mbedtls ported to mbed-classic

Fork of mbedtls by Christopher Haster

Revision:
1:24750b9ad5ef
diff -r 000000000000 -r 24750b9ad5ef source/ecp_curves.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/source/ecp_curves.c	Fri Jan 22 16:44:49 2016 -0600
@@ -0,0 +1,1325 @@
+/*
+ *  Elliptic curves over GF(p): curve-specific data and functions
+ *
+ *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
+ *  SPDX-License-Identifier: Apache-2.0
+ *
+ *  Licensed under the Apache License, Version 2.0 (the "License"); you may
+ *  not use this file except in compliance with the License.
+ *  You may obtain a copy of the License at
+ *
+ *  http://www.apache.org/licenses/LICENSE-2.0
+ *
+ *  Unless required by applicable law or agreed to in writing, software
+ *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ *  See the License for the specific language governing permissions and
+ *  limitations under the License.
+ *
+ *  This file is part of mbed TLS (https://tls.mbed.org)
+ */
+
+#if !defined(MBEDTLS_CONFIG_FILE)
+#include "mbedtls/config.h"
+#else
+#include MBEDTLS_CONFIG_FILE
+#endif
+
+#if defined(MBEDTLS_ECP_C)
+
+#include "mbedtls/ecp.h"
+
+#include <string.h>
+
+#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
+    !defined(inline) && !defined(__cplusplus)
+#define inline __inline
+#endif
+
+/*
+ * Conversion macros for embedded constants:
+ * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
+ */
+#if defined(MBEDTLS_HAVE_INT32)
+
+#define BYTES_TO_T_UINT_4( a, b, c, d )             \
+    ( (mbedtls_mpi_uint) a <<  0 ) |                          \
+    ( (mbedtls_mpi_uint) b <<  8 ) |                          \
+    ( (mbedtls_mpi_uint) c << 16 ) |                          \
+    ( (mbedtls_mpi_uint) d << 24 )
+
+#define BYTES_TO_T_UINT_2( a, b )                   \
+    BYTES_TO_T_UINT_4( a, b, 0, 0 )
+
+#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
+    BYTES_TO_T_UINT_4( a, b, c, d ),                \
+    BYTES_TO_T_UINT_4( e, f, g, h )
+
+#else /* 64-bits */
+
+#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
+    ( (mbedtls_mpi_uint) a <<  0 ) |                          \
+    ( (mbedtls_mpi_uint) b <<  8 ) |                          \
+    ( (mbedtls_mpi_uint) c << 16 ) |                          \
+    ( (mbedtls_mpi_uint) d << 24 ) |                          \
+    ( (mbedtls_mpi_uint) e << 32 ) |                          \
+    ( (mbedtls_mpi_uint) f << 40 ) |                          \
+    ( (mbedtls_mpi_uint) g << 48 ) |                          \
+    ( (mbedtls_mpi_uint) h << 56 )
+
+#define BYTES_TO_T_UINT_4( a, b, c, d )             \
+    BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
+
+#define BYTES_TO_T_UINT_2( a, b )                   \
+    BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
+
+#endif /* bits in mbedtls_mpi_uint */
+
+/*
+ * Note: the constants are in little-endian order
+ * to be directly usable in MPIs
+ */
+
+/*
+ * Domain parameters for secp192r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static const mbedtls_mpi_uint secp192r1_p[] = {
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp192r1_b[] = {
+    BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
+    BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
+    BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
+};
+static const mbedtls_mpi_uint secp192r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
+    BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
+    BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
+};
+static const mbedtls_mpi_uint secp192r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
+    BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
+    BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
+};
+static const mbedtls_mpi_uint secp192r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
+    BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+/*
+ * Domain parameters for secp224r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static const mbedtls_mpi_uint secp224r1_p[] = {
+    BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
+    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
+};
+static const mbedtls_mpi_uint secp224r1_b[] = {
+    BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
+    BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
+    BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
+    BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
+};
+static const mbedtls_mpi_uint secp224r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
+    BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
+    BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
+    BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
+};
+static const mbedtls_mpi_uint secp224r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
+    BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
+    BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
+    BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
+};
+static const mbedtls_mpi_uint secp224r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
+    BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+/*
+ * Domain parameters for secp256r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static const mbedtls_mpi_uint secp256r1_p[] = {
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
+    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
+    BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp256r1_b[] = {
+    BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
+    BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
+    BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
+    BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
+};
+static const mbedtls_mpi_uint secp256r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
+    BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
+    BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
+    BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
+};
+static const mbedtls_mpi_uint secp256r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
+    BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
+    BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
+    BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
+};
+static const mbedtls_mpi_uint secp256r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
+    BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+/*
+ * Domain parameters for secp384r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static const mbedtls_mpi_uint secp384r1_p[] = {
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
+    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp384r1_b[] = {
+    BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
+    BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
+    BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
+    BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
+    BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
+    BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
+};
+static const mbedtls_mpi_uint secp384r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
+    BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
+    BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
+    BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
+    BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
+    BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
+};
+static const mbedtls_mpi_uint secp384r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
+    BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
+    BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
+    BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
+    BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
+    BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
+};
+static const mbedtls_mpi_uint secp384r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
+    BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
+    BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+/*
+ * Domain parameters for secp521r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static const mbedtls_mpi_uint secp521r1_p[] = {
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
+};
+static const mbedtls_mpi_uint secp521r1_b[] = {
+    BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
+    BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
+    BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
+    BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
+    BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
+    BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
+    BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
+    BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
+    BYTES_TO_T_UINT_2( 0x51, 0x00 ),
+};
+static const mbedtls_mpi_uint secp521r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
+    BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
+    BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
+    BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
+    BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
+    BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
+    BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
+    BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
+    BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
+};
+static const mbedtls_mpi_uint secp521r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
+    BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
+    BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
+    BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
+    BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
+    BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
+    BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
+    BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
+    BYTES_TO_T_UINT_2( 0x18, 0x01 ),
+};
+static const mbedtls_mpi_uint secp521r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
+    BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
+    BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
+    BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
+    BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static const mbedtls_mpi_uint secp192k1_p[] = {
+    BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp192k1_a[] = {
+    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
+};
+static const mbedtls_mpi_uint secp192k1_b[] = {
+    BYTES_TO_T_UINT_2( 0x03, 0x00 ),
+};
+static const mbedtls_mpi_uint secp192k1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
+    BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
+    BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
+};
+static const mbedtls_mpi_uint secp192k1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
+    BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
+    BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
+};
+static const mbedtls_mpi_uint secp192k1_n[] = {
+    BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
+    BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static const mbedtls_mpi_uint secp224k1_p[] = {
+    BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp224k1_a[] = {
+    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
+};
+static const mbedtls_mpi_uint secp224k1_b[] = {
+    BYTES_TO_T_UINT_2( 0x05, 0x00 ),
+};
+static const mbedtls_mpi_uint secp224k1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
+    BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
+    BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
+    BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
+};
+static const mbedtls_mpi_uint secp224k1_gy[] = {
+    BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
+    BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
+    BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
+    BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
+};
+static const mbedtls_mpi_uint secp224k1_n[] = {
+    BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
+    BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
+    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
+    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static const mbedtls_mpi_uint secp256k1_p[] = {
+    BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp256k1_a[] = {
+    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
+};
+static const mbedtls_mpi_uint secp256k1_b[] = {
+    BYTES_TO_T_UINT_2( 0x07, 0x00 ),
+};
+static const mbedtls_mpi_uint secp256k1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
+    BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
+    BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
+    BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
+};
+static const mbedtls_mpi_uint secp256k1_gy[] = {
+    BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
+    BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
+    BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
+    BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
+};
+static const mbedtls_mpi_uint secp256k1_n[] = {
+    BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
+    BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
+    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
+ */
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
+    BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
+    BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
+    BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
+    BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
+    BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
+    BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
+    BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
+    BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
+    BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
+    BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
+    BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
+    BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
+    BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
+    BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
+    BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
+    BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
+    BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
+    BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
+    BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
+    BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
+    BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
+    BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
+};
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
+ */
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
+    BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
+    BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
+    BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
+    BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
+    BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
+    BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
+    BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
+    BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
+    BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
+    BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
+    BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
+    BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
+    BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
+    BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
+    BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
+    BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
+    BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
+    BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
+    BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
+    BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
+    BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
+    BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
+    BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
+    BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
+    BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
+    BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
+    BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
+    BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
+    BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
+    BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
+    BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
+    BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
+    BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
+};
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
+ */
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
+    BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
+    BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
+    BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
+    BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
+    BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
+    BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
+    BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
+    BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
+    BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
+    BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
+    BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
+    BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
+    BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
+    BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
+    BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
+    BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
+    BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
+    BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
+    BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
+    BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
+    BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
+    BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
+    BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
+    BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
+    BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
+    BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
+    BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
+    BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
+    BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
+    BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
+    BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
+    BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
+    BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
+    BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
+    BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
+    BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
+    BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
+    BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
+    BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
+    BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
+    BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
+    BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
+    BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
+    BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
+    BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
+    BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
+    BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
+    BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
+};
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+/*
+ * Create an MPI from embedded constants
+ * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
+ */
+static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
+{
+    X->s = 1;
+    X->n = len / sizeof( mbedtls_mpi_uint );
+    X->p = (mbedtls_mpi_uint *) p;
+}
+
+/*
+ * Set an MPI to static value 1
+ */
+static inline void ecp_mpi_set1( mbedtls_mpi *X )
+{
+    static mbedtls_mpi_uint one[] = { 1 };
+    X->s = 1;
+    X->n = 1;
+    X->p = one;
+}
+
+/*
+ * Make group available from embedded constants
+ */
+static int ecp_group_load( mbedtls_ecp_group *grp,
+                           const mbedtls_mpi_uint *p,  size_t plen,
+                           const mbedtls_mpi_uint *a,  size_t alen,
+                           const mbedtls_mpi_uint *b,  size_t blen,
+                           const mbedtls_mpi_uint *gx, size_t gxlen,
+                           const mbedtls_mpi_uint *gy, size_t gylen,
+                           const mbedtls_mpi_uint *n,  size_t nlen)
+{
+    ecp_mpi_load( &grp->P, p, plen );
+    if( a != NULL )
+        ecp_mpi_load( &grp->A, a, alen );
+    ecp_mpi_load( &grp->B, b, blen );
+    ecp_mpi_load( &grp->N, n, nlen );
+
+    ecp_mpi_load( &grp->G.X, gx, gxlen );
+    ecp_mpi_load( &grp->G.Y, gy, gylen );
+    ecp_mpi_set1( &grp->G.Z );
+
+    grp->pbits = mbedtls_mpi_bitlen( &grp->P );
+    grp->nbits = mbedtls_mpi_bitlen( &grp->N );
+
+    grp->h = 1;
+
+    return( 0 );
+}
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/* Forward declarations */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static int ecp_mod_p192( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static int ecp_mod_p224( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static int ecp_mod_p256( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static int ecp_mod_p384( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static int ecp_mod_p521( mbedtls_mpi * );
+#endif
+
+#define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
+#else
+#define NIST_MODP( P )
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+/* Additional forward declarations */
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+static int ecp_mod_p255( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static int ecp_mod_p192k1( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static int ecp_mod_p224k1( mbedtls_mpi * );
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static int ecp_mod_p256k1( mbedtls_mpi * );
+#endif
+
+#define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
+                            G ## _p,  sizeof( G ## _p  ),   \
+                            G ## _a,  sizeof( G ## _a  ),   \
+                            G ## _b,  sizeof( G ## _b  ),   \
+                            G ## _gx, sizeof( G ## _gx ),   \
+                            G ## _gy, sizeof( G ## _gy ),   \
+                            G ## _n,  sizeof( G ## _n  ) )
+
+#define LOAD_GROUP( G )     ecp_group_load( grp,            \
+                            G ## _p,  sizeof( G ## _p  ),   \
+                            NULL,     0,                    \
+                            G ## _b,  sizeof( G ## _b  ),   \
+                            G ## _gx, sizeof( G ## _gx ),   \
+                            G ## _gy, sizeof( G ## _gy ),   \
+                            G ## _n,  sizeof( G ## _n  ) )
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+/*
+ * Specialized function for creating the Curve25519 group
+ */
+static int ecp_use_curve25519( mbedtls_ecp_group *grp )
+{
+    int ret;
+
+    /* Actually ( A + 2 ) / 4 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
+
+    /* P = 2^255 - 19 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
+    grp->pbits = mbedtls_mpi_bitlen( &grp->P );
+
+    /* Y intentionaly not set, since we use x/z coordinates.
+     * This is used as a marker to identify Montgomery curves! */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
+    mbedtls_mpi_free( &grp->G.Y );
+
+    /* Actually, the required msb for private keys */
+    grp->nbits = 254;
+
+cleanup:
+    if( ret != 0 )
+        mbedtls_ecp_group_free( grp );
+
+    return( ret );
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+/*
+ * Set a group using well-known domain parameters
+ */
+int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
+{
+    mbedtls_ecp_group_free( grp );
+
+    grp->id = id;
+
+    switch( id )
+    {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192R1:
+            NIST_MODP( p192 );
+            return( LOAD_GROUP( secp192r1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224R1:
+            NIST_MODP( p224 );
+            return( LOAD_GROUP( secp224r1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256R1:
+            NIST_MODP( p256 );
+            return( LOAD_GROUP( secp256r1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP384R1:
+            NIST_MODP( p384 );
+            return( LOAD_GROUP( secp384r1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP521R1:
+            NIST_MODP( p521 );
+            return( LOAD_GROUP( secp521r1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192K1:
+            grp->modp = ecp_mod_p192k1;
+            return( LOAD_GROUP_A( secp192k1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224K1:
+            grp->modp = ecp_mod_p224k1;
+            return( LOAD_GROUP_A( secp224k1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256K1:
+            grp->modp = ecp_mod_p256k1;
+            return( LOAD_GROUP_A( secp256k1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP256R1:
+            return( LOAD_GROUP_A( brainpoolP256r1 ) );
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP384R1:
+            return( LOAD_GROUP_A( brainpoolP384r1 ) );
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP512R1:
+            return( LOAD_GROUP_A( brainpoolP512r1 ) );
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE25519:
+            grp->modp = ecp_mod_p255;
+            return( ecp_use_curve25519( grp ) );
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+        default:
+            mbedtls_ecp_group_free( grp );
+            return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
+    }
+}
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/*
+ * Fast reduction modulo the primes used by the NIST curves.
+ *
+ * These functions are critical for speed, but not needed for correct
+ * operations. So, we make the choice to heavily rely on the internals of our
+ * bignum library, which creates a tight coupling between these functions and
+ * our MPI implementation.  However, the coupling between the ECP module and
+ * MPI remains loose, since these functions can be deactivated at will.
+ */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+/*
+ * Compared to the way things are presented in FIPS 186-3 D.2,
+ * we proceed in columns, from right (least significant chunk) to left,
+ * adding chunks to N in place, and keeping a carry for the next chunk.
+ * This avoids moving things around in memory, and uselessly adding zeros,
+ * compared to the more straightforward, line-oriented approach.
+ *
+ * For this prime we need to handle data in chunks of 64 bits.
+ * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
+ * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
+ */
+
+/* Add 64-bit chunks (dst += src) and update carry */
+static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
+{
+    unsigned char i;
+    mbedtls_mpi_uint c = 0;
+    for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
+    {
+        *dst += c;      c  = ( *dst < c );
+        *dst += *src;   c += ( *dst < *src );
+    }
+    *carry += c;
+}
+
+/* Add carry to a 64-bit chunk and update carry */
+static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
+{
+    unsigned char i;
+    for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
+    {
+        *dst += *carry;
+        *carry  = ( *dst < *carry );
+    }
+}
+
+#define WIDTH       8 / sizeof( mbedtls_mpi_uint )
+#define A( i )      N->p + i * WIDTH
+#define ADD( i )    add64( p, A( i ), &c )
+#define NEXT        p += WIDTH; carry64( p, &c )
+#define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
+
+/*
+ * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ */
+static int ecp_mod_p192( mbedtls_mpi *N )
+{
+    int ret;
+    mbedtls_mpi_uint c = 0;
+    mbedtls_mpi_uint *p, *end;
+
+    /* Make sure we have enough blocks so that A(5) is legal */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
+
+    p = N->p;
+    end = p + N->n;
+
+    ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
+    ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
+    ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
+
+cleanup:
+    return( ret );
+}
+
+#undef WIDTH
+#undef A
+#undef ADD
+#undef NEXT
+#undef LAST
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * The reader is advised to first understand ecp_mod_p192() since the same
+ * general structure is used here, but with additional complications:
+ * (1) chunks of 32 bits, and (2) subtractions.
+ */
+
+/*
+ * For these primes, we need to handle data in chunks of 32 bits.
+ * This makes it more complicated if we use 64 bits limbs in MPI,
+ * which prevents us from using a uniform access method as for p192.
+ *
+ * So, we define a mini abstraction layer to access 32 bit chunks,
+ * load them in 'cur' for work, and store them back from 'cur' when done.
+ *
+ * While at it, also define the size of N in terms of 32-bit chunks.
+ */
+#define LOAD32      cur = A( i );
+
+#if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
+
+#define MAX32       N->n
+#define A( j )      N->p[j]
+#define STORE32     N->p[i] = cur;
+
+#else                               /* 64-bit */
+
+#define MAX32       N->n * 2
+#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
+#define STORE32                                   \
+    if( i % 2 ) {                                 \
+        N->p[i/2] &= 0x00000000FFFFFFFF;          \
+        N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
+    } else {                                      \
+        N->p[i/2] &= 0xFFFFFFFF00000000;          \
+        N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
+    }
+
+#endif /* sizeof( mbedtls_mpi_uint ) */
+
+/*
+ * Helpers for addition and subtraction of chunks, with signed carry.
+ */
+static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
+{
+    *dst += src;
+    *carry += ( *dst < src );
+}
+
+static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
+{
+    *carry -= ( *dst < src );
+    *dst -= src;
+}
+
+#define ADD( j )    add32( &cur, A( j ), &c );
+#define SUB( j )    sub32( &cur, A( j ), &c );
+
+/*
+ * Helpers for the main 'loop'
+ * (see fix_negative for the motivation of C)
+ */
+#define INIT( b )                                           \
+    int ret;                                                \
+    signed char c = 0, cc;                                  \
+    uint32_t cur;                                           \
+    size_t i = 0, bits = b;                                 \
+    mbedtls_mpi C;                                                  \
+    mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ];               \
+                                                            \
+    C.s = 1;                                                \
+    C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
+    C.p = Cp;                                               \
+    memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                \
+                                                            \
+    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
+    LOAD32;
+
+#define NEXT                    \
+    STORE32; i++; LOAD32;       \
+    cc = c; c = 0;              \
+    if( cc < 0 )                \
+        sub32( &cur, -cc, &c ); \
+    else                        \
+        add32( &cur, cc, &c );  \
+
+#define LAST                                    \
+    STORE32; i++;                               \
+    cur = c > 0 ? c : 0; STORE32;               \
+    cur = 0; while( ++i < MAX32 ) { STORE32; }  \
+    if( c < 0 ) fix_negative( N, c, &C, bits );
+
+/*
+ * If the result is negative, we get it in the form
+ * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
+ */
+static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
+{
+    int ret;
+
+    /* C = - c * 2^(bits + 32) */
+#if !defined(MBEDTLS_HAVE_INT64)
+    ((void) bits);
+#else
+    if( bits == 224 )
+        C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
+    else
+#endif
+        C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
+
+    /* N = - ( C - N ) */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
+    N->s = -1;
+
+cleanup:
+
+    return( ret );
+}
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ */
+static int ecp_mod_p224( mbedtls_mpi *N )
+{
+    INIT( 224 );
+
+    SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
+    SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
+    SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
+    SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
+    SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
+    SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
+    SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
+
+cleanup:
+    return( ret );
+}
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ */
+static int ecp_mod_p256( mbedtls_mpi *N )
+{
+    INIT( 256 );
+
+    ADD(  8 ); ADD(  9 );
+    SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
+
+    ADD(  9 ); ADD( 10 );
+    SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
+
+    ADD( 10 ); ADD( 11 );
+    SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
+
+    ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
+    SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
+
+    ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
+    SUB(  9 ); SUB( 10 );                                   NEXT; // A4
+
+    ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
+    SUB( 10 ); SUB( 11 );                                   NEXT; // A5
+
+    ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
+    SUB(  8 ); SUB(  9 );                                   NEXT; // A6
+
+    ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
+    SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
+
+cleanup:
+    return( ret );
+}
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ */
+static int ecp_mod_p384( mbedtls_mpi *N )
+{
+    INIT( 384 );
+
+    ADD( 12 ); ADD( 21 ); ADD( 20 );
+    SUB( 23 );                                              NEXT; // A0
+
+    ADD( 13 ); ADD( 22 ); ADD( 23 );
+    SUB( 12 ); SUB( 20 );                                   NEXT; // A2
+
+    ADD( 14 ); ADD( 23 );
+    SUB( 13 ); SUB( 21 );                                   NEXT; // A2
+
+    ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
+    SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
+
+    ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
+    SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
+
+    ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
+    SUB( 16 );                                              NEXT; // A5
+
+    ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
+    SUB( 17 );                                              NEXT; // A6
+
+    ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
+    SUB( 18 );                                              NEXT; // A7
+
+    ADD( 20 ); ADD( 17 ); ADD( 16 );
+    SUB( 19 );                                              NEXT; // A8
+
+    ADD( 21 ); ADD( 18 ); ADD( 17 );
+    SUB( 20 );                                              NEXT; // A9
+
+    ADD( 22 ); ADD( 19 ); ADD( 18 );
+    SUB( 21 );                                              NEXT; // A10
+
+    ADD( 23 ); ADD( 20 ); ADD( 19 );
+    SUB( 22 );                                              LAST; // A11
+
+cleanup:
+    return( ret );
+}
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#undef A
+#undef LOAD32
+#undef STORE32
+#undef MAX32
+#undef INIT
+#undef NEXT
+#undef LAST
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
+          MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
+          MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+/*
+ * Here we have an actual Mersenne prime, so things are more straightforward.
+ * However, chunks are aligned on a 'weird' boundary (521 bits).
+ */
+
+/* Size of p521 in terms of mbedtls_mpi_uint */
+#define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
+
+/* Bits to keep in the most significant mbedtls_mpi_uint */
+#define P521_MASK       0x01FF
+
+/*
+ * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
+ * Write N as A1 + 2^521 A0, return A0 + A1
+ */
+static int ecp_mod_p521( mbedtls_mpi *N )
+{
+    int ret;
+    size_t i;
+    mbedtls_mpi M;
+    mbedtls_mpi_uint Mp[P521_WIDTH + 1];
+    /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
+     * we need to hold bits 513 to 1056, which is 34 limbs, that is
+     * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
+
+    if( N->n < P521_WIDTH )
+        return( 0 );
+
+    /* M = A1 */
+    M.s = 1;
+    M.n = N->n - ( P521_WIDTH - 1 );
+    if( M.n > P521_WIDTH + 1 )
+        M.n = P521_WIDTH + 1;
+    M.p = Mp;
+    memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
+
+    /* N = A0 */
+    N->p[P521_WIDTH - 1] &= P521_MASK;
+    for( i = P521_WIDTH; i < N->n; i++ )
+        N->p[i] = 0;
+
+    /* N = A0 + A1 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
+
+cleanup:
+    return( ret );
+}
+
+#undef P521_WIDTH
+#undef P521_MASK
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/* Size of p255 in terms of mbedtls_mpi_uint */
+#define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
+
+/*
+ * Fast quasi-reduction modulo p255 = 2^255 - 19
+ * Write N as A0 + 2^255 A1, return A0 + 19 * A1
+ */
+static int ecp_mod_p255( mbedtls_mpi *N )
+{
+    int ret;
+    size_t i;
+    mbedtls_mpi M;
+    mbedtls_mpi_uint Mp[P255_WIDTH + 2];
+
+    if( N->n < P255_WIDTH )
+        return( 0 );
+
+    /* M = A1 */
+    M.s = 1;
+    M.n = N->n - ( P255_WIDTH - 1 );
+    if( M.n > P255_WIDTH + 1 )
+        M.n = P255_WIDTH + 1;
+    M.p = Mp;
+    memset( Mp, 0, sizeof Mp );
+    memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
+    M.n++; /* Make room for multiplication by 19 */
+
+    /* N = A0 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
+    for( i = P255_WIDTH; i < N->n; i++ )
+        N->p[i] = 0;
+
+    /* N = A0 + 19 * A1 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
+
+cleanup:
+    return( ret );
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo P = 2^s - R,
+ * with R about 33 bits, used by the Koblitz curves.
+ *
+ * Write N as A0 + 2^224 A1, return A0 + R * A1.
+ * Actually do two passes, since R is big.
+ */
+#define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
+#define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
+static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
+                                   size_t adjust, size_t shift, mbedtls_mpi_uint mask )
+{
+    int ret;
+    size_t i;
+    mbedtls_mpi M, R;
+    mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R];
+
+    if( N->n < p_limbs )
+        return( 0 );
+
+    /* Init R */
+    R.s = 1;
+    R.p = Rp;
+    R.n = P_KOBLITZ_R;
+
+    /* Common setup for M */
+    M.s = 1;
+    M.p = Mp;
+
+    /* M = A1 */
+    M.n = N->n - ( p_limbs - adjust );
+    if( M.n > p_limbs + adjust )
+        M.n = p_limbs + adjust;
+    memset( Mp, 0, sizeof Mp );
+    memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
+    if( shift != 0 )
+        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
+    M.n += R.n - adjust; /* Make room for multiplication by R */
+
+    /* N = A0 */
+    if( mask != 0 )
+        N->p[p_limbs - 1] &= mask;
+    for( i = p_limbs; i < N->n; i++ )
+        N->p[i] = 0;
+
+    /* N = A0 + R * A1 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
+
+    /* Second pass */
+
+    /* M = A1 */
+    M.n = N->n - ( p_limbs - adjust );
+    if( M.n > p_limbs + adjust )
+        M.n = p_limbs + adjust;
+    memset( Mp, 0, sizeof Mp );
+    memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
+    if( shift != 0 )
+        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
+    M.n += R.n - adjust; /* Make room for multiplication by R */
+
+    /* N = A0 */
+    if( mask != 0 )
+        N->p[p_limbs - 1] &= mask;
+    for( i = p_limbs; i < N->n; i++ )
+        N->p[i] = 0;
+
+    /* N = A0 + R * A1 */
+    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
+    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
+
+cleanup:
+    return( ret );
+}
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
+          MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
+          MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
+ */
+static int ecp_mod_p192k1( mbedtls_mpi *N )
+{
+    static mbedtls_mpi_uint Rp[] = {
+        BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
+
+    return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
+}
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ */
+static int ecp_mod_p224k1( mbedtls_mpi *N )
+{
+    static mbedtls_mpi_uint Rp[] = {
+        BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
+
+#if defined(MBEDTLS_HAVE_INT64)
+    return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
+#else
+    return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
+#endif
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ */
+static int ecp_mod_p256k1( mbedtls_mpi *N )
+{
+    static mbedtls_mpi_uint Rp[] = {
+        BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
+    return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
+}
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#endif /* MBEDTLS_ECP_C */