workshop 1
Dependencies: PM2_Libary Eigen
Fork of PM2_Example_Summer_School by
main.cpp
- Committer:
- pmic
- Date:
- 2022-05-14
- Revision:
- 37:15c19c21c499
- Parent:
- 36:8c75783c1eca
- Child:
- 38:8cf86a20f0fe
File content as of revision 37:15c19c21c499:
#include <mbed.h> #include <math.h> #include <vector> #include "PM2_Libary.h" #include "Eigen/Dense.h" # define M_PI 3.14159265358979323846 // number pi // logical variable main task bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task // user button on nucleo board Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below void user_button_released_fcn(); int main() { // while loop gets executed every main_task_period_ms milliseconds const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms // led on nucleo board DigitalOut user_led(LED1); // create DigitalOut object to command user led // additional Led DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm) // mechanical button DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor float ir_distance_mV = 0.0f; // define variable to store measurement AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors const float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motor M1 FastPWM pwm_M1(PB_13); // motor M1 is used open loop FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity) FastPWM pwm_M3(PA_10); // motor M3 is closed-loop position controlled (angle controlled) EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values EncoderCounter encoder_M2(PB_6, PB_7); EncoderCounter encoder_M3(PA_0, PA_1); // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio const float kn = 180.0f / 12.0f; // define motor constant in rpm per V const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1 const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 // SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here positionController_M3.setSpeedCntrlGain(kp * k_gear); positionController_M3.setMaxVelocityRPS(max_speed_rps); // Futaba Servo S3001 20mm 3kg Analog Servo servo_S1(PB_2); // create servo objects Servo servo_S2(PC_8); float servo_S1_angle = 0; // servo S1 normalized angle float servo_S2_angle = 0; // servo S2 normalized angle const int servo_period_mus = 20000; // define servo period time in mus int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move const int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second // Groove Ultrasonic Ranger V2.0 float us_distance_cm = 0.0f; // define variable to store measurement RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization // RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" // attach button fall and rise functions to user button object user_button.fall(&user_button_pressed_fcn); user_button.rise(&user_button_released_fcn); // start timer main_task_timer.start(); // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential mechanical_button.mode(PullUp); // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled enable_motors = 1; // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V pwm_M1.period(pwm_period_s); pwm_M1.write(0.5f); // set the soft pwm period for the servo objects servo_S1.SetPeriod(servo_period_mus); servo_S2.SetPeriod(servo_period_mus); while (true) { // this loop will run forever main_task_timer.reset(); if (do_execute_main_task) { // read analog input ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; // command dc motors if mechanical button is pressed if (mechanical_button.read()) { pwm_M1.write(0.75f); // write output voltage to motor M1 speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2 positionController_M3.setDesiredRotation(1.5f); // set a desired rotation for position controlled dc motors M3 } else { pwm_M1.write(0.5f); speedController_M2.setDesiredSpeedRPS(0.0f); positionController_M3.setDesiredRotation(0.0f); } // check if servos are enabled if (!servo_S1.isEnabled()) servo_S1.Enable(); if (!servo_S2.isEnabled()) servo_S2.Enable(); // command servo position, this needs to be calibrated servo_S1.SetPosition(servo_S1_angle); if (servo_S1_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) { servo_S1_angle += 0.01f; } servo_S2.SetPosition(servo_S2_angle); if (servo_S2_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) { servo_S2_angle += 0.01f; } servo_counter++; // read ultra sonic distance sensor us_distance_cm = us_range_finder.read_cm(); // visual feedback that the main task is executed extra_led = 1; } else { ir_distance_mV = 0.0f; pwm_M1.write(0.5f); speedController_M2.setDesiredSpeedRPS(0.0f); positionController_M3.setDesiredRotation(0.0f); servo_S1_angle = 0; servo_S2_angle = 0; // servo_S1.SetPosition(servo_S1_angle); // servo_S2.SetPosition(servo_S2_angle); if (servo_S1.isEnabled()) servo_S1.Disable(); if (servo_S2.isEnabled()) servo_S2.Disable(); us_distance_cm = 0.0f; extra_led = 0; } user_led = !user_led; // do only output via serial what's really necessary (this makes your code slow) printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n", ir_distance_mV, encoder_M1.read(), speedController_M2.getSpeedRPS(), positionController_M3.getRotation(), servo_S1_angle, servo_S2_angle, us_distance_cm); // read out the imu, the actual frames of the sensor reading needs to be figured out // imu.updateGyro(); // imu.updateAcc(); // imu.updateMag(); // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(), // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ()); // read timer and make the main thread sleep for the remaining time span (non blocking) int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); } } void user_button_pressed_fcn() { user_button_timer.start(); user_button_timer.reset(); } void user_button_released_fcn() { // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); if (user_button_elapsed_time_ms > 200) { do_execute_main_task = !do_execute_main_task; } }