + SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); + DMA_Cmd(DMA1_Channel3, ENABLE); + while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer + DMA_Cmd(DMA1_Channel3, DISABLE); + }while(pixel > 0); + break; + + case (2): + DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA + // start DMA + do { + if (pixel > 0X10000) { // this is a giant font ! + dma_count = 0Xffff; + pixel = pixel - 0Xffff; + } else { + dma_count = pixel; + pixel = 0; + } + DMA_SetCurrDataCounter(DMA1_Channel5, dma_count); + SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE); + DMA_Cmd(DMA1_Channel5, ENABLE); + while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer + DMA_Cmd(DMA1_Channel5, DISABLE); + }while(pixel > 0); + break; + + case (3): + DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA + // start DMA + do { + if (pixel > 0X10000) { // this is a giant font ! + dma_count = 0Xffff; + pixel = pixel - 0Xffff; + } else { + dma_count = pixel; + pixel = 0; + } + DMA_SetCurrDataCounter(DMA2_Channel2, dma_count); + SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE); + DMA_Cmd(DMA2_Channel2, ENABLE); + while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer + DMA_Cmd(DMA2_Channel2, DISABLE); + }while(pixel > 0); + break; + + } + spi_bsy(); + free ((uint16_t *) buffer); + spi_16(0); + } + + else{ + #endif + zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap + w = zeichen[0]; // width of actual char + for (j=0; j<vert; j++) { // vert line + for (i=0; i<hor; i++) { // horz line + z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; + b = 1 << (j & 0x07); + if (( z & b ) == 0x00) { + f_write(_background); + } else { + f_write(_foreground); + } + } + } + spi_bsy(); + _cs = 1; + spi_16(0); + #ifdef use_ram + } + #endif + _cs = 1; + WindowMax(); + if ((w + 2) < hor) { // x offset to next char + char_x += w + 2; + } else char_x += hor; +} + + +void SPI_TFT_ILI9341::set_font(unsigned char* f) +{ + font = f; +} + + +void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap) +{ + unsigned int j; + int padd; + unsigned short *bitmap_ptr = (unsigned short *)bitmap; + + unsigned int i; + + // the lines are padded to multiple of 4 bytes in a bitmap + padd = -1; + do { + padd ++; + } while (2*(w + padd)%4 != 0); + window(x, y, w, h); + bitmap_ptr += ((h - 1)* (w + padd)); + wr_cmd(0x2C); // send pixel + spi_16(1); + for (j = 0; j < h; j++) { //Lines + for (i = 0; i < w; i++) { // one line + f_write(*bitmap_ptr); // one line + bitmap_ptr++; + } + bitmap_ptr -= 2*w; + bitmap_ptr -= padd; + } + spi_bsy(); + _cs = 1; + spi_16(0); + WindowMax(); +} + + +// local filesystem is not implemented but you can add a SD card to a different SPI + +int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP) +{ + +#define OffsetPixelWidth 18 +#define OffsetPixelHeigh 22 +#define OffsetFileSize 34 +#define OffsetPixData 10 +#define OffsetBPP 28 + + char filename[50]; + unsigned char BMP_Header[54]; + unsigned short BPP_t; + unsigned int PixelWidth,PixelHeigh,start_data; + unsigned int i,off; + int padd,j; + unsigned short *line; + + // get the filename + i=0; + while (*Name_BMP!='\0') { + filename[i++]=*Name_BMP++; + } + filename[i] = 0; + + FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file + if (!Image) { + return(0); // error file not found ! + } + + fread(&BMP_Header[0],1,54,Image); // get the BMP Header + + if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte + fclose(Image); + return(-1); // error no BMP file + } + + BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8); + if (BPP_t != 0x0010) { + fclose(Image); + return(-2); // error no 16 bit BMP + } + + PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24); + PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24); + if (PixelHeigh > height() + y || PixelWidth > width() + x) { + fclose(Image); + return(-3); // to big + } + + start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24); + + line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line + if (line == NULL) { + return(-4); // error no memory + } + + // the bmp lines are padded to multiple of 4 bytes + padd = -1; + do { + padd ++; + } while ((PixelWidth * 2 + padd)%4 != 0); + + window(x, y,PixelWidth ,PixelHeigh); + wr_cmd(0x2C); // send pixel + spi_16(1); + for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up + off = j * (PixelWidth * 2 + padd) + start_data; // start of line + fseek(Image, off ,SEEK_SET); + fread(line,1,PixelWidth * 2,Image); // read a line - slow + for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT + f_write(line[i]); // one 16 bit pixel + } + } + spi_bsy(); + _cs = 1; + spi_16(0); + free (line); + fclose(Image); + WindowMax(); + return(1); +} + +#endif +