mbedtls ported to mbed-classic

Fork of mbedtls by Christopher Haster

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers ecp.c Source File

ecp.c

00001 /*
00002  *  Elliptic curves over GF(p): generic functions
00003  *
00004  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
00005  *  SPDX-License-Identifier: Apache-2.0
00006  *
00007  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
00008  *  not use this file except in compliance with the License.
00009  *  You may obtain a copy of the License at
00010  *
00011  *  http://www.apache.org/licenses/LICENSE-2.0
00012  *
00013  *  Unless required by applicable law or agreed to in writing, software
00014  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
00015  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00016  *  See the License for the specific language governing permissions and
00017  *  limitations under the License.
00018  *
00019  *  This file is part of mbed TLS (https://tls.mbed.org)
00020  */
00021 
00022 /*
00023  * References:
00024  *
00025  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
00026  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
00027  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
00028  * RFC 4492 for the related TLS structures and constants
00029  *
00030  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
00031  *
00032  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
00033  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
00034  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
00035  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
00036  *
00037  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
00038  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
00039  *     ePrint Archive, 2004, vol. 2004, p. 342.
00040  *     <http://eprint.iacr.org/2004/342.pdf>
00041  */
00042 
00043 #if !defined(MBEDTLS_CONFIG_FILE)
00044 #include "mbedtls/config.h"
00045 #else
00046 #include MBEDTLS_CONFIG_FILE
00047 #endif
00048 
00049 #if defined(MBEDTLS_ECP_C)
00050 
00051 #include "mbedtls/ecp.h"
00052 
00053 #include <string.h>
00054 
00055 #if defined(MBEDTLS_PLATFORM_C)
00056 #include "mbedtls/platform.h"
00057 #else
00058 #include <stdlib.h>
00059 #include <stdio.h>
00060 #define mbedtls_printf     printf
00061 #define mbedtls_calloc    calloc
00062 #define mbedtls_free       free
00063 #endif
00064 
00065 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
00066     !defined(inline) && !defined(__cplusplus)
00067 #define inline __inline
00068 #endif
00069 
00070 /* Implementation that should never be optimized out by the compiler */
00071 static void mbedtls_zeroize( void *v, size_t n ) {
00072     volatile unsigned char *p = v; while( n-- ) *p++ = 0;
00073 }
00074 
00075 #if defined(MBEDTLS_SELF_TEST)
00076 /*
00077  * Counts of point addition and doubling, and field multiplications.
00078  * Used to test resistance of point multiplication to simple timing attacks.
00079  */
00080 static unsigned long add_count, dbl_count, mul_count;
00081 #endif
00082 
00083 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
00084     defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
00085     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
00086     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
00087     defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
00088     defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
00089     defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
00090     defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
00091     defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
00092     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
00093     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
00094 #define ECP_SHORTWEIERSTRASS
00095 #endif
00096 
00097 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
00098 #define ECP_MONTGOMERY
00099 #endif
00100 
00101 /*
00102  * Curve types: internal for now, might be exposed later
00103  */
00104 typedef enum
00105 {
00106     ECP_TYPE_NONE = 0,
00107     ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
00108     ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
00109 } ecp_curve_type;
00110 
00111 /*
00112  * List of supported curves:
00113  *  - internal ID
00114  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
00115  *  - size in bits
00116  *  - readable name
00117  *
00118  * Curves are listed in order: largest curves first, and for a given size,
00119  * fastest curves first. This provides the default order for the SSL module.
00120  *
00121  * Reminder: update profiles in x509_crt.c when adding a new curves!
00122  */
00123 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
00124 {
00125 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
00126     { MBEDTLS_ECP_DP_SECP521R1 ,    25,     521,    "secp521r1"         },
00127 #endif
00128 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
00129     { MBEDTLS_ECP_DP_BP512R1 ,      28,     512,    "brainpoolP512r1"   },
00130 #endif
00131 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
00132     { MBEDTLS_ECP_DP_SECP384R1 ,    24,     384,    "secp384r1"         },
00133 #endif
00134 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
00135     { MBEDTLS_ECP_DP_BP384R1 ,      27,     384,    "brainpoolP384r1"   },
00136 #endif
00137 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
00138     { MBEDTLS_ECP_DP_SECP256R1 ,    23,     256,    "secp256r1"         },
00139 #endif
00140 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
00141     { MBEDTLS_ECP_DP_SECP256K1 ,    22,     256,    "secp256k1"         },
00142 #endif
00143 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
00144     { MBEDTLS_ECP_DP_BP256R1 ,      26,     256,    "brainpoolP256r1"   },
00145 #endif
00146 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
00147     { MBEDTLS_ECP_DP_SECP224R1 ,    21,     224,    "secp224r1"         },
00148 #endif
00149 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
00150     { MBEDTLS_ECP_DP_SECP224K1 ,    20,     224,    "secp224k1"         },
00151 #endif
00152 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
00153     { MBEDTLS_ECP_DP_SECP192R1 ,    19,     192,    "secp192r1"         },
00154 #endif
00155 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
00156     { MBEDTLS_ECP_DP_SECP192K1 ,    18,     192,    "secp192k1"         },
00157 #endif
00158     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
00159 };
00160 
00161 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
00162                         sizeof( ecp_supported_curves[0] )
00163 
00164 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
00165 
00166 /*
00167  * List of supported curves and associated info
00168  */
00169 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
00170 {
00171     return( ecp_supported_curves );
00172 }
00173 
00174 /*
00175  * List of supported curves, group ID only
00176  */
00177 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
00178 {
00179     static int init_done = 0;
00180 
00181     if( ! init_done )
00182     {
00183         size_t i = 0;
00184         const mbedtls_ecp_curve_info *curve_info;
00185 
00186         for( curve_info = mbedtls_ecp_curve_list();
00187              curve_info->grp_id  != MBEDTLS_ECP_DP_NONE;
00188              curve_info++ )
00189         {
00190             ecp_supported_grp_id[i++] = curve_info->grp_id ;
00191         }
00192         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
00193 
00194         init_done = 1;
00195     }
00196 
00197     return( ecp_supported_grp_id );
00198 }
00199 
00200 /*
00201  * Get the curve info for the internal identifier
00202  */
00203 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
00204 {
00205     const mbedtls_ecp_curve_info *curve_info;
00206 
00207     for( curve_info = mbedtls_ecp_curve_list();
00208          curve_info->grp_id  != MBEDTLS_ECP_DP_NONE;
00209          curve_info++ )
00210     {
00211         if( curve_info->grp_id  == grp_id )
00212             return( curve_info );
00213     }
00214 
00215     return( NULL );
00216 }
00217 
00218 /*
00219  * Get the curve info from the TLS identifier
00220  */
00221 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
00222 {
00223     const mbedtls_ecp_curve_info *curve_info;
00224 
00225     for( curve_info = mbedtls_ecp_curve_list();
00226          curve_info->grp_id  != MBEDTLS_ECP_DP_NONE;
00227          curve_info++ )
00228     {
00229         if( curve_info->tls_id  == tls_id )
00230             return( curve_info );
00231     }
00232 
00233     return( NULL );
00234 }
00235 
00236 /*
00237  * Get the curve info from the name
00238  */
00239 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
00240 {
00241     const mbedtls_ecp_curve_info *curve_info;
00242 
00243     for( curve_info = mbedtls_ecp_curve_list();
00244          curve_info->grp_id  != MBEDTLS_ECP_DP_NONE;
00245          curve_info++ )
00246     {
00247         if( strcmp( curve_info->name , name ) == 0 )
00248             return( curve_info );
00249     }
00250 
00251     return( NULL );
00252 }
00253 
00254 /*
00255  * Get the type of a curve
00256  */
00257 static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
00258 {
00259     if( grp->G .X .p  == NULL )
00260         return( ECP_TYPE_NONE );
00261 
00262     if( grp->G .Y .p  == NULL )
00263         return( ECP_TYPE_MONTGOMERY );
00264     else
00265         return( ECP_TYPE_SHORT_WEIERSTRASS );
00266 }
00267 
00268 /*
00269  * Initialize (the components of) a point
00270  */
00271 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
00272 {
00273     if( pt == NULL )
00274         return;
00275 
00276     mbedtls_mpi_init( &pt->X  );
00277     mbedtls_mpi_init( &pt->Y  );
00278     mbedtls_mpi_init( &pt->Z  );
00279 }
00280 
00281 /*
00282  * Initialize (the components of) a group
00283  */
00284 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
00285 {
00286     if( grp == NULL )
00287         return;
00288 
00289     memset( grp, 0, sizeof( mbedtls_ecp_group ) );
00290 }
00291 
00292 /*
00293  * Initialize (the components of) a key pair
00294  */
00295 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
00296 {
00297     if( key == NULL )
00298         return;
00299 
00300     mbedtls_ecp_group_init( &key->grp  );
00301     mbedtls_mpi_init( &key->d  );
00302     mbedtls_ecp_point_init( &key->Q  );
00303 }
00304 
00305 /*
00306  * Unallocate (the components of) a point
00307  */
00308 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
00309 {
00310     if( pt == NULL )
00311         return;
00312 
00313     mbedtls_mpi_free( &( pt->X  ) );
00314     mbedtls_mpi_free( &( pt->Y  ) );
00315     mbedtls_mpi_free( &( pt->Z  ) );
00316 }
00317 
00318 /*
00319  * Unallocate (the components of) a group
00320  */
00321 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
00322 {
00323     size_t i;
00324 
00325     if( grp == NULL )
00326         return;
00327 
00328     if( grp->h  != 1 )
00329     {
00330         mbedtls_mpi_free( &grp->P  );
00331         mbedtls_mpi_free( &grp->A  );
00332         mbedtls_mpi_free( &grp->B  );
00333         mbedtls_ecp_point_free( &grp->G  );
00334         mbedtls_mpi_free( &grp->N  );
00335     }
00336 
00337     if( grp->T  != NULL )
00338     {
00339         for( i = 0; i < grp->T_size ; i++ )
00340             mbedtls_ecp_point_free( &grp->T [i] );
00341         mbedtls_free( grp->T  );
00342     }
00343 
00344     mbedtls_zeroize( grp, sizeof( mbedtls_ecp_group ) );
00345 }
00346 
00347 /*
00348  * Unallocate (the components of) a key pair
00349  */
00350 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
00351 {
00352     if( key == NULL )
00353         return;
00354 
00355     mbedtls_ecp_group_free( &key->grp  );
00356     mbedtls_mpi_free( &key->d  );
00357     mbedtls_ecp_point_free( &key->Q  );
00358 }
00359 
00360 /*
00361  * Copy the contents of a point
00362  */
00363 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
00364 {
00365     int ret;
00366 
00367     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X , &Q->X  ) );
00368     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y , &Q->Y  ) );
00369     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z , &Q->Z  ) );
00370 
00371 cleanup:
00372     return( ret );
00373 }
00374 
00375 /*
00376  * Copy the contents of a group object
00377  */
00378 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
00379 {
00380     return mbedtls_ecp_group_load( dst, src->id  );
00381 }
00382 
00383 /*
00384  * Set point to zero
00385  */
00386 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
00387 {
00388     int ret;
00389 
00390     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X  , 1 ) );
00391     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y  , 1 ) );
00392     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z  , 0 ) );
00393 
00394 cleanup:
00395     return( ret );
00396 }
00397 
00398 /*
00399  * Tell if a point is zero
00400  */
00401 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
00402 {
00403     return( mbedtls_mpi_cmp_int( &pt->Z , 0 ) == 0 );
00404 }
00405 
00406 /*
00407  * Compare two points lazyly
00408  */
00409 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
00410                            const mbedtls_ecp_point *Q )
00411 {
00412     if( mbedtls_mpi_cmp_mpi( &P->X , &Q->X  ) == 0 &&
00413         mbedtls_mpi_cmp_mpi( &P->Y , &Q->Y  ) == 0 &&
00414         mbedtls_mpi_cmp_mpi( &P->Z , &Q->Z  ) == 0 )
00415     {
00416         return( 0 );
00417     }
00418 
00419     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00420 }
00421 
00422 /*
00423  * Import a non-zero point from ASCII strings
00424  */
00425 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
00426                            const char *x, const char *y )
00427 {
00428     int ret;
00429 
00430     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X , radix, x ) );
00431     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y , radix, y ) );
00432     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z , 1 ) );
00433 
00434 cleanup:
00435     return( ret );
00436 }
00437 
00438 /*
00439  * Export a point into unsigned binary data (SEC1 2.3.3)
00440  */
00441 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P,
00442                             int format, size_t *olen,
00443                             unsigned char *buf, size_t buflen )
00444 {
00445     int ret = 0;
00446     size_t plen;
00447 
00448     if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
00449         format != MBEDTLS_ECP_PF_COMPRESSED )
00450         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00451 
00452     /*
00453      * Common case: P == 0
00454      */
00455     if( mbedtls_mpi_cmp_int( &P->Z , 0 ) == 0 )
00456     {
00457         if( buflen < 1 )
00458             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
00459 
00460         buf[0] = 0x00;
00461         *olen = 1;
00462 
00463         return( 0 );
00464     }
00465 
00466     plen = mbedtls_mpi_size( &grp->P  );
00467 
00468     if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
00469     {
00470         *olen = 2 * plen + 1;
00471 
00472         if( buflen < *olen )
00473             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
00474 
00475         buf[0] = 0x04;
00476         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X , buf + 1, plen ) );
00477         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y , buf + 1 + plen, plen ) );
00478     }
00479     else if( format == MBEDTLS_ECP_PF_COMPRESSED )
00480     {
00481         *olen = plen + 1;
00482 
00483         if( buflen < *olen )
00484             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
00485 
00486         buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y , 0 );
00487         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X , buf + 1, plen ) );
00488     }
00489 
00490 cleanup:
00491     return( ret );
00492 }
00493 
00494 /*
00495  * Import a point from unsigned binary data (SEC1 2.3.4)
00496  */
00497 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
00498                            const unsigned char *buf, size_t ilen )
00499 {
00500     int ret;
00501     size_t plen;
00502 
00503     if( ilen < 1 )
00504         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00505 
00506     if( buf[0] == 0x00 )
00507     {
00508         if( ilen == 1 )
00509             return( mbedtls_ecp_set_zero( pt ) );
00510         else
00511             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00512     }
00513 
00514     plen = mbedtls_mpi_size( &grp->P  );
00515 
00516     if( buf[0] != 0x04 )
00517         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
00518 
00519     if( ilen != 2 * plen + 1 )
00520         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00521 
00522     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X , buf + 1, plen ) );
00523     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y , buf + 1 + plen, plen ) );
00524     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 1 ) );
00525 
00526 cleanup:
00527     return( ret );
00528 }
00529 
00530 /*
00531  * Import a point from a TLS ECPoint record (RFC 4492)
00532  *      struct {
00533  *          opaque point <1..2^8-1>;
00534  *      } ECPoint;
00535  */
00536 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
00537                         const unsigned char **buf, size_t buf_len )
00538 {
00539     unsigned char data_len;
00540     const unsigned char *buf_start;
00541 
00542     /*
00543      * We must have at least two bytes (1 for length, at least one for data)
00544      */
00545     if( buf_len < 2 )
00546         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00547 
00548     data_len = *(*buf)++;
00549     if( data_len < 1 || data_len > buf_len - 1 )
00550         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00551 
00552     /*
00553      * Save buffer start for read_binary and update buf
00554      */
00555     buf_start = *buf;
00556     *buf += data_len;
00557 
00558     return mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len );
00559 }
00560 
00561 /*
00562  * Export a point as a TLS ECPoint record (RFC 4492)
00563  *      struct {
00564  *          opaque point <1..2^8-1>;
00565  *      } ECPoint;
00566  */
00567 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
00568                          int format, size_t *olen,
00569                          unsigned char *buf, size_t blen )
00570 {
00571     int ret;
00572 
00573     /*
00574      * buffer length must be at least one, for our length byte
00575      */
00576     if( blen < 1 )
00577         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00578 
00579     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
00580                     olen, buf + 1, blen - 1) ) != 0 )
00581         return( ret );
00582 
00583     /*
00584      * write length to the first byte and update total length
00585      */
00586     buf[0] = (unsigned char) *olen;
00587     ++*olen;
00588 
00589     return( 0 );
00590 }
00591 
00592 /*
00593  * Set a group from an ECParameters record (RFC 4492)
00594  */
00595 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **buf, size_t len )
00596 {
00597     uint16_t tls_id;
00598     const mbedtls_ecp_curve_info *curve_info;
00599 
00600     /*
00601      * We expect at least three bytes (see below)
00602      */
00603     if( len < 3 )
00604         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00605 
00606     /*
00607      * First byte is curve_type; only named_curve is handled
00608      */
00609     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
00610         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00611 
00612     /*
00613      * Next two bytes are the namedcurve value
00614      */
00615     tls_id = *(*buf)++;
00616     tls_id <<= 8;
00617     tls_id |= *(*buf)++;
00618 
00619     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
00620         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
00621 
00622     return mbedtls_ecp_group_load( grp, curve_info->grp_id  );
00623 }
00624 
00625 /*
00626  * Write the ECParameters record corresponding to a group (RFC 4492)
00627  */
00628 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
00629                          unsigned char *buf, size_t blen )
00630 {
00631     const mbedtls_ecp_curve_info *curve_info;
00632 
00633     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id  ) ) == NULL )
00634         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00635 
00636     /*
00637      * We are going to write 3 bytes (see below)
00638      */
00639     *olen = 3;
00640     if( blen < *olen )
00641         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
00642 
00643     /*
00644      * First byte is curve_type, always named_curve
00645      */
00646     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
00647 
00648     /*
00649      * Next two bytes are the namedcurve value
00650      */
00651     buf[0] = curve_info->tls_id  >> 8;
00652     buf[1] = curve_info->tls_id  & 0xFF;
00653 
00654     return( 0 );
00655 }
00656 
00657 /*
00658  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
00659  * See the documentation of struct mbedtls_ecp_group.
00660  *
00661  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
00662  */
00663 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
00664 {
00665     int ret;
00666 
00667     if( grp->modp  == NULL )
00668         return( mbedtls_mpi_mod_mpi( N, N, &grp->P  ) );
00669 
00670     /* N->s < 0 is a much faster test, which fails only if N is 0 */
00671     if( ( N->s  < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
00672         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits  )
00673     {
00674         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
00675     }
00676 
00677     MBEDTLS_MPI_CHK( grp->modp ( N ) );
00678 
00679     /* N->s < 0 is a much faster test, which fails only if N is 0 */
00680     while( N->s  < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
00681         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P  ) );
00682 
00683     while( mbedtls_mpi_cmp_mpi( N, &grp->P  ) >= 0 )
00684         /* we known P, N and the result are positive */
00685         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P  ) );
00686 
00687 cleanup:
00688     return( ret );
00689 }
00690 
00691 /*
00692  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
00693  *
00694  * In order to guarantee that, we need to ensure that operands of
00695  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
00696  * bring the result back to this range.
00697  *
00698  * The following macros are shortcuts for doing that.
00699  */
00700 
00701 /*
00702  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
00703  */
00704 #if defined(MBEDTLS_SELF_TEST)
00705 #define INC_MUL_COUNT   mul_count++;
00706 #else
00707 #define INC_MUL_COUNT
00708 #endif
00709 
00710 #define MOD_MUL( N )    do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
00711                         while( 0 )
00712 
00713 /*
00714  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
00715  * N->s < 0 is a very fast test, which fails only if N is 0
00716  */
00717 #define MOD_SUB( N )                                \
00718     while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 )   \
00719         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
00720 
00721 /*
00722  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
00723  * We known P, N and the result are positive, so sub_abs is correct, and
00724  * a bit faster.
00725  */
00726 #define MOD_ADD( N )                                \
00727     while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \
00728         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
00729 
00730 #if defined(ECP_SHORTWEIERSTRASS)
00731 /*
00732  * For curves in short Weierstrass form, we do all the internal operations in
00733  * Jacobian coordinates.
00734  *
00735  * For multiplication, we'll use a comb method with coutermeasueres against
00736  * SPA, hence timing attacks.
00737  */
00738 
00739 /*
00740  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
00741  * Cost: 1N := 1I + 3M + 1S
00742  */
00743 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
00744 {
00745     int ret;
00746     mbedtls_mpi Zi, ZZi;
00747 
00748     if( mbedtls_mpi_cmp_int( &pt->Z , 0 ) == 0 )
00749         return( 0 );
00750 
00751     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
00752 
00753     /*
00754      * X = X / Z^2  mod p
00755      */
00756     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z ,     &grp->P  ) );
00757     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
00758     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X ,   &pt->X ,     &ZZi    ) ); MOD_MUL( pt->X  );
00759 
00760     /*
00761      * Y = Y / Z^3  mod p
00762      */
00763     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y ,   &pt->Y ,     &ZZi    ) ); MOD_MUL( pt->Y  );
00764     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y ,   &pt->Y ,     &Zi     ) ); MOD_MUL( pt->Y  );
00765 
00766     /*
00767      * Z = 1
00768      */
00769     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 1 ) );
00770 
00771 cleanup:
00772 
00773     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
00774 
00775     return( ret );
00776 }
00777 
00778 /*
00779  * Normalize jacobian coordinates of an array of (pointers to) points,
00780  * using Montgomery's trick to perform only one inversion mod P.
00781  * (See for example Cohen's "A Course in Computational Algebraic Number
00782  * Theory", Algorithm 10.3.4.)
00783  *
00784  * Warning: fails (returning an error) if one of the points is zero!
00785  * This should never happen, see choice of w in ecp_mul_comb().
00786  *
00787  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
00788  */
00789 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
00790                                    mbedtls_ecp_point *T[], size_t t_len )
00791 {
00792     int ret;
00793     size_t i;
00794     mbedtls_mpi *c, u, Zi, ZZi;
00795 
00796     if( t_len < 2 )
00797         return( ecp_normalize_jac( grp, *T ) );
00798 
00799     if( ( c = mbedtls_calloc( t_len, sizeof( mbedtls_mpi ) ) ) == NULL )
00800         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
00801 
00802     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
00803 
00804     /*
00805      * c[i] = Z_0 * ... * Z_i
00806      */
00807     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
00808     for( i = 1; i < t_len; i++ )
00809     {
00810         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
00811         MOD_MUL( c[i] );
00812     }
00813 
00814     /*
00815      * u = 1 / (Z_0 * ... * Z_n) mod P
00816      */
00817     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[t_len-1], &grp->P  ) );
00818 
00819     for( i = t_len - 1; ; i-- )
00820     {
00821         /*
00822          * Zi = 1 / Z_i mod p
00823          * u = 1 / (Z_0 * ... * Z_i) mod P
00824          */
00825         if( i == 0 ) {
00826             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
00827         }
00828         else
00829         {
00830             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
00831             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
00832         }
00833 
00834         /*
00835          * proceed as in normalize()
00836          */
00837         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
00838         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
00839         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
00840         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );
00841 
00842         /*
00843          * Post-precessing: reclaim some memory by shrinking coordinates
00844          * - not storing Z (always 1)
00845          * - shrinking other coordinates, but still keeping the same number of
00846          *   limbs as P, as otherwise it will too likely be regrown too fast.
00847          */
00848         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P .n  ) );
00849         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P .n  ) );
00850         mbedtls_mpi_free( &T[i]->Z );
00851 
00852         if( i == 0 )
00853             break;
00854     }
00855 
00856 cleanup:
00857 
00858     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
00859     for( i = 0; i < t_len; i++ )
00860         mbedtls_mpi_free( &c[i] );
00861     mbedtls_free( c );
00862 
00863     return( ret );
00864 }
00865 
00866 /*
00867  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
00868  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
00869  */
00870 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
00871                             mbedtls_ecp_point *Q,
00872                             unsigned char inv )
00873 {
00874     int ret;
00875     unsigned char nonzero;
00876     mbedtls_mpi mQY;
00877 
00878     mbedtls_mpi_init( &mQY );
00879 
00880     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
00881     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P , &Q->Y  ) );
00882     nonzero = mbedtls_mpi_cmp_int( &Q->Y , 0 ) != 0;
00883     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y , &mQY, inv & nonzero ) );
00884 
00885 cleanup:
00886     mbedtls_mpi_free( &mQY );
00887 
00888     return( ret );
00889 }
00890 
00891 /*
00892  * Point doubling R = 2 P, Jacobian coordinates
00893  *
00894  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
00895  *
00896  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
00897  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
00898  *
00899  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
00900  *
00901  * Cost: 1D := 3M + 4S          (A ==  0)
00902  *             4M + 4S          (A == -3)
00903  *             3M + 6S + 1a     otherwise
00904  */
00905 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
00906                            const mbedtls_ecp_point *P )
00907 {
00908     int ret;
00909     mbedtls_mpi M, S, T, U;
00910 
00911 #if defined(MBEDTLS_SELF_TEST)
00912     dbl_count++;
00913 #endif
00914 
00915     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
00916 
00917     /* Special case for A = -3 */
00918     if( grp->A .p  == NULL )
00919     {
00920         /* M = 3(X + Z^2)(X - Z^2) */
00921         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z ,  &P->Z    ) ); MOD_MUL( S );
00922         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X ,  &S      ) ); MOD_ADD( T );
00923         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X ,  &S      ) ); MOD_SUB( U );
00924         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );
00925         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
00926     }
00927     else
00928     {
00929         /* M = 3.X^2 */
00930         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X ,  &P->X    ) ); MOD_MUL( S );
00931         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
00932 
00933         /* Optimize away for "koblitz" curves with A = 0 */
00934         if( mbedtls_mpi_cmp_int( &grp->A , 0 ) != 0 )
00935         {
00936             /* M += A.Z^4 */
00937             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z ,  &P->Z    ) ); MOD_MUL( S );
00938             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );
00939             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A  ) ); MOD_MUL( S );
00940             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );
00941         }
00942     }
00943 
00944     /* S = 4.X.Y^2 */
00945     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y ,  &P->Y    ) ); MOD_MUL( T );
00946     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );
00947     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X ,  &T      ) ); MOD_MUL( S );
00948     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );
00949 
00950     /* U = 8.Y^4 */
00951     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );
00952     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
00953 
00954     /* T = M^2 - 2.S */
00955     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );
00956     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
00957     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
00958 
00959     /* S = M(S - T) - U */
00960     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );
00961     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );
00962     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );
00963 
00964     /* U = 2.Y.Z */
00965     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y ,  &P->Z    ) ); MOD_MUL( U );
00966     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
00967 
00968     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X , &T ) );
00969     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y , &S ) );
00970     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z , &U ) );
00971 
00972 cleanup:
00973     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
00974 
00975     return( ret );
00976 }
00977 
00978 /*
00979  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
00980  *
00981  * The coordinates of Q must be normalized (= affine),
00982  * but those of P don't need to. R is not normalized.
00983  *
00984  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
00985  * None of these cases can happen as intermediate step in ecp_mul_comb():
00986  * - at each step, P, Q and R are multiples of the base point, the factor
00987  *   being less than its order, so none of them is zero;
00988  * - Q is an odd multiple of the base point, P an even multiple,
00989  *   due to the choice of precomputed points in the modified comb method.
00990  * So branches for these cases do not leak secret information.
00991  *
00992  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
00993  *
00994  * Cost: 1A := 8M + 3S
00995  */
00996 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
00997                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
00998 {
00999     int ret;
01000     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
01001 
01002 #if defined(MBEDTLS_SELF_TEST)
01003     add_count++;
01004 #endif
01005 
01006     /*
01007      * Trivial cases: P == 0 or Q == 0 (case 1)
01008      */
01009     if( mbedtls_mpi_cmp_int( &P->Z , 0 ) == 0 )
01010         return( mbedtls_ecp_copy( R, Q ) );
01011 
01012     if( Q->Z .p  != NULL && mbedtls_mpi_cmp_int( &Q->Z , 0 ) == 0 )
01013         return( mbedtls_ecp_copy( R, P ) );
01014 
01015     /*
01016      * Make sure Q coordinates are normalized
01017      */
01018     if( Q->Z .p  != NULL && mbedtls_mpi_cmp_int( &Q->Z , 1 ) != 0 )
01019         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01020 
01021     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
01022     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
01023 
01024     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z ,  &P->Z  ) );  MOD_MUL( T1 );
01025     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z  ) );  MOD_MUL( T2 );
01026     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X  ) );  MOD_MUL( T1 );
01027     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y  ) );  MOD_MUL( T2 );
01028     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X  ) );  MOD_SUB( T1 );
01029     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y  ) );  MOD_SUB( T2 );
01030 
01031     /* Special cases (2) and (3) */
01032     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
01033     {
01034         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
01035         {
01036             ret = ecp_double_jac( grp, R, P );
01037             goto cleanup;
01038         }
01039         else
01040         {
01041             ret = mbedtls_ecp_set_zero( R );
01042             goto cleanup;
01043         }
01044     }
01045 
01046     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z ,  &T1   ) );  MOD_MUL( Z  );
01047     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
01048     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
01049     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X  ) );  MOD_MUL( T3 );
01050     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
01051     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
01052     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
01053     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
01054     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
01055     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
01056     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y  ) );  MOD_MUL( T4 );
01057     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
01058 
01059     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X , &X ) );
01060     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y , &Y ) );
01061     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z , &Z ) );
01062 
01063 cleanup:
01064 
01065     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
01066     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
01067 
01068     return( ret );
01069 }
01070 
01071 /*
01072  * Randomize jacobian coordinates:
01073  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
01074  * This is sort of the reverse operation of ecp_normalize_jac().
01075  *
01076  * This countermeasure was first suggested in [2].
01077  */
01078 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
01079                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
01080 {
01081     int ret;
01082     mbedtls_mpi l, ll;
01083     size_t p_size = ( grp->pbits  + 7 ) / 8;
01084     int count = 0;
01085 
01086     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
01087 
01088     /* Generate l such that 1 < l < p */
01089     do
01090     {
01091         mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng );
01092 
01093         while( mbedtls_mpi_cmp_mpi( &l, &grp->P  ) >= 0 )
01094             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
01095 
01096         if( count++ > 10 )
01097             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
01098     }
01099     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
01100 
01101     /* Z = l * Z */
01102     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z ,   &pt->Z ,     &l  ) ); MOD_MUL( pt->Z  );
01103 
01104     /* X = l^2 * X */
01105     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
01106     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X ,   &pt->X ,     &ll ) ); MOD_MUL( pt->X  );
01107 
01108     /* Y = l^3 * Y */
01109     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
01110     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y ,   &pt->Y ,     &ll ) ); MOD_MUL( pt->Y  );
01111 
01112 cleanup:
01113     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
01114 
01115     return( ret );
01116 }
01117 
01118 /*
01119  * Check and define parameters used by the comb method (see below for details)
01120  */
01121 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
01122 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
01123 #endif
01124 
01125 /* d = ceil( n / w ) */
01126 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
01127 
01128 /* number of precomputed points */
01129 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
01130 
01131 /*
01132  * Compute the representation of m that will be used with our comb method.
01133  *
01134  * The basic comb method is described in GECC 3.44 for example. We use a
01135  * modified version that provides resistance to SPA by avoiding zero
01136  * digits in the representation as in [3]. We modify the method further by
01137  * requiring that all K_i be odd, which has the small cost that our
01138  * representation uses one more K_i, due to carries.
01139  *
01140  * Also, for the sake of compactness, only the seven low-order bits of x[i]
01141  * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
01142  * the paper): it is set if and only if if s_i == -1;
01143  *
01144  * Calling conventions:
01145  * - x is an array of size d + 1
01146  * - w is the size, ie number of teeth, of the comb, and must be between
01147  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
01148  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
01149  *   (the result will be incorrect if these assumptions are not satisfied)
01150  */
01151 static void ecp_comb_fixed( unsigned char x[], size_t d,
01152                             unsigned char w, const mbedtls_mpi *m )
01153 {
01154     size_t i, j;
01155     unsigned char c, cc, adjust;
01156 
01157     memset( x, 0, d+1 );
01158 
01159     /* First get the classical comb values (except for x_d = 0) */
01160     for( i = 0; i < d; i++ )
01161         for( j = 0; j < w; j++ )
01162             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
01163 
01164     /* Now make sure x_1 .. x_d are odd */
01165     c = 0;
01166     for( i = 1; i <= d; i++ )
01167     {
01168         /* Add carry and update it */
01169         cc   = x[i] & c;
01170         x[i] = x[i] ^ c;
01171         c = cc;
01172 
01173         /* Adjust if needed, avoiding branches */
01174         adjust = 1 - ( x[i] & 0x01 );
01175         c   |= x[i] & ( x[i-1] * adjust );
01176         x[i] = x[i] ^ ( x[i-1] * adjust );
01177         x[i-1] |= adjust << 7;
01178     }
01179 }
01180 
01181 /*
01182  * Precompute points for the comb method
01183  *
01184  * If i = i_{w-1} ... i_1 is the binary representation of i, then
01185  * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
01186  *
01187  * T must be able to hold 2^{w - 1} elements
01188  *
01189  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
01190  */
01191 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
01192                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
01193                                 unsigned char w, size_t d )
01194 {
01195     int ret;
01196     unsigned char i, k;
01197     size_t j;
01198     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
01199 
01200     /*
01201      * Set T[0] = P and
01202      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
01203      */
01204     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
01205 
01206     k = 0;
01207     for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
01208     {
01209         cur = T + i;
01210         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
01211         for( j = 0; j < d; j++ )
01212             MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
01213 
01214         TT[k++] = cur;
01215     }
01216 
01217     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
01218 
01219     /*
01220      * Compute the remaining ones using the minimal number of additions
01221      * Be careful to update T[2^l] only after using it!
01222      */
01223     k = 0;
01224     for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
01225     {
01226         j = i;
01227         while( j-- )
01228         {
01229             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
01230             TT[k++] = &T[i + j];
01231         }
01232     }
01233 
01234     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
01235 
01236 cleanup:
01237     return( ret );
01238 }
01239 
01240 /*
01241  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
01242  */
01243 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
01244                             const mbedtls_ecp_point T[], unsigned char t_len,
01245                             unsigned char i )
01246 {
01247     int ret;
01248     unsigned char ii, j;
01249 
01250     /* Ignore the "sign" bit and scale down */
01251     ii =  ( i & 0x7Fu ) >> 1;
01252 
01253     /* Read the whole table to thwart cache-based timing attacks */
01254     for( j = 0; j < t_len; j++ )
01255     {
01256         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X , &T[j].X , j == ii ) );
01257         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y , &T[j].Y , j == ii ) );
01258     }
01259 
01260     /* Safely invert result if i is "negative" */
01261     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
01262 
01263 cleanup:
01264     return( ret );
01265 }
01266 
01267 /*
01268  * Core multiplication algorithm for the (modified) comb method.
01269  * This part is actually common with the basic comb method (GECC 3.44)
01270  *
01271  * Cost: d A + d D + 1 R
01272  */
01273 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
01274                               const mbedtls_ecp_point T[], unsigned char t_len,
01275                               const unsigned char x[], size_t d,
01276                               int (*f_rng)(void *, unsigned char *, size_t),
01277                               void *p_rng )
01278 {
01279     int ret;
01280     mbedtls_ecp_point Txi;
01281     size_t i;
01282 
01283     mbedtls_ecp_point_init( &Txi );
01284 
01285     /* Start with a non-zero point and randomize its coordinates */
01286     i = d;
01287     MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
01288     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z , 1 ) );
01289     if( f_rng != 0 )
01290         MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
01291 
01292     while( i-- != 0 )
01293     {
01294         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
01295         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
01296         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
01297     }
01298 
01299 cleanup:
01300     mbedtls_ecp_point_free( &Txi );
01301 
01302     return( ret );
01303 }
01304 
01305 /*
01306  * Multiplication using the comb method,
01307  * for curves in short Weierstrass form
01308  */
01309 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
01310                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
01311                          int (*f_rng)(void *, unsigned char *, size_t),
01312                          void *p_rng )
01313 {
01314     int ret;
01315     unsigned char w, m_is_odd, p_eq_g, pre_len, i;
01316     size_t d;
01317     unsigned char k[COMB_MAX_D + 1];
01318     mbedtls_ecp_point *T;
01319     mbedtls_mpi M, mm;
01320 
01321     mbedtls_mpi_init( &M );
01322     mbedtls_mpi_init( &mm );
01323 
01324     /* we need N to be odd to trnaform m in an odd number, check now */
01325     if( mbedtls_mpi_get_bit( &grp->N , 0 ) != 1 )
01326         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01327 
01328     /*
01329      * Minimize the number of multiplications, that is minimize
01330      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
01331      * (see costs of the various parts, with 1S = 1M)
01332      */
01333     w = grp->nbits  >= 384 ? 5 : 4;
01334 
01335     /*
01336      * If P == G, pre-compute a bit more, since this may be re-used later.
01337      * Just adding one avoids upping the cost of the first mul too much,
01338      * and the memory cost too.
01339      */
01340 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
01341     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y , &grp->G .Y  ) == 0 &&
01342                mbedtls_mpi_cmp_mpi( &P->X , &grp->G .X  ) == 0 );
01343     if( p_eq_g )
01344         w++;
01345 #else
01346     p_eq_g = 0;
01347 #endif
01348 
01349     /*
01350      * Make sure w is within bounds.
01351      * (The last test is useful only for very small curves in the test suite.)
01352      */
01353     if( w > MBEDTLS_ECP_WINDOW_SIZE )
01354         w = MBEDTLS_ECP_WINDOW_SIZE;
01355     if( w >= grp->nbits  )
01356         w = 2;
01357 
01358     /* Other sizes that depend on w */
01359     pre_len = 1U << ( w - 1 );
01360     d = ( grp->nbits  + w - 1 ) / w;
01361 
01362     /*
01363      * Prepare precomputed points: if P == G we want to
01364      * use grp->T if already initialized, or initialize it.
01365      */
01366     T = p_eq_g ? grp->T  : NULL;
01367 
01368     if( T == NULL )
01369     {
01370         T = mbedtls_calloc( pre_len, sizeof( mbedtls_ecp_point ) );
01371         if( T == NULL )
01372         {
01373             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
01374             goto cleanup;
01375         }
01376 
01377         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
01378 
01379         if( p_eq_g )
01380         {
01381             grp->T  = T;
01382             grp->T_size  = pre_len;
01383         }
01384     }
01385 
01386     /*
01387      * Make sure M is odd (M = m or M = N - m, since N is odd)
01388      * using the fact that m * P = - (N - m) * P
01389      */
01390     m_is_odd = ( mbedtls_mpi_get_bit( m, 0 ) == 1 );
01391     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
01392     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N , m ) );
01393     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
01394 
01395     /*
01396      * Go for comb multiplication, R = M * P
01397      */
01398     ecp_comb_fixed( k, d, w, &M );
01399     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
01400 
01401     /*
01402      * Now get m * P from M * P and normalize it
01403      */
01404     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
01405     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
01406 
01407 cleanup:
01408 
01409     if( T != NULL && ! p_eq_g )
01410     {
01411         for( i = 0; i < pre_len; i++ )
01412             mbedtls_ecp_point_free( &T[i] );
01413         mbedtls_free( T );
01414     }
01415 
01416     mbedtls_mpi_free( &M );
01417     mbedtls_mpi_free( &mm );
01418 
01419     if( ret != 0 )
01420         mbedtls_ecp_point_free( R );
01421 
01422     return( ret );
01423 }
01424 
01425 #endif /* ECP_SHORTWEIERSTRASS */
01426 
01427 #if defined(ECP_MONTGOMERY)
01428 /*
01429  * For Montgomery curves, we do all the internal arithmetic in projective
01430  * coordinates. Import/export of points uses only the x coordinates, which is
01431  * internaly represented as X / Z.
01432  *
01433  * For scalar multiplication, we'll use a Montgomery ladder.
01434  */
01435 
01436 /*
01437  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
01438  * Cost: 1M + 1I
01439  */
01440 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
01441 {
01442     int ret;
01443 
01444     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z , &P->Z , &grp->P  ) );
01445     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X , &P->X , &P->Z  ) ); MOD_MUL( P->X  );
01446     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z , 1 ) );
01447 
01448 cleanup:
01449     return( ret );
01450 }
01451 
01452 /*
01453  * Randomize projective x/z coordinates:
01454  * (X, Z) -> (l X, l Z) for random l
01455  * This is sort of the reverse operation of ecp_normalize_mxz().
01456  *
01457  * This countermeasure was first suggested in [2].
01458  * Cost: 2M
01459  */
01460 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
01461                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
01462 {
01463     int ret;
01464     mbedtls_mpi l;
01465     size_t p_size = ( grp->pbits  + 7 ) / 8;
01466     int count = 0;
01467 
01468     mbedtls_mpi_init( &l );
01469 
01470     /* Generate l such that 1 < l < p */
01471     do
01472     {
01473         mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng );
01474 
01475         while( mbedtls_mpi_cmp_mpi( &l, &grp->P  ) >= 0 )
01476             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
01477 
01478         if( count++ > 10 )
01479             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
01480     }
01481     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
01482 
01483     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X , &P->X , &l ) ); MOD_MUL( P->X  );
01484     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z , &P->Z , &l ) ); MOD_MUL( P->Z  );
01485 
01486 cleanup:
01487     mbedtls_mpi_free( &l );
01488 
01489     return( ret );
01490 }
01491 
01492 /*
01493  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
01494  * for Montgomery curves in x/z coordinates.
01495  *
01496  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
01497  * with
01498  * d =  X1
01499  * P = (X2, Z2)
01500  * Q = (X3, Z3)
01501  * R = (X4, Z4)
01502  * S = (X5, Z5)
01503  * and eliminating temporary variables tO, ..., t4.
01504  *
01505  * Cost: 5M + 4S
01506  */
01507 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
01508                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
01509                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
01510                                const mbedtls_mpi *d )
01511 {
01512     int ret;
01513     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
01514 
01515     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
01516     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
01517     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
01518 
01519     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X ,   &P->Z  ) ); MOD_ADD( A    );
01520     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
01521     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X ,   &P->Z  ) ); MOD_SUB( B    );
01522     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
01523     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
01524     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X ,   &Q->Z  ) ); MOD_ADD( C    );
01525     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X ,   &Q->Z  ) ); MOD_SUB( D    );
01526     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
01527     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
01528     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X , &DA,     &CB   ) ); MOD_MUL( S->X  );
01529     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X , &S->X ,   &S->X  ) ); MOD_MUL( S->X  );
01530     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z , &DA,     &CB   ) ); MOD_SUB( S->Z  );
01531     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z , &S->Z ,   &S->Z  ) ); MOD_MUL( S->Z  );
01532     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z , d,       &S->Z  ) ); MOD_MUL( S->Z  );
01533     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X , &AA,     &BB   ) ); MOD_MUL( R->X  );
01534     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z , &grp->A , &E    ) ); MOD_MUL( R->Z  );
01535     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z , &BB,     &R->Z  ) ); MOD_ADD( R->Z  );
01536     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z , &E,      &R->Z  ) ); MOD_MUL( R->Z  );
01537 
01538 cleanup:
01539     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
01540     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
01541     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
01542 
01543     return( ret );
01544 }
01545 
01546 /*
01547  * Multiplication with Montgomery ladder in x/z coordinates,
01548  * for curves in Montgomery form
01549  */
01550 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
01551                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
01552                         int (*f_rng)(void *, unsigned char *, size_t),
01553                         void *p_rng )
01554 {
01555     int ret;
01556     size_t i;
01557     unsigned char b;
01558     mbedtls_ecp_point RP;
01559     mbedtls_mpi PX;
01560 
01561     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
01562 
01563     /* Save PX and read from P before writing to R, in case P == R */
01564     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X  ) );
01565     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
01566 
01567     /* Set R to zero in modified x/z coordinates */
01568     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X , 1 ) );
01569     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z , 0 ) );
01570     mbedtls_mpi_free( &R->Y  );
01571 
01572     /* RP.X might be sligtly larger than P, so reduce it */
01573     MOD_ADD( RP.X  );
01574 
01575     /* Randomize coordinates of the starting point */
01576     if( f_rng != NULL )
01577         MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
01578 
01579     /* Loop invariant: R = result so far, RP = R + P */
01580     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
01581     while( i-- > 0 )
01582     {
01583         b = mbedtls_mpi_get_bit( m, i );
01584         /*
01585          *  if (b) R = 2R + P else R = 2R,
01586          * which is:
01587          *  if (b) double_add( RP, R, RP, R )
01588          *  else   double_add( R, RP, R, RP )
01589          * but using safe conditional swaps to avoid leaks
01590          */
01591         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X , &RP.X , b ) );
01592         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z , &RP.Z , b ) );
01593         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
01594         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X , &RP.X , b ) );
01595         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z , &RP.Z , b ) );
01596     }
01597 
01598     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
01599 
01600 cleanup:
01601     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
01602 
01603     return( ret );
01604 }
01605 
01606 #endif /* ECP_MONTGOMERY */
01607 
01608 /*
01609  * Multiplication R = m * P
01610  */
01611 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
01612              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
01613              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
01614 {
01615     int ret;
01616 
01617     /* Common sanity checks */
01618     if( mbedtls_mpi_cmp_int( &P->Z , 1 ) != 0 )
01619         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01620 
01621     if( ( ret = mbedtls_ecp_check_privkey( grp, m ) ) != 0 ||
01622         ( ret = mbedtls_ecp_check_pubkey( grp, P ) ) != 0 )
01623         return( ret );
01624 
01625 #if defined(ECP_MONTGOMERY)
01626     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
01627         return( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
01628 #endif
01629 #if defined(ECP_SHORTWEIERSTRASS)
01630     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
01631         return( ecp_mul_comb( grp, R, m, P, f_rng, p_rng ) );
01632 #endif
01633     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01634 }
01635 
01636 #if defined(ECP_SHORTWEIERSTRASS)
01637 /*
01638  * Check that an affine point is valid as a public key,
01639  * short weierstrass curves (SEC1 3.2.3.1)
01640  */
01641 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
01642 {
01643     int ret;
01644     mbedtls_mpi YY, RHS;
01645 
01646     /* pt coordinates must be normalized for our checks */
01647     if( mbedtls_mpi_cmp_int( &pt->X , 0 ) < 0 ||
01648         mbedtls_mpi_cmp_int( &pt->Y , 0 ) < 0 ||
01649         mbedtls_mpi_cmp_mpi( &pt->X , &grp->P  ) >= 0 ||
01650         mbedtls_mpi_cmp_mpi( &pt->Y , &grp->P  ) >= 0 )
01651         return( MBEDTLS_ERR_ECP_INVALID_KEY );
01652 
01653     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
01654 
01655     /*
01656      * YY = Y^2
01657      * RHS = X (X^2 + A) + B = X^3 + A X + B
01658      */
01659     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y ,   &pt->Y   ) );  MOD_MUL( YY  );
01660     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X ,   &pt->X   ) );  MOD_MUL( RHS );
01661 
01662     /* Special case for A = -3 */
01663     if( grp->A .p  == NULL )
01664     {
01665         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
01666     }
01667     else
01668     {
01669         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A  ) );  MOD_ADD( RHS );
01670     }
01671 
01672     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X   ) );  MOD_MUL( RHS );
01673     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B  ) );  MOD_ADD( RHS );
01674 
01675     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
01676         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
01677 
01678 cleanup:
01679 
01680     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
01681 
01682     return( ret );
01683 }
01684 #endif /* ECP_SHORTWEIERSTRASS */
01685 
01686 /*
01687  * R = m * P with shortcuts for m == 1 and m == -1
01688  * NOT constant-time - ONLY for short Weierstrass!
01689  */
01690 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
01691                                       mbedtls_ecp_point *R,
01692                                       const mbedtls_mpi *m,
01693                                       const mbedtls_ecp_point *P )
01694 {
01695     int ret;
01696 
01697     if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
01698     {
01699         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
01700     }
01701     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
01702     {
01703         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
01704         if( mbedtls_mpi_cmp_int( &R->Y , 0 ) != 0 )
01705             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y , &grp->P , &R->Y  ) );
01706     }
01707     else
01708     {
01709         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );
01710     }
01711 
01712 cleanup:
01713     return( ret );
01714 }
01715 
01716 /*
01717  * Linear combination
01718  * NOT constant-time
01719  */
01720 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
01721              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
01722              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
01723 {
01724     int ret;
01725     mbedtls_ecp_point mP;
01726 
01727     if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
01728         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
01729 
01730     mbedtls_ecp_point_init( &mP );
01731 
01732     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, &mP, m, P ) );
01733     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, R,   n, Q ) );
01734 
01735     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) );
01736     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
01737 
01738 cleanup:
01739     mbedtls_ecp_point_free( &mP );
01740 
01741     return( ret );
01742 }
01743 
01744 
01745 #if defined(ECP_MONTGOMERY)
01746 /*
01747  * Check validity of a public key for Montgomery curves with x-only schemes
01748  */
01749 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
01750 {
01751     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
01752     if( mbedtls_mpi_size( &pt->X  ) > ( grp->nbits  + 7 ) / 8 )
01753         return( MBEDTLS_ERR_ECP_INVALID_KEY );
01754 
01755     return( 0 );
01756 }
01757 #endif /* ECP_MONTGOMERY */
01758 
01759 /*
01760  * Check that a point is valid as a public key
01761  */
01762 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
01763 {
01764     /* Must use affine coordinates */
01765     if( mbedtls_mpi_cmp_int( &pt->Z , 1 ) != 0 )
01766         return( MBEDTLS_ERR_ECP_INVALID_KEY );
01767 
01768 #if defined(ECP_MONTGOMERY)
01769     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
01770         return( ecp_check_pubkey_mx( grp, pt ) );
01771 #endif
01772 #if defined(ECP_SHORTWEIERSTRASS)
01773     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
01774         return( ecp_check_pubkey_sw( grp, pt ) );
01775 #endif
01776     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01777 }
01778 
01779 /*
01780  * Check that an mbedtls_mpi is valid as a private key
01781  */
01782 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *d )
01783 {
01784 #if defined(ECP_MONTGOMERY)
01785     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
01786     {
01787         /* see [Curve25519] page 5 */
01788         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
01789             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
01790             mbedtls_mpi_get_bit( d, 2 ) != 0 ||
01791             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits  ) /* mbedtls_mpi_bitlen is one-based! */
01792             return( MBEDTLS_ERR_ECP_INVALID_KEY );
01793         else
01794             return( 0 );
01795     }
01796 #endif /* ECP_MONTGOMERY */
01797 #if defined(ECP_SHORTWEIERSTRASS)
01798     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
01799     {
01800         /* see SEC1 3.2 */
01801         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
01802             mbedtls_mpi_cmp_mpi( d, &grp->N  ) >= 0 )
01803             return( MBEDTLS_ERR_ECP_INVALID_KEY );
01804         else
01805             return( 0 );
01806     }
01807 #endif /* ECP_SHORTWEIERSTRASS */
01808 
01809     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01810 }
01811 
01812 /*
01813  * Generate a keypair with configurable base point
01814  */
01815 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
01816                      const mbedtls_ecp_point *G,
01817                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
01818                      int (*f_rng)(void *, unsigned char *, size_t),
01819                      void *p_rng )
01820 {
01821     int ret;
01822     size_t n_size = ( grp->nbits  + 7 ) / 8;
01823 
01824 #if defined(ECP_MONTGOMERY)
01825     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
01826     {
01827         /* [M225] page 5 */
01828         size_t b;
01829 
01830         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
01831 
01832         /* Make sure the most significant bit is nbits */
01833         b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
01834         if( b > grp->nbits  )
01835             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits  ) );
01836         else
01837             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits , 1 ) );
01838 
01839         /* Make sure the last three bits are unset */
01840         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
01841         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
01842         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
01843     }
01844     else
01845 #endif /* ECP_MONTGOMERY */
01846 #if defined(ECP_SHORTWEIERSTRASS)
01847     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
01848     {
01849         /* SEC1 3.2.1: Generate d such that 1 <= n < N */
01850         int count = 0;
01851         unsigned char rnd[MBEDTLS_ECP_MAX_BYTES];
01852 
01853         /*
01854          * Match the procedure given in RFC 6979 (deterministic ECDSA):
01855          * - use the same byte ordering;
01856          * - keep the leftmost nbits bits of the generated octet string;
01857          * - try until result is in the desired range.
01858          * This also avoids any biais, which is especially important for ECDSA.
01859          */
01860         do
01861         {
01862             MBEDTLS_MPI_CHK( f_rng( p_rng, rnd, n_size ) );
01863             MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( d, rnd, n_size ) );
01864             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits  ) );
01865 
01866             /*
01867              * Each try has at worst a probability 1/2 of failing (the msb has
01868              * a probability 1/2 of being 0, and then the result will be < N),
01869              * so after 30 tries failure probability is a most 2**(-30).
01870              *
01871              * For most curves, 1 try is enough with overwhelming probability,
01872              * since N starts with a lot of 1s in binary, but some curves
01873              * such as secp224k1 are actually very close to the worst case.
01874              */
01875             if( ++count > 30 )
01876                 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
01877         }
01878         while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
01879                mbedtls_mpi_cmp_mpi( d, &grp->N  ) >= 0 );
01880     }
01881     else
01882 #endif /* ECP_SHORTWEIERSTRASS */
01883         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01884 
01885 cleanup:
01886     if( ret != 0 )
01887         return( ret );
01888 
01889     return( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
01890 }
01891 
01892 /*
01893  * Generate key pair, wrapper for conventional base point
01894  */
01895 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
01896                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
01897                              int (*f_rng)(void *, unsigned char *, size_t),
01898                              void *p_rng )
01899 {
01900     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G , d, Q, f_rng, p_rng ) );
01901 }
01902 
01903 /*
01904  * Generate a keypair, prettier wrapper
01905  */
01906 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
01907                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
01908 {
01909     int ret;
01910 
01911     if( ( ret = mbedtls_ecp_group_load( &key->grp , grp_id ) ) != 0 )
01912         return( ret );
01913 
01914     return( mbedtls_ecp_gen_keypair( &key->grp , &key->d , &key->Q , f_rng, p_rng ) );
01915 }
01916 
01917 /*
01918  * Check a public-private key pair
01919  */
01920 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
01921 {
01922     int ret;
01923     mbedtls_ecp_point Q;
01924     mbedtls_ecp_group grp;
01925 
01926     if( pub->grp .id  == MBEDTLS_ECP_DP_NONE ||
01927         pub->grp .id  != prv->grp .id  ||
01928         mbedtls_mpi_cmp_mpi( &pub->Q .X , &prv->Q .X  ) ||
01929         mbedtls_mpi_cmp_mpi( &pub->Q .Y , &prv->Q .Y  ) ||
01930         mbedtls_mpi_cmp_mpi( &pub->Q .Z , &prv->Q .Z  ) )
01931     {
01932         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
01933     }
01934 
01935     mbedtls_ecp_point_init( &Q );
01936     mbedtls_ecp_group_init( &grp );
01937 
01938     /* mbedtls_ecp_mul() needs a non-const group... */
01939     mbedtls_ecp_group_copy( &grp, &prv->grp  );
01940 
01941     /* Also checks d is valid */
01942     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d , &prv->grp .G , NULL, NULL ) );
01943 
01944     if( mbedtls_mpi_cmp_mpi( &Q.X , &prv->Q .X  ) ||
01945         mbedtls_mpi_cmp_mpi( &Q.Y , &prv->Q .Y  ) ||
01946         mbedtls_mpi_cmp_mpi( &Q.Z , &prv->Q .Z  ) )
01947     {
01948         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
01949         goto cleanup;
01950     }
01951 
01952 cleanup:
01953     mbedtls_ecp_point_free( &Q );
01954     mbedtls_ecp_group_free( &grp );
01955 
01956     return( ret );
01957 }
01958 
01959 #if defined(MBEDTLS_SELF_TEST)
01960 
01961 /*
01962  * Checkup routine
01963  */
01964 int mbedtls_ecp_self_test( int verbose )
01965 {
01966     int ret;
01967     size_t i;
01968     mbedtls_ecp_group grp;
01969     mbedtls_ecp_point R, P;
01970     mbedtls_mpi m;
01971     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
01972     /* exponents especially adapted for secp192r1 */
01973     const char *exponents[] =
01974     {
01975         "000000000000000000000000000000000000000000000001", /* one */
01976         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
01977         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
01978         "400000000000000000000000000000000000000000000000", /* one and zeros */
01979         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
01980         "555555555555555555555555555555555555555555555555", /* 101010... */
01981     };
01982 
01983     mbedtls_ecp_group_init( &grp );
01984     mbedtls_ecp_point_init( &R );
01985     mbedtls_ecp_point_init( &P );
01986     mbedtls_mpi_init( &m );
01987 
01988     /* Use secp192r1 if available, or any available curve */
01989 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
01990     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1  ) );
01991 #else
01992     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
01993 #endif
01994 
01995     if( verbose != 0 )
01996         mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );
01997 
01998     /* Do a dummy multiplication first to trigger precomputation */
01999     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
02000     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G , NULL, NULL ) );
02001 
02002     add_count = 0;
02003     dbl_count = 0;
02004     mul_count = 0;
02005     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
02006     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G , NULL, NULL ) );
02007 
02008     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
02009     {
02010         add_c_prev = add_count;
02011         dbl_c_prev = dbl_count;
02012         mul_c_prev = mul_count;
02013         add_count = 0;
02014         dbl_count = 0;
02015         mul_count = 0;
02016 
02017         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
02018         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G , NULL, NULL ) );
02019 
02020         if( add_count != add_c_prev ||
02021             dbl_count != dbl_c_prev ||
02022             mul_count != mul_c_prev )
02023         {
02024             if( verbose != 0 )
02025                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
02026 
02027             ret = 1;
02028             goto cleanup;
02029         }
02030     }
02031 
02032     if( verbose != 0 )
02033         mbedtls_printf( "passed\n" );
02034 
02035     if( verbose != 0 )
02036         mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );
02037     /* We computed P = 2G last time, use it */
02038 
02039     add_count = 0;
02040     dbl_count = 0;
02041     mul_count = 0;
02042     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
02043     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
02044 
02045     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
02046     {
02047         add_c_prev = add_count;
02048         dbl_c_prev = dbl_count;
02049         mul_c_prev = mul_count;
02050         add_count = 0;
02051         dbl_count = 0;
02052         mul_count = 0;
02053 
02054         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
02055         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
02056 
02057         if( add_count != add_c_prev ||
02058             dbl_count != dbl_c_prev ||
02059             mul_count != mul_c_prev )
02060         {
02061             if( verbose != 0 )
02062                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
02063 
02064             ret = 1;
02065             goto cleanup;
02066         }
02067     }
02068 
02069     if( verbose != 0 )
02070         mbedtls_printf( "passed\n" );
02071 
02072 cleanup:
02073 
02074     if( ret < 0 && verbose != 0 )
02075         mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
02076 
02077     mbedtls_ecp_group_free( &grp );
02078     mbedtls_ecp_point_free( &R );
02079     mbedtls_ecp_point_free( &P );
02080     mbedtls_mpi_free( &m );
02081 
02082     if( verbose != 0 )
02083         mbedtls_printf( "\n" );
02084 
02085     return( ret );
02086 }
02087 
02088 #endif /* MBEDTLS_SELF_TEST */
02089 
02090 #endif /* MBEDTLS_ECP_C */