mbed RPC Server - Eclipse SmartHome Variante

Dependencies:   EthernetInterface HttpServer Motor Servo mbed-rtos mbed StepperMotorUni TMP175

Fork of RPCHTTPServerSimple by smd.iotkit2.ch

Das ist der mbed Teil zu Eclipse SmartHome (openHAB2). Compiliert das Programm und lädt es auf das Board.

Installation Eclipse SmartHome

Lädt eine vorbereitete Version des openHAB2 Runtimes von http://images.workshoptage.ch/images/ws4/ herunter und entpackt es auf Eurem PC. Alternativ kann die Entwicklungsumgebung von openHAB2 inkl. Eclipse wie hier beschrieben, installiert werden.

Zusätzlich ist das Addon (Eclipse Plug-In - ch.iotkit.smarthome.binding.mbedRPC*), ebenfalls von http://images.workshoptage.ch/images/ws4/ downzuladen und ins Verzeichnis addons zu kopieren.

Danach kann das openHAB2 Runtime mittels des start Datei gestartet werden und das UI mittels http://localhost:8080 aufrufen werden.

Der Sourcecode zum Eclipse Plug-In befindet sich auf GitHub

Konfiguration

Vorgehen:

  • Konfiguriert die Ethernet Bridge mit der IP Adresse des IoTKit SMD Shield
  • Fügt die Sensoren, Aktoren, LED's etc. vom IoTKit SMD Shield hinzu, aufbauend auf der Bridge

Unterstützte Geräte

  • Sensoren (auf Shield)
    • Poti (Pin A0)
    • Helligkeits Sensor (Pin A1)
    • Hall Sensor (Pin A2)
    • Temperatur Sensor (mittels I2C Bus)
  • Aktoren
    • Motor (Pin D3, D2, D4), verbinden mit DCMOT D2-D7 oben
    • Servo (Pin D9), verbinden mit Servo2 Stecker
    • Stepper (K64F Pins), verbinden mit STEPPER3, rotes Kabel nach unten
  • LED's (auf Shield)
    • LED's rot, gelb, grün, blau (Pin D10 - D13)
  • LED Strip 12 Volt (Pin D5 - D7), verbinden mit FET D5-D7, 12V oben

Der Motor und der LED Strip benötigen ein externes 12 Volt Netzteil.

cURL

Die Funktionen können mittels cURL oder Browser wie folgt getestet werden:

# RGB LED Strip (weiss 0xFFFFFF, rot 0xFF00, grün 0xFF0000, blau, 0xFF)
http://192.168.178.32/rpc/ledstrip/write+16777215
http://192.168.178.32/rpc/ledstrip/write+‭16711680‬
http://192.168.178.32/rpc/ledstrip/write+65280
http://192.168.178.32/rpc/ledstrip/write+255
 
# Motor Up, Down, Stop (Simulation Rollladen)
http://192.168.178.32/rpc/motor1/up
http://192.168.178.32/rpc/motor1/down
http://192.168.178.32/rpc/motor1/stop
 
# Schrittmotor                               
http://192.168.178.32/rpc/stepper1/up
http://192.168.178.32/rpc/stepper1/down
 
# Servo (Positionieren 0 - 1.0 und Position lesen)
http://192.168.178.32/rpc/servo1/write+0.5
http://192.168.178.32/rpc/servo1/read
 
# Temperatur Sensor abfragen                        
http://192.168.178.32/rpc/temp/read

IP-Adresse entsprechend dem Board anpassen.

RpcClassesExt.h

Committer:
marcel1691
Date:
2015-08-28
Revision:
16:d0a5bb230d94
Parent:
15:210305b5a1fc

File content as of revision 16:d0a5bb230d94:

/* mbed Microcontroller Library
 * Copyright (c) 2015 Marcel (mc-b) Bernet
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#ifndef MBED_CLASSES_EXT_H
#define MBED_CLASSES_EXT_H

#include "rpc.h"
#include "Servo.h"
#include "Motor.h"
#include "StepperMotorUni.h"
#include "TMP175.h"

namespace mbed 
{
/**
 * Temperatur TMP75 Sensor am I2C Bus
 */    
class RpcTMP75 : public RPC 
{
public:
    RpcTMP75(PinName a0, PinName a1, const char *name=NULL) : RPC(name), o(a0, a1) 
    {
        o.vSetConfigurationTMP175( SHUTDOWN_MODE_OFF | COMPARATOR_MODE | POLARITY_0 |FAULT_QUEUE_6 | RESOLUTION_12, 0x48 );
        o.vSetTemperatureLowTMP175( 0.0 );
        o.vSetTemperatureHighTMP175( 60.0 );        
    }

    int read(void) 
    {
        return o.fReadTemperatureTMP175();
    }

    virtual const struct rpc_method *get_rpc_methods() 
    {
        static const rpc_method rpc_methods[] = 
        {
            {"read", rpc_method_caller<int, RpcTMP75, &RpcTMP75::read>},
            RPC_METHOD_SUPER(RPC)
        };
        return rpc_methods;
    }
    static struct rpc_class *get_rpc_class() 
    {
        static const rpc_function funcs[] = 
        {
            {"new", rpc_function_caller<const char*, PinName, PinName, const char*, &RPC::construct<RpcTMP75, PinName, PinName, const char*> >},
            RPC_METHOD_END
        };
        static rpc_class c = {"RpcTMP75", funcs, NULL};
        return &c;
    }
private:
    TMP175 o;
};

/** 
 * Servo RPC Template 
*/
class RpcServo : public RPC 
{
public:
    RpcServo(PinName a0, const char *name=NULL) : RPC(name), o(a0) 
    {
        // Servo kalibrieren, damit er die vollen 180° verwendet.
        o.calibrate ( 0.0009, 180.0);
    }

    void write(float a0) {o.write(a0);}
    float read(void) {return o.read();}

    virtual const struct rpc_method *get_rpc_methods() 
    {
        static const rpc_method rpc_methods[] = 
        {
            {"write", rpc_method_caller<RpcServo, float, &RpcServo::write>},
            {"read", rpc_method_caller<float, RpcServo, &RpcServo::read>},
            RPC_METHOD_SUPER(RPC)
        };
        return rpc_methods;
    }
    static struct rpc_class *get_rpc_class() 
    {
        static const rpc_function funcs[] = 
        {
            {"new", rpc_function_caller<const char*, PinName, const char*, &RPC::construct<RpcServo, PinName, const char*> >},
            RPC_METHOD_END
        };
        static rpc_class c = {"RpcServo", funcs, NULL};
        return &c;
    }
private:
    Servo o;
};

/**
 * Motor RPC Template 
 */
class RpcMotor : public RPC 
{
public:
    RpcMotor(PinName a0, PinName a1, PinName a2, const char *name=NULL) : RPC(name), o(a0, a1, a2) {}

    void up  () { o.speed(  0.5f ); }
    void down() { o.speed( -0.5f ); }
    void stop() { o.speed(  0.0f ); }

    virtual const struct rpc_method *get_rpc_methods() 
    {
        static const rpc_method rpc_methods[] = 
        {
            {"up", rpc_method_caller<RpcMotor, &RpcMotor::up>},
            {"down", rpc_method_caller<RpcMotor, &RpcMotor::down>},
            {"stop", rpc_method_caller<RpcMotor, &RpcMotor::stop>},
            RPC_METHOD_SUPER(RPC)
        };
        return rpc_methods;
    }
    static struct rpc_class *get_rpc_class() 
    {
        static const rpc_function funcs[] = 
        {
            {"new", rpc_function_caller<const char*, PinName, PinName, PinName, const char*, &RPC::construct<RpcMotor, PinName, PinName, PinName, const char*> >},
            RPC_METHOD_END
        };
        static rpc_class c = {"RpcMotor", funcs, NULL};
        return &c;
    }
private:
    Motor o;
};

/** 
 * Stepper motor mbed RPC Template
 * HACK: PinName direkt angegeben, weil nur max. 3 Argumente zulaessig sind.
 */
class RpcStepper : public RPC 
{
public:
    RpcStepper( const char *name=NULL) : RPC(name), o( PTB18, PTB19, PTC1, PTC8 ) 
    {
        o.set_pps( 300 );
    }

    void up  () { o.move_steps(  100 ); }
    void down() { o.move_steps( -100 ); }

    virtual const struct rpc_method *get_rpc_methods() 
    {
        static const rpc_method rpc_methods[] = 
        {
            {"up", rpc_method_caller<RpcStepper, &RpcStepper::up>},
            {"down", rpc_method_caller<RpcStepper, &RpcStepper::down>},
            RPC_METHOD_SUPER(RPC)
        };
        return rpc_methods;
    }
    static struct rpc_class *get_rpc_class() 
    {
        static const rpc_function funcs[] = 
        {
            {"new", rpc_function_caller<const char*, const char*, &RPC::construct<RpcStepper, const char*> >},
            RPC_METHOD_END
        };
        static rpc_class c = {"RpcStepper", funcs, NULL};
        return &c;
    }
private:
    StepperMotorUni o;
};

/** 
 * RGB LED Strip
*/
class RpcLEDStrip : public RPC 
{
public:
    RpcLEDStrip(PinName a0, PinName a1, PinName a2, const char *name=NULL) : RPC(name), r(a0), g(a1), b(a2) {}

    void write( int a0 ) 
    {
        //printf( "RGB %f, %f, %f\n", 1.0f / 255.0f * ((a0 & 0xFF0000) / 65636), 1.0f / 255.0f * (a0 & 0xFF00) / 256, 1.0f / 255.0f * (a0 & 0xFF) );
        r.write( 1.0f / 255.0f * ((a0 & 0xFF0000) / 65636) );
        g.write( 1.0f / 255.0f * (a0 & 0xFF00) / 256 );
        b.write( 1.0f / 255.0f * (a0 & 0xFF)  );
    }

    virtual const struct rpc_method *get_rpc_methods() 
    {
        static const rpc_method rpc_methods[] = 
        {
            {"write", rpc_method_caller<RpcLEDStrip, int, &RpcLEDStrip::write>},
            RPC_METHOD_SUPER(RPC)
        };
        return rpc_methods;
    }
    static struct rpc_class *get_rpc_class() 
    {
        static const rpc_function funcs[] = 
        {
            {"new", rpc_function_caller<const char*, PinName, PinName, PinName, const char*, &RPC::construct<RpcLEDStrip, PinName, PinName, PinName, const char*> >},
            RPC_METHOD_END
        };
        static rpc_class c = {"RpcLEDStrip", funcs, NULL};
        return &c;
    }
private:
    PwmOut r;
    PwmOut g;
    PwmOut b;
};

}

#endif