Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- eric11fr
- Date:
- 2021-03-19
- Revision:
- 0:efb1550773f1
- Child:
- 1:8459e28d77a1
File content as of revision 0:efb1550773f1:
/* ICM20948 Basic Example Code by: Kris Winer date: April 1, 2014 license: Beerware - Use this code however you'd like. If you find it useful you can buy me a beer some time. Modified by Brent Wilkins July 19, 2016 Demonstrate basic ICM20948 functionality including parameterizing the register addresses, initializing the sensor, getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. SDA and SCL should have external pull-up resistors (to 3.3V). 10k resistors are on the EMSENSR-9250 breakout board. Hardware setup: ICM20948 Breakout --------- Arduino VDD ---------------------- 3.3V VDDI --------------------- 3.3V SDA ----------------------- A4 SCL ----------------------- A5 GND ---------------------- GND */ #include "AHRSAlgorithms.h" #include "ICM20948.h" #define AHRS false // Set to false for basic data read #define SerialDebug true // Set to true to get Serial output for debugging ICM20948 myIMU; void setup() { Wire.begin(); // TWBR = 12; // 400 kbit/sec I2C speed Serial.begin(115200); while(!Serial) delay(10); pinMode(myLed, OUTPUT); digitalWrite(myLed, HIGH); // Reset ICM20948 myIMU.writeByte(ICM20948_ADDRESS, PWR_MGMT_1, READ_FLAG); delay(100); myIMU.writeByte(ICM20948_ADDRESS, PWR_MGMT_1, 0x01); delay(100); // Read the WHO_AM_I register, this is a good test of communication byte c = myIMU.readByte(ICM20948_ADDRESS, WHO_AM_I_ICM20948); Serial.print(F("ICM20948 I AM 0x")); Serial.print(c, HEX); Serial.print(F(" I should be 0x")); Serial.println(0xEA, HEX); if (c == 0xEA) // WHO_AM_I should always be 0x71 { Serial.println(F("ICM20948 is online...")); // Start by performing self test and reporting values myIMU.ICM20948SelfTest(myIMU.selfTest); Serial.print(F("x-axis self test: acceleration trim within : ")); Serial.print(myIMU.selfTest[0],1); Serial.println("% of factory value"); Serial.print(F("y-axis self test: acceleration trim within : ")); Serial.print(myIMU.selfTest[1],1); Serial.println("% of factory value"); Serial.print(F("z-axis self test: acceleration trim within : ")); Serial.print(myIMU.selfTest[2],1); Serial.println("% of factory value"); Serial.print(F("x-axis self test: gyration trim within : ")); Serial.print(myIMU.selfTest[3],1); Serial.println("% of factory value"); Serial.print(F("y-axis self test: gyration trim within : ")); Serial.print(myIMU.selfTest[4],1); Serial.println("% of factory value"); Serial.print(F("z-axis self test: gyration trim within : ")); Serial.print(myIMU.selfTest[5],1); Serial.println("% of factory value"); // Calibrate gyro and accelerometers, load biases in bias registers myIMU.calibrateICM20948(myIMU.gyroBias, myIMU.accelBias); myIMU.initICM20948(); // Initialize device for active mode read of acclerometer, gyroscope, and // temperature Serial.println("ICM20948 initialized for active data mode...."); // Read the WHO_AM_I register of the magnetometer, this is a good test of // communication byte d = myIMU.readByte(AK09916_ADDRESS, WHO_AM_I_AK09916); Serial.print("AK8963 "); Serial.print("I AM 0x"); Serial.print(d, HEX); Serial.print(" I should be 0x"); Serial.println(0x09, HEX); if (d != 0x09) { // Communication failed, stop here Serial.println(F("Communication with magnetometer failed, abort!")); Serial.flush(); abort(); } // Get magnetometer calibration from AK8963 ROM myIMU.initAK09916(); // Initialize device for active mode read of magnetometer Serial.println("AK09916 initialized for active data mode...."); /* if (SerialDebug) { // Serial.println("Calibration values: "); Serial.print("X-Axis factory sensitivity adjustment value "); Serial.println(myIMU.factoryMagCalibration[0], 2); Serial.print("Y-Axis factory sensitivity adjustment value "); Serial.println(myIMU.factoryMagCalibration[1], 2); Serial.print("Z-Axis factory sensitivity adjustment value "); Serial.println(myIMU.factoryMagCalibration[2], 2); } */ // Get sensor resolutions, only need to do this once myIMU.getAres(); myIMU.getGres(); myIMU.getMres(); // The next call delays for 4 seconds, and then records about 15 seconds of // data to calculate bias and scale. myIMU.magCalICM20948(myIMU.magBias, myIMU.magScale); Serial.println("AK09916 mag biases (mG)"); Serial.println(myIMU.magBias[0]); Serial.println(myIMU.magBias[1]); Serial.println(myIMU.magBias[2]); Serial.println("AK09916 mag scale (mG)"); Serial.println(myIMU.magScale[0]); Serial.println(myIMU.magScale[1]); Serial.println(myIMU.magScale[2]); delay(2000); // Add delay to see results before serial spew of data } // if (c == 0x71) else { Serial.print("Could not connect to ICM20948: 0x"); Serial.println(c, HEX); // Communication failed, stop here Serial.println(F("Communication failed, abort!")); Serial.flush(); abort(); } } void loop() { // If intPin goes high, all data registers have new data // On interrupt, check if data ready interrupt if (myIMU.readByte(ICM20948_ADDRESS, INT_STATUS_1) & 0x01) { myIMU.readAccelData(myIMU.accelCount); // Read the x/y/z adc values // Now we'll calculate the accleration value into actual g's // This depends on scale being set myIMU.ax = (float)myIMU.accelCount[0] * myIMU.aRes; // - myIMU.accelBias[0]; myIMU.ay = (float)myIMU.accelCount[1] * myIMU.aRes; // - myIMU.accelBias[1]; myIMU.az = (float)myIMU.accelCount[2] * myIMU.aRes; // - myIMU.accelBias[2]; myIMU.readGyroData(myIMU.gyroCount); // Read the x/y/z adc values // Calculate the gyro value into actual degrees per second // This depends on scale being set myIMU.gx = (float)myIMU.gyroCount[0] * myIMU.gRes; myIMU.gy = (float)myIMU.gyroCount[1] * myIMU.gRes; myIMU.gz = (float)myIMU.gyroCount[2] * myIMU.gRes; myIMU.readMagData(myIMU.magCount); // Read the x/y/z adc values // Calculate the magnetometer values in milliGauss // Include factory calibration per data sheet and user environmental // corrections // Get actual magnetometer value, this depends on scale being set myIMU.mx = (float)myIMU.magCount[0] * myIMU.mRes - myIMU.magBias[0]; myIMU.my = (float)myIMU.magCount[1] * myIMU.mRes - myIMU.magBias[1]; myIMU.mz = (float)myIMU.magCount[2] * myIMU.mRes - myIMU.magBias[2]; } // if (readByte(ICM20948_ADDRESS, INT_STATUS) & 0x01) // Must be called before updating quaternions! myIMU.updateTime(); // Sensors x (y)-axis of the accelerometer is aligned with the y (x)-axis of // the magnetometer; the magnetometer z-axis (+ down) is opposite to z-axis // (+ up) of accelerometer and gyro! We have to make some allowance for this // orientationmismatch in feeding the output to the quaternion filter. For the // ICM20948, we have chosen a magnetic rotation that keeps the sensor forward // along the x-axis just like in the LSM9DS0 sensor. This rotation can be // modified to allow any convenient orientation convention. This is ok by // aircraft orientation standards! Pass gyro rate as rad/s MahonyQuaternionUpdate(myIMU.ax, myIMU.ay, myIMU.az, myIMU.gx * DEG_TO_RAD, myIMU.gy * DEG_TO_RAD, myIMU.gz * DEG_TO_RAD, myIMU.my, myIMU.mx, myIMU.mz, myIMU.deltat); if (!AHRS) { myIMU.delt_t = millis() - myIMU.count; if (myIMU.delt_t > 500) { if(SerialDebug) { // Print acceleration values in milligs! Serial.print("X-acceleration: "); Serial.print(1000 * myIMU.ax); Serial.print(" mg "); Serial.print("Y-acceleration: "); Serial.print(1000 * myIMU.ay); Serial.print(" mg "); Serial.print("Z-acceleration: "); Serial.print(1000 * myIMU.az); Serial.println(" mg "); // Print gyro values in degree/sec Serial.print("X-gyro rate: "); Serial.print(myIMU.gx, 3); Serial.print(" degrees/sec "); Serial.print("Y-gyro rate: "); Serial.print(myIMU.gy, 3); Serial.print(" degrees/sec "); Serial.print("Z-gyro rate: "); Serial.print(myIMU.gz, 3); Serial.println(" degrees/sec"); // Print mag values in degree/sec Serial.print("X-mag field: "); Serial.print(myIMU.mx); Serial.print(" mG "); Serial.print("Y-mag field: "); Serial.print(myIMU.my); Serial.print(" mG "); Serial.print("Z-mag field: "); Serial.print(myIMU.mz); Serial.println(" mG"); myIMU.tempCount = myIMU.readTempData(); // Read the adc values // Temperature in degrees Centigrade myIMU.temperature = ((float) myIMU.tempCount) / 333.87 + 21.0; // Print temperature in degrees Centigrade Serial.print("Temperature is "); Serial.print(myIMU.temperature, 1); Serial.println(" degrees C"); } myIMU.count = millis(); digitalWrite(myLed, !digitalRead(myLed)); // toggle led } // if (myIMU.delt_t > 500) } // if (!AHRS) else { // Serial print and/or display at 0.5 s rate independent of data rates myIMU.delt_t = millis() - myIMU.count; // update LCD once per half-second independent of read rate if (myIMU.delt_t > 500) { if(SerialDebug) { Serial.print("ax = "); Serial.print((int)1000 * myIMU.ax); Serial.print(" ay = "); Serial.print((int)1000 * myIMU.ay); Serial.print(" az = "); Serial.print((int)1000 * myIMU.az); Serial.println(" mg"); Serial.print("gx = "); Serial.print(myIMU.gx, 2); Serial.print(" gy = "); Serial.print(myIMU.gy, 2); Serial.print(" gz = "); Serial.print(myIMU.gz, 2); Serial.println(" deg/s"); Serial.print("mx = "); Serial.print((int)myIMU.mx); Serial.print(" my = "); Serial.print((int)myIMU.my); Serial.print(" mz = "); Serial.print((int)myIMU.mz); Serial.println(" mG"); Serial.print("q0 = "); Serial.print(*getQ()); Serial.print(" qx = "); Serial.print(*(getQ() + 1)); Serial.print(" qy = "); Serial.print(*(getQ() + 2)); Serial.print(" qz = "); Serial.println(*(getQ() + 3)); } // Define output variables from updated quaternion---these are Tait-Bryan // angles, commonly used in aircraft orientation. In this coordinate system, // the positive z-axis is down toward Earth. Yaw is the angle between Sensor // x-axis and Earth magnetic North (or true North if corrected for local // declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the // Earth is positive, up toward the sky is negative. Roll is angle between // sensor y-axis and Earth ground plane, y-axis up is positive roll. These // arise from the definition of the homogeneous rotation matrix constructed // from quaternions. Tait-Bryan angles as well as Euler angles are // non-commutative; that is, the get the correct orientation the rotations // must be applied in the correct order which for this configuration is yaw, // pitch, and then roll. // For more see // http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles // which has additional links. myIMU.yaw = atan2(2.0f * (*(getQ()+1) * *(getQ()+2) + *getQ() * *(getQ()+3)), *getQ() * *getQ() + *(getQ()+1) * *(getQ()+1) - *(getQ()+2) * *(getQ()+2) - *(getQ()+3) * *(getQ()+3)); myIMU.pitch = -asin(2.0f * (*(getQ()+1) * *(getQ()+3) - *getQ() * *(getQ()+2))); myIMU.roll = atan2(2.0f * (*getQ() * *(getQ()+1) + *(getQ()+2) * *(getQ()+3)), *getQ() * *getQ() - *(getQ()+1) * *(getQ()+1) - *(getQ()+2) * *(getQ()+2) + *(getQ()+3) * *(getQ()+3)); myIMU.pitch *= RAD_TO_DEG; myIMU.yaw *= RAD_TO_DEG; // Declination of SparkFun Electronics (40°05'26.6"N 105°11'05.9"W) is // 8° 30' E ± 0° 21' (or 8.5°) on 2016-07-19 // - http://www.ngdc.noaa.gov/geomag-web/#declination myIMU.yaw -= 8.5; myIMU.roll *= RAD_TO_DEG; if(SerialDebug) { Serial.print("Yaw, Pitch, Roll: "); Serial.print(myIMU.yaw, 2); Serial.print(", "); Serial.print(myIMU.pitch, 2); Serial.print(", "); Serial.println(myIMU.roll, 2); Serial.print("rate = "); Serial.print((float)myIMU.sumCount / myIMU.sum, 2); Serial.println(" Hz"); } myIMU.count = millis(); myIMU.sumCount = 0; myIMU.sum = 0; } // if (myIMU.delt_t > 500) } // if (AHRS) }