workshop 1
Dependencies: PM2_Libary Eigen
Fork of PM2_Example_Summer_School by
main.cpp
- Committer:
- pmic
- Date:
- 2022-05-17
- Revision:
- 41:8a63b01edd7e
- Parent:
- 40:7e6b7aec3947
- Child:
- 42:883d16a5d59e
File content as of revision 41:8a63b01edd7e:
#include <mbed.h> #include "PM2_Libary.h" #include "Eigen/Dense.h" # define M_PI 3.14159265358979323846 // number pi // logical variable main task bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); float ir_distance_mV2cm(float ir_distance_cm); int main() { // while loop gets executed every main_task_period_ms milliseconds const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms // a coutner uint32_t main_task_cntr = 0; // led on nucleo board DigitalOut user_led(LED1); // create DigitalOut object to command user led // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor float ir_distance_mV = 0.0f; // define variable to store measurement float ir_distance_cm = 0.0f; // compensated sensor value in cm AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 // create SensorBar object for sparkfun line follower array, only use this if it is connected (blocking your code if not) float sensor_bar_avgAngleRad = 0.0f; I2C i2c(PB_9, PB_8); //SensorBar sensor_bar(i2c, 0.1175f); // second input argument is distance from bar to wheel axis // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors FastPWM pwm_M1(PB_13); // motor M1 is closed-loop speed controlled (angle velocity) FastPWM pwm_M2(PA_9); // motor M2 is closed-loop position controlled (angle controlled) EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values EncoderCounter encoder_M2(PB_6, PB_7); // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio const float kn = 180.0f / 12.0f; // define motor constant in rpm per V //const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 //const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 SpeedController speedController_M1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); // default 78.125:1 gear box with default contoller parameters //SpeedController speedController_M1(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M1, encoder_M1); // parameters adjusted to 100:1 gear PositionController positionController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear with default contoller parameters //PositionController positionController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear, we need a different speed controller gain here //positionController_M2.setSpeedCntrlGain(kp * k_gear); // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage float max_speed_rps = 0.5f; positionController_M2.setMaxVelocityRPS(max_speed_rps); // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); user_button.rise(&user_button_released_fcn); // start timer main_task_timer.start(); // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled enable_motors = 1; while (true) { // this loop will run forever main_task_timer.reset(); // read analog input ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; ir_distance_cm = ir_distance_mV2cm(ir_distance_mV); // read SensorBar, only use this if it is connected (blocking your code if not) //if (sensor_bar.isAnyLedActive()) { // sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad(); //} if (do_execute_main_task) { speedController_M1.setDesiredSpeedRPS(0.5f); positionController_M2.setDesiredRotation(1.5f); } else { speedController_M1.setDesiredSpeedRPS(0.0f); positionController_M2.setDesiredRotation(0.0f); } // user_led is switching its state every second if ( (main_task_cntr%(1000 / main_task_period_ms) == 0) && (main_task_cntr!=0) ) { user_led = !user_led; } main_task_cntr++; // do only output via serial what's really necessary (this makes your code slow) /* printf("IR sensor (mV): %3.3f, IR sensor (cm): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n", ir_distance_mV, ir_distance_cm, sensor_bar_avgAngleRad, speedController_M1.getSpeedRPS(), positionController_M2.getRotation()); */ // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); } } void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { do_execute_main_task = !do_execute_main_task; } } float ir_distance_mV2cm(float ir_distance_cm) { // defining these variables static makes them persistent within the function static float a = -4.685f; // (-6.581, -2.79) static float c = 3.017e+04f; // (2.853e+04, 3.181e+04) return c/(ir_distance_cm + 1) + a; }