workshop 1

Dependencies:   PM2_Libary Eigen

Fork of PM2_Example_Summer_School by Kate Huelskamp

Revision:
40:7e6b7aec3947
Parent:
39:c6475c899b61
Child:
41:8a63b01edd7e
--- a/main.cpp	Mon May 16 11:05:58 2022 +0200
+++ b/main.cpp	Tue May 17 12:35:58 2022 +0000
@@ -17,67 +17,49 @@
 int main()
 {
     // while loop gets executed every main_task_period_ms milliseconds
-    const int main_task_period_ms = 50;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
+    const int main_task_period_ms = 100;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
     Timer main_task_timer;                // create Timer object which we use to run the main task every main task period time in ms
 
+    // a coutner
+    uint32_t main_task_cntr = 0;
+
     // led on nucleo board
     DigitalOut user_led(LED1);      // create DigitalOut object to command user led
 
-    // additional Led
-    DigitalOut extra_led(PB_9);     // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm)
-
-    // mechanical button
-    DigitalIn mechanical_button(PC_5);  // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below
-
     // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
     float ir_distance_mV = 0.0f;    // define variable to store measurement
     AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
 
+    // create SensorBar object for sparkfun line follower array, only use this if it is connected (blocking your code if not)
+    float sensor_bar_avgAngleRad = 0.0f;
+    I2C i2c(PB_9, PB_8);
+    //SensorBar sensor_bar(i2c, 0.1175f); // second input argument is distance from bar to wheel axis
+
     // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
     DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
 
-    const float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motor M1
-    FastPWM pwm_M1(PB_13);               // motor M1 is used open loop
-    FastPWM pwm_M2(PA_9);                // motor M2 is closed-loop speed controlled (angle velocity)
-    FastPWM pwm_M3(PA_10);               // motor M3 is closed-loop position controlled (angle controlled)
+    FastPWM pwm_M1(PB_13);               // motor M1 is closed-loop speed controlled (angle velocity)
+    FastPWM pwm_M2(PA_9);                // motor M2 is closed-loop position controlled (angle controlled)
 
     EncoderCounter  encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
     EncoderCounter  encoder_M2(PB_6, PB_7);
-    EncoderCounter  encoder_M3(PA_0, PA_1);
 
     // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
     const float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
     const float counts_per_turn = 20.0f * 78.125f;    // define counts per turn at gearbox end: counts/turn * gearratio
     const float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
-    const float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
-    const float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
-
-    // SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box  with default contoller parameters
-    SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
+    //const float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
+    //const float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
 
-    float max_speed_rps = 0.5f;                 // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
-    // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
-    PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
-    positionController_M3.setSpeedCntrlGain(kp * k_gear);
-    positionController_M3.setMaxVelocityRPS(max_speed_rps);
+    SpeedController speedController_M1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); // default 78.125:1 gear box  with default contoller parameters
+    //SpeedController speedController_M1(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M1, encoder_M1); // parameters adjusted to 100:1 gear
 
-    // Futaba Servo S3001 20mm 3kg Analog
-    Servo servo_S1(PB_2);           // create servo objects
-    Servo servo_S2(PC_8);
-    float servo_S1_angle = 0;       // servo S1 normalized angle
-    float servo_S2_angle = 0;       // servo S2 normalized angle
-    const int servo_period_mus = 20000;   // define servo period time in mus
-
-    int servo_counter = 0;          // define servo counter, this is an additional variable to make the servos move
-    const int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second
-
-    // Groove Ultrasonic Ranger V2.0
-    float us_distance_cm = 0.0f;    // define variable to store measurement
-    RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization
-    // RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f,  7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization
-
-    // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
-    // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
+    PositionController positionController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear with default contoller parameters
+    //PositionController positionController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
+    //positionController_M2.setSpeedCntrlGain(kp * k_gear);
+    // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
+    float max_speed_rps = 0.5f;
+    positionController_M2.setMaxVelocityRPS(max_speed_rps);
 
     // attach button fall and rise functions to user button object
     user_button.fall(&user_button_pressed_fcn);
@@ -86,98 +68,45 @@
     // start timer
     main_task_timer.start();
 
-    // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential
-    mechanical_button.mode(PullUp);
-
     // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
     enable_motors = 1;
 
-    // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V
-    pwm_M1.period(pwm_period_s);
-    pwm_M1.write(0.5f);
-
-    // set the soft pwm period for the servo objects
-    servo_S1.SetPeriod(servo_period_mus);
-    servo_S2.SetPeriod(servo_period_mus);
-
     while (true) { // this loop will run forever
 
         main_task_timer.reset();
+        
+        // read analog input
+        ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
+        
+        // read SensorBar, only use this if it is connected (blocking your code if not)
+        //if (sensor_bar.isAnyLedActive()) {
+        //    sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad();
+        //}
 
         if (do_execute_main_task) {
 
-            // read analog input
-            ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
-
-            // command dc motors if mechanical button is pressed
-            if (mechanical_button.read()) {
-                pwm_M1.write(0.75f); // write output voltage to motor M1
-                speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
-                positionController_M3.setDesiredRotation(1.5f); // set a desired rotation for position controlled dc motors M3
-            } else {
-                pwm_M1.write(0.5f);
-                speedController_M2.setDesiredSpeedRPS(0.0f);
-                positionController_M3.setDesiredRotation(0.0f);
-            }
-
-            // check if servos are enabled
-            if (!servo_S1.isEnabled()) servo_S1.Enable();
-            if (!servo_S2.isEnabled()) servo_S2.Enable();
-            // command servo position, this needs to be calibrated
-            servo_S1.SetPosition(servo_S1_angle);
-            if (servo_S1_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
-                servo_S1_angle += 0.01f;
-            }
-            servo_S2.SetPosition(servo_S2_angle);
-            if (servo_S2_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
-                servo_S2_angle += 0.01f;
-            }
-            servo_counter++;
-
-            // read ultra sonic distance sensor
-            us_distance_cm = us_range_finder.read_cm();
-
-            // visual feedback that the main task is executed
-            extra_led = 1;
+            speedController_M1.setDesiredSpeedRPS(0.5f);
+            positionController_M2.setDesiredRotation(1.5f);
 
         } else {
 
-            ir_distance_mV = 0.0f;
-
-            pwm_M1.write(0.5f);
-            speedController_M2.setDesiredSpeedRPS(0.0f);
-            positionController_M3.setDesiredRotation(0.0f);
-
-            servo_S1_angle = 0;
-            servo_S2_angle = 0;
-            // servo_S1.SetPosition(servo_S1_angle);
-            // servo_S2.SetPosition(servo_S2_angle);
-            if (servo_S1.isEnabled()) servo_S1.Disable();
-            if (servo_S2.isEnabled()) servo_S2.Disable();
-
-            us_distance_cm = 0.0f;
-
-            extra_led = 0;
+            speedController_M1.setDesiredSpeedRPS(0.0f);
+            positionController_M2.setDesiredRotation(0.0f);
+            
         }
 
-        user_led = !user_led;
-
+        // user_led is switching its state every 100 runs
+        if ( (main_task_cntr%(1000 / main_task_cntr) == 0) && (main_task_cntr!=0) ) {
+            user_led = !user_led;
+        }
+        main_task_cntr++;
+        
         // do only output via serial what's really necessary (this makes your code slow)
-        printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n",
+        printf("IR sensor (mV): %3.3f, SensorBar angle (rad): %3.3f, Speed M1 (rps) %3.3f, Position M2 (rot): %3.3f\r\n",
                ir_distance_mV,
-               encoder_M1.read(),
-               speedController_M2.getSpeedRPS(),
-               positionController_M3.getRotation(),
-               servo_S1_angle,
-               servo_S2_angle,
-               us_distance_cm);
-
-        // read out the imu, the actual frames of the sensor reading needs to be figured out
-        // imu.updateGyro();
-        // imu.updateAcc();
-        // imu.updateMag();
-        // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(),
-        // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ());
+               sensor_bar_avgAngleRad,
+               speedController_M1.getSpeedRPS(),
+               positionController_M2.getRotation());
 
         // read timer and make the main thread sleep for the remaining time span (non blocking)
         int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();