ON Semiconductor / mbed-os

Dependents:   mbed-TFT-example-NCS36510 mbed-Accelerometer-example-NCS36510 mbed-Accelerometer-example-NCS36510

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers lwip_nd6.c Source File

lwip_nd6.c

Go to the documentation of this file.
00001 /**
00002  * @file
00003  *
00004  * Neighbor discovery and stateless address autoconfiguration for IPv6.
00005  * Aims to be compliant with RFC 4861 (Neighbor discovery) and RFC 4862
00006  * (Address autoconfiguration).
00007  */
00008 
00009 /*
00010  * Copyright (c) 2010 Inico Technologies Ltd.
00011  * All rights reserved.
00012  *
00013  * Redistribution and use in source and binary forms, with or without modification,
00014  * are permitted provided that the following conditions are met:
00015  *
00016  * 1. Redistributions of source code must retain the above copyright notice,
00017  *    this list of conditions and the following disclaimer.
00018  * 2. Redistributions in binary form must reproduce the above copyright notice,
00019  *    this list of conditions and the following disclaimer in the documentation
00020  *    and/or other materials provided with the distribution.
00021  * 3. The name of the author may not be used to endorse or promote products
00022  *    derived from this software without specific prior written permission.
00023  *
00024  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
00025  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
00026  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
00027  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00028  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
00029  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00030  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00031  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
00032  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
00033  * OF SUCH DAMAGE.
00034  *
00035  * This file is part of the lwIP TCP/IP stack.
00036  *
00037  * Author: Ivan Delamer <delamer@inicotech.com>
00038  *
00039  *
00040  * Please coordinate changes and requests with Ivan Delamer
00041  * <delamer@inicotech.com>
00042  */
00043 
00044 #include "lwip/opt.h"
00045 
00046 #if LWIP_IPV6  /* don't build if not configured for use in lwipopts.h */
00047 
00048 #include "lwip/nd6.h"
00049 #include "lwip/pbuf.h"
00050 #include "lwip/mem.h"
00051 #include "lwip/memp.h"
00052 #include "lwip/ip6.h"
00053 #include "lwip/ip6_addr.h"
00054 #include "lwip/inet_chksum.h"
00055 #include "lwip/netif.h"
00056 #include "lwip/icmp6.h"
00057 #include "lwip/mld6.h"
00058 #include "lwip/ip.h"
00059 #include "lwip/stats.h"
00060 
00061 #include <string.h>
00062 
00063 
00064 /* Router tables. */
00065 struct nd6_neighbor_cache_entry neighbor_cache[LWIP_ND6_NUM_NEIGHBORS];
00066 struct nd6_destination_cache_entry destination_cache[LWIP_ND6_NUM_DESTINATIONS];
00067 struct nd6_prefix_list_entry prefix_list[LWIP_ND6_NUM_PREFIXES];
00068 struct nd6_router_list_entry default_router_list[LWIP_ND6_NUM_ROUTERS];
00069 
00070 /* Default values, can be updated by a RA message. */
00071 u32_t reachable_time = LWIP_ND6_REACHABLE_TIME;
00072 u32_t retrans_timer = LWIP_ND6_RETRANS_TIMER; /* @todo implement this value in timer */
00073 
00074 /* Index for cache entries. */
00075 static u8_t nd6_cached_neighbor_index;
00076 static u8_t nd6_cached_destination_index;
00077 
00078 /* Multicast address holder. */
00079 static ip6_addr_t multicast_address;
00080 
00081 /* Static buffer to parse RA packet options (size of a prefix option, biggest option) */
00082 static u8_t nd6_ra_buffer[sizeof(struct prefix_option)];
00083 
00084 /* Forward declarations. */
00085 static s8_t nd6_find_neighbor_cache_entry(const ip6_addr_t * ip6addr);
00086 static s8_t nd6_new_neighbor_cache_entry(void);
00087 static void nd6_free_neighbor_cache_entry(s8_t i);
00088 static s8_t nd6_find_destination_cache_entry(const ip6_addr_t * ip6addr);
00089 static s8_t nd6_new_destination_cache_entry(void);
00090 static s8_t nd6_is_prefix_in_netif(const ip6_addr_t * ip6addr, struct netif * netif);
00091 static s8_t nd6_get_router(const ip6_addr_t * router_addr, struct netif * netif);
00092 static s8_t nd6_new_router(const ip6_addr_t * router_addr, struct netif * netif);
00093 static s8_t nd6_get_onlink_prefix(ip6_addr_t * prefix, struct netif * netif);
00094 static s8_t nd6_new_onlink_prefix(ip6_addr_t * prefix, struct netif * netif);
00095 
00096 #define ND6_SEND_FLAG_MULTICAST_DEST 0x01
00097 #define ND6_SEND_FLAG_ALLNODES_DEST 0x02
00098 static void nd6_send_ns(struct netif * netif, const ip6_addr_t * target_addr, u8_t flags);
00099 static void nd6_send_na(struct netif * netif, const ip6_addr_t * target_addr, u8_t flags);
00100 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
00101 static err_t nd6_send_rs(struct netif * netif);
00102 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
00103 
00104 #if LWIP_ND6_QUEUEING
00105 static void nd6_free_q(struct nd6_q_entry *q);
00106 #else /* LWIP_ND6_QUEUEING */
00107 #define nd6_free_q(q) pbuf_free(q)
00108 #endif /* LWIP_ND6_QUEUEING */
00109 static void nd6_send_q(s8_t i);
00110 
00111 
00112 /**
00113  * Process an incoming neighbor discovery message
00114  *
00115  * @param p the nd packet, p->payload pointing to the icmpv6 header
00116  * @param inp the netif on which this packet was received
00117  */
00118 void
00119 nd6_input(struct pbuf *p, struct netif *inp)
00120 {
00121   u8_t msg_type;
00122   s8_t i;
00123 
00124   ND6_STATS_INC(nd6.recv);
00125 
00126   msg_type = *((u8_t *)p->payload);
00127   switch (msg_type) {
00128   case ICMP6_TYPE_NA: /* Neighbor Advertisement. */
00129   {
00130     struct na_header * na_hdr;
00131     struct lladdr_option * lladdr_opt;
00132 
00133     /* Check that na header fits in packet. */
00134     if (p->len < (sizeof(struct na_header))) {
00135       /* @todo debug message */
00136       pbuf_free(p);
00137       ND6_STATS_INC(nd6.lenerr);
00138       ND6_STATS_INC(nd6.drop);
00139       return;
00140     }
00141 
00142     na_hdr = (struct na_header *)p->payload;
00143 
00144     /* Unsolicited NA?*/
00145     if (ip6_addr_ismulticast(ip6_current_dest_addr())) {
00146       /* This is an unsolicited NA.
00147        * link-layer changed?
00148        * part of DAD mechanism? */
00149 
00150       /* Check that link-layer address option also fits in packet. */
00151       if (p->len < (sizeof(struct na_header) + 2)) {
00152         /* @todo debug message */
00153         pbuf_free(p);
00154         ND6_STATS_INC(nd6.lenerr);
00155         ND6_STATS_INC(nd6.drop);
00156         return;
00157       }
00158 
00159       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
00160 
00161       if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
00162         /* @todo debug message */
00163         pbuf_free(p);
00164         ND6_STATS_INC(nd6.lenerr);
00165         ND6_STATS_INC(nd6.drop);
00166         return;
00167       }
00168 
00169       /* Override ip6_current_dest_addr() so that we have an aligned copy. */
00170       ip6_addr_set(ip6_current_dest_addr(), &(na_hdr->target_address));
00171 
00172 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS
00173       /* If the target address matches this netif, it is a DAD response. */
00174       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
00175         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
00176             ip6_addr_cmp(ip6_current_dest_addr(), netif_ip6_addr(inp, i))) {
00177           /* We are using a duplicate address. */
00178           netif_ip6_addr_set_state(inp, i, IP6_ADDR_INVALID);
00179 
00180 #if LWIP_IPV6_MLD
00181           /* Leave solicited node multicast group. */
00182           ip6_addr_set_solicitednode(&multicast_address, netif_ip6_addr(inp, i)->addr[3]);
00183           mld6_leavegroup(netif_ip6_addr(inp, i), &multicast_address);
00184 #endif /* LWIP_IPV6_MLD */
00185 
00186 #if LWIP_IPV6_AUTOCONFIG
00187           /* Check to see if this address was autoconfigured. */
00188           if (!ip6_addr_islinklocal(ip6_current_dest_addr())) {
00189             i = nd6_get_onlink_prefix(ip6_current_dest_addr(), inp);
00190             if (i >= 0) {
00191               /* Mark this prefix as duplicate, so that we don't use it
00192                * to generate this address again. */
00193               prefix_list[i].flags |= ND6_PREFIX_AUTOCONFIG_ADDRESS_DUPLICATE;
00194             }
00195           }
00196 #endif /* LWIP_IPV6_AUTOCONFIG */
00197 
00198           pbuf_free(p);
00199           return;
00200         }
00201       }
00202 #endif /* LWIP_IPV6_DUP_DETECT_ATTEMPTS */
00203 
00204       /* This is an unsolicited NA, most likely there was a LLADDR change. */
00205       i = nd6_find_neighbor_cache_entry(ip6_current_dest_addr());
00206       if (i >= 0) {
00207         if (na_hdr->flags & ND6_FLAG_OVERRIDE) {
00208           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00209         }
00210       }
00211     } else {
00212       /* This is a solicited NA.
00213        * neighbor address resolution response?
00214        * neighbor unreachability detection response? */
00215 
00216       /* Override ip6_current_dest_addr() so that we have an aligned copy. */
00217       ip6_addr_set(ip6_current_dest_addr(), &(na_hdr->target_address));
00218 
00219       /* Find the cache entry corresponding to this na. */
00220       i = nd6_find_neighbor_cache_entry(ip6_current_dest_addr());
00221       if (i < 0) {
00222         /* We no longer care about this target address. drop it. */
00223         pbuf_free(p);
00224         return;
00225       }
00226 
00227       /* Update cache entry. */
00228       neighbor_cache[i].netif = inp;
00229       neighbor_cache[i].counter.reachable_time = reachable_time;
00230       if ((na_hdr->flags & ND6_FLAG_OVERRIDE) ||
00231           (neighbor_cache[i].state == ND6_INCOMPLETE)) {
00232         /* Check that link-layer address option also fits in packet. */
00233         if (p->len < (sizeof(struct na_header) + 2)) {
00234           /* @todo debug message */
00235           pbuf_free(p);
00236           ND6_STATS_INC(nd6.lenerr);
00237           ND6_STATS_INC(nd6.drop);
00238           return;
00239         }
00240 
00241         lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
00242 
00243         if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
00244           /* @todo debug message */
00245           pbuf_free(p);
00246           ND6_STATS_INC(nd6.lenerr);
00247           ND6_STATS_INC(nd6.drop);
00248           return;
00249         }
00250 
00251         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00252       }
00253       neighbor_cache[i].state = ND6_REACHABLE;
00254 
00255       /* Send queued packets, if any. */
00256       if (neighbor_cache[i].q != NULL) {
00257         nd6_send_q(i);
00258       }
00259     }
00260 
00261     break; /* ICMP6_TYPE_NA */
00262   }
00263   case ICMP6_TYPE_NS: /* Neighbor solicitation. */
00264   {
00265     struct ns_header * ns_hdr;
00266     struct lladdr_option * lladdr_opt;
00267     u8_t accepted;
00268 
00269     /* Check that ns header fits in packet. */
00270     if (p->len < sizeof(struct ns_header)) {
00271       /* @todo debug message */
00272       pbuf_free(p);
00273       ND6_STATS_INC(nd6.lenerr);
00274       ND6_STATS_INC(nd6.drop);
00275       return;
00276     }
00277 
00278     ns_hdr = (struct ns_header *)p->payload;
00279 
00280     /* Check if there is a link-layer address provided. Only point to it if in this buffer. */
00281     if (p->len >= (sizeof(struct ns_header) + 2)) {
00282       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
00283       if (p->len < (sizeof(struct ns_header) + (lladdr_opt->length << 3))) {
00284         lladdr_opt = NULL;
00285       }
00286     } else {
00287       lladdr_opt = NULL;
00288     }
00289 
00290     /* Check if the target address is configured on the receiving netif. */
00291     accepted = 0;
00292     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
00293       if ((ip6_addr_isvalid(netif_ip6_addr_state(inp, i)) ||
00294            (ip6_addr_istentative(netif_ip6_addr_state(inp, i)) &&
00295             ip6_addr_isany(ip6_current_src_addr()))) &&
00296           ip6_addr_cmp(&(ns_hdr->target_address), netif_ip6_addr(inp, i))) {
00297         accepted = 1;
00298         break;
00299       }
00300     }
00301 
00302     /* NS not for us? */
00303     if (!accepted) {
00304       pbuf_free(p);
00305       return;
00306     }
00307 
00308     /* Check for ANY address in src (DAD algorithm). */
00309     if (ip6_addr_isany(ip6_current_src_addr())) {
00310       /* Sender is validating this address. */
00311       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
00312         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
00313             ip6_addr_cmp(&(ns_hdr->target_address), netif_ip6_addr(inp, i))) {
00314           /* Send a NA back so that the sender does not use this address. */
00315           nd6_send_na(inp, netif_ip6_addr(inp, i), ND6_FLAG_OVERRIDE | ND6_SEND_FLAG_ALLNODES_DEST);
00316           if (ip6_addr_istentative(netif_ip6_addr_state(inp, i))) {
00317             /* We shouldn't use this address either. */
00318             netif_ip6_addr_set_state(inp, i, IP6_ADDR_INVALID);
00319           }
00320         }
00321       }
00322     } else {
00323       /* Sender is trying to resolve our address. */
00324       /* Verify that they included their own link-layer address. */
00325       if (lladdr_opt == NULL) {
00326         /* Not a valid message. */
00327         pbuf_free(p);
00328         ND6_STATS_INC(nd6.proterr);
00329         ND6_STATS_INC(nd6.drop);
00330         return;
00331       }
00332 
00333       i = nd6_find_neighbor_cache_entry(ip6_current_src_addr());
00334       if (i>= 0) {
00335         /* We already have a record for the solicitor. */
00336         if (neighbor_cache[i].state == ND6_INCOMPLETE) {
00337           neighbor_cache[i].netif = inp;
00338           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00339 
00340           /* Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00341           neighbor_cache[i].state = ND6_DELAY;
00342           neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME;
00343         }
00344       } else {
00345         /* Add their IPv6 address and link-layer address to neighbor cache.
00346          * We will need it at least to send a unicast NA message, but most
00347          * likely we will also be communicating with this node soon. */
00348         i = nd6_new_neighbor_cache_entry();
00349         if (i < 0) {
00350           /* We couldn't assign a cache entry for this neighbor.
00351            * we won't be able to reply. drop it. */
00352           pbuf_free(p);
00353           ND6_STATS_INC(nd6.memerr);
00354           return;
00355         }
00356         neighbor_cache[i].netif = inp;
00357         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00358         ip6_addr_set(&(neighbor_cache[i].next_hop_address), ip6_current_src_addr());
00359 
00360         /* Receiving a message does not prove reachability: only in one direction.
00361          * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00362         neighbor_cache[i].state = ND6_DELAY;
00363         neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME;
00364       }
00365 
00366       /* Override ip6_current_dest_addr() so that we have an aligned copy. */
00367       ip6_addr_set(ip6_current_dest_addr(), &(ns_hdr->target_address));
00368 
00369       /* Send back a NA for us. Allocate the reply pbuf. */
00370       nd6_send_na(inp, ip6_current_dest_addr(), ND6_FLAG_SOLICITED | ND6_FLAG_OVERRIDE);
00371     }
00372 
00373     break; /* ICMP6_TYPE_NS */
00374   }
00375   case ICMP6_TYPE_RA: /* Router Advertisement. */
00376   {
00377     struct ra_header * ra_hdr;
00378     u8_t * buffer; /* Used to copy options. */
00379     u16_t offset;
00380 
00381     /* Check that RA header fits in packet. */
00382     if (p->len < sizeof(struct ra_header)) {
00383       /* @todo debug message */
00384       pbuf_free(p);
00385       ND6_STATS_INC(nd6.lenerr);
00386       ND6_STATS_INC(nd6.drop);
00387       return;
00388     }
00389 
00390     ra_hdr = (struct ra_header *)p->payload;
00391 
00392     /* If we are sending RS messages, stop. */
00393 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
00394     /* ensure at least one solicitation is sent */
00395     if ((inp->rs_count < LWIP_ND6_MAX_MULTICAST_SOLICIT) ||
00396         (nd6_send_rs(inp) == ERR_OK)) {
00397       inp->rs_count = 0;
00398     }
00399 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
00400 
00401     /* Get the matching default router entry. */
00402     i = nd6_get_router(ip6_current_src_addr(), inp);
00403     if (i < 0) {
00404       /* Create a new router entry. */
00405       i = nd6_new_router(ip6_current_src_addr(), inp);
00406     }
00407 
00408     if (i < 0) {
00409       /* Could not create a new router entry. */
00410       pbuf_free(p);
00411       ND6_STATS_INC(nd6.memerr);
00412       return;
00413     }
00414 
00415     /* Re-set invalidation timer. */
00416     default_router_list[i].invalidation_timer = htons(ra_hdr->router_lifetime);
00417 
00418     /* Re-set default timer values. */
00419 #if LWIP_ND6_ALLOW_RA_UPDATES
00420     if (ra_hdr->retrans_timer > 0) {
00421       retrans_timer = htonl(ra_hdr->retrans_timer);
00422     }
00423     if (ra_hdr->reachable_time > 0) {
00424       reachable_time = htonl(ra_hdr->reachable_time);
00425     }
00426 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
00427 
00428     /* @todo set default hop limit... */
00429     /* ra_hdr->current_hop_limit;*/
00430 
00431     /* Update flags in local entry (incl. preference). */
00432     default_router_list[i].flags = ra_hdr->flags;
00433 
00434     /* Offset to options. */
00435     offset = sizeof(struct ra_header);
00436 
00437     /* Process each option. */
00438     while ((p->tot_len - offset) > 0) {
00439       if (p->len == p->tot_len) {
00440         /* no need to copy from contiguous pbuf */
00441         buffer = &((u8_t*)p->payload)[offset];
00442       } else {
00443         buffer = nd6_ra_buffer;
00444         pbuf_copy_partial(p, buffer, sizeof(struct prefix_option), offset);
00445       }
00446       if (buffer[1] == 0) {
00447         /* zero-length extension. drop packet */
00448         pbuf_free(p);
00449         ND6_STATS_INC(nd6.lenerr);
00450         ND6_STATS_INC(nd6.drop);
00451         return;
00452       }
00453       switch (buffer[0]) {
00454       case ND6_OPTION_TYPE_SOURCE_LLADDR:
00455       {
00456         struct lladdr_option * lladdr_opt;
00457         lladdr_opt = (struct lladdr_option *)buffer;
00458         if ((default_router_list[i].neighbor_entry != NULL) &&
00459             (default_router_list[i].neighbor_entry->state == ND6_INCOMPLETE)) {
00460           SMEMCPY(default_router_list[i].neighbor_entry->lladdr, lladdr_opt->addr, inp->hwaddr_len);
00461           default_router_list[i].neighbor_entry->state = ND6_REACHABLE;
00462           default_router_list[i].neighbor_entry->counter.reachable_time = reachable_time;
00463         }
00464         break;
00465       }
00466       case ND6_OPTION_TYPE_MTU:
00467       {
00468         struct mtu_option * mtu_opt;
00469         mtu_opt = (struct mtu_option *)buffer;
00470         if (htonl(mtu_opt->mtu) >= 1280) {
00471 #if LWIP_ND6_ALLOW_RA_UPDATES
00472           inp->mtu = (u16_t)htonl(mtu_opt->mtu);
00473 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
00474         }
00475         break;
00476       }
00477       case ND6_OPTION_TYPE_PREFIX_INFO:
00478       {
00479         struct prefix_option * prefix_opt;
00480         prefix_opt = (struct prefix_option *)buffer;
00481 
00482         if (prefix_opt->flags & ND6_PREFIX_FLAG_ON_LINK) {
00483           /* Add to on-link prefix list. */
00484           s8_t prefix;
00485 
00486           /* Get a memory-aligned copy of the prefix. */
00487           ip6_addr_set(ip6_current_dest_addr(), &(prefix_opt->prefix));
00488 
00489           /* find cache entry for this prefix. */
00490           prefix = nd6_get_onlink_prefix(ip6_current_dest_addr(), inp);
00491           if (prefix < 0) {
00492             /* Create a new cache entry. */
00493             prefix = nd6_new_onlink_prefix(ip6_current_dest_addr(), inp);
00494           }
00495           if (prefix >= 0) {
00496             prefix_list[prefix].invalidation_timer = htonl(prefix_opt->valid_lifetime);
00497 
00498 #if LWIP_IPV6_AUTOCONFIG
00499             if (prefix_opt->flags & ND6_PREFIX_FLAG_AUTONOMOUS) {
00500               /* Mark prefix as autonomous, so that address autoconfiguration can take place.
00501                * Only OR flag, so that we don't over-write other flags (such as ADDRESS_DUPLICATE)*/
00502               prefix_list[prefix].flags |= ND6_PREFIX_AUTOCONFIG_AUTONOMOUS;
00503             }
00504 #endif /* LWIP_IPV6_AUTOCONFIG */
00505           }
00506         }
00507 
00508         break;
00509       }
00510       case ND6_OPTION_TYPE_ROUTE_INFO:
00511         /* @todo implement preferred routes.
00512         struct route_option * route_opt;
00513         route_opt = (struct route_option *)buffer;*/
00514 
00515         break;
00516       default:
00517         /* Unrecognized option, abort. */
00518         ND6_STATS_INC(nd6.proterr);
00519         break;
00520       }
00521       /* option length is checked earlier to be non-zero to make sure loop ends */
00522       offset += 8 * ((u16_t)buffer[1]);
00523     }
00524 
00525     break; /* ICMP6_TYPE_RA */
00526   }
00527   case ICMP6_TYPE_RD: /* Redirect */
00528   {
00529     struct redirect_header * redir_hdr;
00530     struct lladdr_option * lladdr_opt;
00531 
00532     /* Check that Redir header fits in packet. */
00533     if (p->len < sizeof(struct redirect_header)) {
00534       /* @todo debug message */
00535       pbuf_free(p);
00536       ND6_STATS_INC(nd6.lenerr);
00537       ND6_STATS_INC(nd6.drop);
00538       return;
00539     }
00540 
00541     redir_hdr = (struct redirect_header *)p->payload;
00542 
00543     if (p->len >= (sizeof(struct redirect_header) + 2)) {
00544       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct redirect_header));
00545       if (p->len < (sizeof(struct redirect_header) + (lladdr_opt->length << 3))) {
00546         lladdr_opt = NULL;
00547       }
00548     } else {
00549       lladdr_opt = NULL;
00550     }
00551 
00552     /* Copy original destination address to current source address, to have an aligned copy. */
00553     ip6_addr_set(ip6_current_src_addr(), &(redir_hdr->destination_address));
00554 
00555     /* Find dest address in cache */
00556     i = nd6_find_destination_cache_entry(ip6_current_src_addr());
00557     if (i < 0) {
00558       /* Destination not in cache, drop packet. */
00559       pbuf_free(p);
00560       return;
00561     }
00562 
00563     /* Set the new target address. */
00564     ip6_addr_set(&(destination_cache[i].next_hop_addr), &(redir_hdr->target_address));
00565 
00566     /* If Link-layer address of other router is given, try to add to neighbor cache. */
00567     if (lladdr_opt != NULL) {
00568       if (lladdr_opt->type == ND6_OPTION_TYPE_TARGET_LLADDR) {
00569         /* Copy target address to current source address, to have an aligned copy. */
00570         ip6_addr_set(ip6_current_src_addr(), &(redir_hdr->target_address));
00571 
00572         i = nd6_find_neighbor_cache_entry(ip6_current_src_addr());
00573         if (i < 0) {
00574           i = nd6_new_neighbor_cache_entry();
00575           if (i >= 0) {
00576             neighbor_cache[i].netif = inp;
00577             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00578             ip6_addr_set(&(neighbor_cache[i].next_hop_address), ip6_current_src_addr());
00579 
00580             /* Receiving a message does not prove reachability: only in one direction.
00581              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00582             neighbor_cache[i].state = ND6_DELAY;
00583             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME;
00584           }
00585         }
00586         if (i >= 0) {
00587           if (neighbor_cache[i].state == ND6_INCOMPLETE) {
00588             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00589             /* Receiving a message does not prove reachability: only in one direction.
00590              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00591             neighbor_cache[i].state = ND6_DELAY;
00592             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME;
00593           }
00594         }
00595       }
00596     }
00597     break; /* ICMP6_TYPE_RD */
00598   }
00599   case ICMP6_TYPE_PTB: /* Packet too big */
00600   {
00601     struct icmp6_hdr *icmp6hdr; /* Packet too big message */
00602     struct ip6_hdr * ip6hdr; /* IPv6 header of the packet which caused the error */
00603     u32_t pmtu;
00604 
00605     /* Check that ICMPv6 header + IPv6 header fit in payload */
00606     if (p->len < (sizeof(struct icmp6_hdr) + IP6_HLEN)) {
00607       /* drop short packets */
00608       pbuf_free(p);
00609       ND6_STATS_INC(nd6.lenerr);
00610       ND6_STATS_INC(nd6.drop);
00611       return;
00612     }
00613 
00614     icmp6hdr = (struct icmp6_hdr *)p->payload;
00615     ip6hdr = (struct ip6_hdr *)((u8_t*)p->payload + sizeof(struct icmp6_hdr));
00616 
00617     /* Copy original destination address to current source address, to have an aligned copy. */
00618     ip6_addr_set(ip6_current_src_addr(), &(ip6hdr->dest));
00619 
00620     /* Look for entry in destination cache. */
00621     i = nd6_find_destination_cache_entry(ip6_current_src_addr());
00622     if (i < 0) {
00623       /* Destination not in cache, drop packet. */
00624       pbuf_free(p);
00625       return;
00626     }
00627 
00628     /* Change the Path MTU. */
00629     pmtu = htonl(icmp6hdr->data);
00630     destination_cache[i].pmtu = (u16_t)LWIP_MIN(pmtu, 0xFFFF);
00631 
00632     break; /* ICMP6_TYPE_PTB */
00633   }
00634 
00635   default:
00636     ND6_STATS_INC(nd6.proterr);
00637     ND6_STATS_INC(nd6.drop);
00638     break; /* default */
00639   }
00640 
00641   pbuf_free(p);
00642 }
00643 
00644 
00645 /**
00646  * Periodic timer for Neighbor discovery functions:
00647  *
00648  * - Update neighbor reachability states
00649  * - Update destination cache entries age
00650  * - Update invalidation timers of default routers and on-link prefixes
00651  * - Perform duplicate address detection (DAD) for our addresses
00652  * - Send router solicitations
00653  */
00654 void
00655 nd6_tmr(void)
00656 {
00657   s8_t i;
00658   struct netif * netif;
00659 
00660   /* Process neighbor entries. */
00661   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
00662     switch (neighbor_cache[i].state) {
00663     case ND6_INCOMPLETE:
00664       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
00665           (!neighbor_cache[i].isrouter)) {
00666         /* Retries exceeded. */
00667         nd6_free_neighbor_cache_entry(i);
00668       } else {
00669         /* Send a NS for this entry. */
00670         neighbor_cache[i].counter.probes_sent++;
00671         nd6_send_ns(neighbor_cache[i].netif, &(neighbor_cache[i].next_hop_address), ND6_SEND_FLAG_MULTICAST_DEST);
00672       }
00673       break;
00674     case ND6_REACHABLE:
00675       /* Send queued packets, if any are left. Should have been sent already. */
00676       if (neighbor_cache[i].q != NULL) {
00677         nd6_send_q(i);
00678       }
00679       if (neighbor_cache[i].counter.reachable_time <= ND6_TMR_INTERVAL) {
00680         /* Change to stale state. */
00681         neighbor_cache[i].state = ND6_STALE;
00682         neighbor_cache[i].counter.stale_time = 0;
00683       } else {
00684         neighbor_cache[i].counter.reachable_time -= ND6_TMR_INTERVAL;
00685       }
00686       break;
00687     case ND6_STALE:
00688       neighbor_cache[i].counter.stale_time += ND6_TMR_INTERVAL;
00689       break;
00690     case ND6_DELAY:
00691       if (neighbor_cache[i].counter.delay_time <= ND6_TMR_INTERVAL) {
00692         /* Change to PROBE state. */
00693         neighbor_cache[i].state = ND6_PROBE;
00694         neighbor_cache[i].counter.probes_sent = 0;
00695       } else {
00696         neighbor_cache[i].counter.delay_time -= ND6_TMR_INTERVAL;
00697       }
00698       break;
00699     case ND6_PROBE:
00700       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
00701           (!neighbor_cache[i].isrouter)) {
00702         /* Retries exceeded. */
00703         nd6_free_neighbor_cache_entry(i);
00704       } else {
00705         /* Send a NS for this entry. */
00706         neighbor_cache[i].counter.probes_sent++;
00707         nd6_send_ns(neighbor_cache[i].netif, &(neighbor_cache[i].next_hop_address), 0);
00708       }
00709       break;
00710     case ND6_NO_ENTRY:
00711     default:
00712       /* Do nothing. */
00713       break;
00714     }
00715   }
00716 
00717   /* Process destination entries. */
00718   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
00719     destination_cache[i].age++;
00720   }
00721 
00722   /* Process router entries. */
00723   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
00724     if (default_router_list[i].neighbor_entry != NULL) {
00725       /* Active entry. */
00726       if (default_router_list[i].invalidation_timer > 0) {
00727         default_router_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
00728       }
00729       if (default_router_list[i].invalidation_timer < ND6_TMR_INTERVAL / 1000) {
00730         /* Less than 1 second remaining. Clear this entry. */
00731         default_router_list[i].neighbor_entry->isrouter = 0;
00732         default_router_list[i].neighbor_entry = NULL;
00733         default_router_list[i].invalidation_timer = 0;
00734         default_router_list[i].flags = 0;
00735       }
00736     }
00737   }
00738 
00739   /* Process prefix entries. */
00740   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
00741     if (prefix_list[i].netif != NULL) {
00742       if (prefix_list[i].invalidation_timer < ND6_TMR_INTERVAL / 1000) {
00743         /* Entry timed out, remove it */
00744         prefix_list[i].invalidation_timer = 0;
00745 
00746 #if LWIP_IPV6_AUTOCONFIG
00747         /* If any addresses were configured with this prefix, remove them */
00748         if (prefix_list[i].flags & ND6_PREFIX_AUTOCONFIG_ADDRESS_GENERATED) {
00749           s8_t j;
00750 
00751           for (j = 1; j < LWIP_IPV6_NUM_ADDRESSES; j++) {
00752             if ((netif_ip6_addr_state(prefix_list[i].netif, j) != IP6_ADDR_INVALID) &&
00753                 ip6_addr_netcmp(&prefix_list[i].prefix, netif_ip6_addr(prefix_list[i].netif, j))) {
00754               netif_ip6_addr_set_state(prefix_list[i].netif, j, IP6_ADDR_INVALID);
00755               prefix_list[i].flags = 0;
00756 
00757               /* Exit loop. */
00758               break;
00759             }
00760           }
00761         }
00762 #endif /* LWIP_IPV6_AUTOCONFIG */
00763 
00764         prefix_list[i].netif = NULL;
00765         prefix_list[i].flags = 0;
00766       } else {
00767         prefix_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
00768 
00769 #if LWIP_IPV6_AUTOCONFIG
00770         /* Initiate address autoconfiguration for this prefix, if conditions are met. */
00771         if (prefix_list[i].netif->ip6_autoconfig_enabled &&
00772             (prefix_list[i].flags & ND6_PREFIX_AUTOCONFIG_AUTONOMOUS) &&
00773             !(prefix_list[i].flags & ND6_PREFIX_AUTOCONFIG_ADDRESS_GENERATED)) {
00774           s8_t j;
00775           /* Try to get an address on this netif that is invalid.
00776            * Skip 0 index (link-local address) */
00777           for (j = 1; j < LWIP_IPV6_NUM_ADDRESSES; j++) {
00778             if (netif_ip6_addr_state(prefix_list[i].netif, j) == IP6_ADDR_INVALID) {
00779               /* Generate an address using this prefix and interface ID from link-local address. */
00780               netif_ip6_addr_set_parts(prefix_list[i].netif, j,
00781                 prefix_list[i].prefix.addr[0], prefix_list[i].prefix.addr[1],
00782                 netif_ip6_addr(prefix_list[i].netif, 0)->addr[2], netif_ip6_addr(prefix_list[i].netif, 0)->addr[3]);
00783 
00784               /* Mark it as tentative (DAD will be performed if configured). */
00785               netif_ip6_addr_set_state(prefix_list[i].netif, j, IP6_ADDR_TENTATIVE);
00786 
00787               /* Mark this prefix with ADDRESS_GENERATED, so that we don't try again. */
00788               prefix_list[i].flags |= ND6_PREFIX_AUTOCONFIG_ADDRESS_GENERATED;
00789 
00790               /* Exit loop. */
00791               break;
00792             }
00793           }
00794         }
00795 #endif /* LWIP_IPV6_AUTOCONFIG */
00796       }
00797     }
00798   }
00799 
00800 
00801   /* Process our own addresses, if DAD configured. */
00802   for (netif = netif_list; netif != NULL; netif = netif->next) {
00803     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
00804       u8_t addr_state = netif_ip6_addr_state(netif, i);
00805       if (ip6_addr_istentative(addr_state)) {
00806         if ((addr_state & 0x07) >= LWIP_IPV6_DUP_DETECT_ATTEMPTS) {
00807           /* No NA received in response. Mark address as valid. */
00808           netif_ip6_addr_set_state(netif, i, IP6_ADDR_PREFERRED);
00809           /* @todo implement preferred and valid lifetimes. */
00810         } else if (netif->flags & NETIF_FLAG_UP) {
00811 #if LWIP_IPV6_MLD
00812           if ((addr_state & 0x07) == 0) {
00813             /* Join solicited node multicast group. */
00814             ip6_addr_set_solicitednode(&multicast_address, netif_ip6_addr(netif, i)->addr[3]);
00815             mld6_joingroup(netif_ip6_addr(netif, i), &multicast_address);
00816           }
00817 #endif /* LWIP_IPV6_MLD */
00818           /* Send a NS for this address. */
00819           nd6_send_ns(netif, netif_ip6_addr(netif, i), ND6_SEND_FLAG_MULTICAST_DEST);
00820           /* tentative: set next state by increasing by one */
00821           netif_ip6_addr_set_state(netif, i, addr_state + 1);
00822           /* @todo send max 1 NS per tmr call? enable return*/
00823           /*return;*/
00824         }
00825       }
00826     }
00827   }
00828 
00829 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
00830   /* Send router solicitation messages, if necessary. */
00831   for (netif = netif_list; netif != NULL; netif = netif->next) {
00832     if ((netif->rs_count > 0) && (netif->flags & NETIF_FLAG_UP) &&
00833         (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, 0)))) {
00834       if (nd6_send_rs(netif) == ERR_OK) {
00835         netif->rs_count--;
00836       }
00837     }
00838   }
00839 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
00840 
00841 }
00842 
00843 /**
00844  * Send a neighbor solicitation message
00845  *
00846  * @param netif the netif on which to send the message
00847  * @param target_addr the IPv6 target address for the ND message
00848  * @param flags one of ND6_SEND_FLAG_*
00849  */
00850 static void
00851 nd6_send_ns(struct netif * netif, const ip6_addr_t * target_addr, u8_t flags)
00852 {
00853   struct ns_header * ns_hdr;
00854   struct pbuf * p;
00855   const ip6_addr_t * src_addr;
00856   u16_t lladdr_opt_len;
00857 
00858   if (ip6_addr_isvalid(netif_ip6_addr_state(netif,0))) {
00859     /* Use link-local address as source address. */
00860     src_addr = netif_ip6_addr(netif, 0);
00861     /* calculate option length (in 8-byte-blocks) */
00862     lladdr_opt_len = ((netif->hwaddr_len + 2) + 7) >> 3;
00863   } else {
00864     src_addr = IP6_ADDR_ANY6;
00865     /* Option "MUST NOT be included when the source IP address is the unspecified address." */
00866     lladdr_opt_len = 0;
00867   }
00868 
00869   /* Allocate a packet. */
00870   p = pbuf_alloc(PBUF_IP, sizeof(struct ns_header) + (lladdr_opt_len << 3), PBUF_RAM);
00871   if (p == NULL) {
00872     ND6_STATS_INC(nd6.memerr);
00873     return;
00874   }
00875 
00876   /* Set fields. */
00877   ns_hdr = (struct ns_header *)p->payload;
00878 
00879   ns_hdr->type = ICMP6_TYPE_NS;
00880   ns_hdr->code = 0;
00881   ns_hdr->chksum = 0;
00882   ns_hdr->reserved = 0;
00883   ip6_addr_set(&(ns_hdr->target_address), target_addr);
00884 
00885   if (lladdr_opt_len != 0) {
00886     struct lladdr_option *lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
00887     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
00888     lladdr_opt->length = (u8_t)lladdr_opt_len;
00889     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
00890   }
00891 
00892   /* Generate the solicited node address for the target address. */
00893   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
00894     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
00895     target_addr = &multicast_address;
00896   }
00897 
00898 #if CHECKSUM_GEN_ICMP6
00899   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
00900     ns_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
00901       target_addr);
00902   }
00903 #endif /* CHECKSUM_GEN_ICMP6 */
00904 
00905   /* Send the packet out. */
00906   ND6_STATS_INC(nd6.xmit);
00907   ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, target_addr,
00908       LWIP_ICMP6_HL, 0, IP6_NEXTH_ICMP6, netif);
00909   pbuf_free(p);
00910 }
00911 
00912 /**
00913  * Send a neighbor advertisement message
00914  *
00915  * @param netif the netif on which to send the message
00916  * @param target_addr the IPv6 target address for the ND message
00917  * @param flags one of ND6_SEND_FLAG_*
00918  */
00919 static void
00920 nd6_send_na(struct netif * netif, const ip6_addr_t * target_addr, u8_t flags)
00921 {
00922   struct na_header * na_hdr;
00923   struct lladdr_option * lladdr_opt;
00924   struct pbuf * p;
00925   const ip6_addr_t * src_addr;
00926   const ip6_addr_t * dest_addr;
00927   u16_t lladdr_opt_len;
00928 
00929   /* Use link-local address as source address. */
00930   /* src_addr = netif_ip6_addr(netif, 0); */
00931   /* Use target address as source address. */
00932   src_addr = target_addr;
00933 
00934   /* Allocate a packet. */
00935   lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
00936   p = pbuf_alloc(PBUF_IP, sizeof(struct na_header) + (lladdr_opt_len << 3), PBUF_RAM);
00937   if (p == NULL) {
00938     ND6_STATS_INC(nd6.memerr);
00939     return;
00940   }
00941 
00942   /* Set fields. */
00943   na_hdr = (struct na_header *)p->payload;
00944   lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
00945 
00946   na_hdr->type = ICMP6_TYPE_NA;
00947   na_hdr->code = 0;
00948   na_hdr->chksum = 0;
00949   na_hdr->flags = flags & 0xf0;
00950   na_hdr->reserved[0] = 0;
00951   na_hdr->reserved[1] = 0;
00952   na_hdr->reserved[2] = 0;
00953   ip6_addr_set(&(na_hdr->target_address), target_addr);
00954 
00955   lladdr_opt->type = ND6_OPTION_TYPE_TARGET_LLADDR;
00956   lladdr_opt->length = (u8_t)lladdr_opt_len;
00957   SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
00958 
00959   /* Generate the solicited node address for the target address. */
00960   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
00961     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
00962     dest_addr = &multicast_address;
00963   } else if (flags & ND6_SEND_FLAG_ALLNODES_DEST) {
00964     ip6_addr_set_allnodes_linklocal(&multicast_address);
00965     dest_addr = &multicast_address;
00966   } else {
00967     dest_addr = ip6_current_src_addr();
00968   }
00969 
00970 #if CHECKSUM_GEN_ICMP6
00971   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
00972     na_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
00973       dest_addr);
00974   }
00975 #endif /* CHECKSUM_GEN_ICMP6 */
00976 
00977   /* Send the packet out. */
00978   ND6_STATS_INC(nd6.xmit);
00979   ip6_output_if(p, src_addr, dest_addr,
00980       LWIP_ICMP6_HL, 0, IP6_NEXTH_ICMP6, netif);
00981   pbuf_free(p);
00982 }
00983 
00984 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
00985 /**
00986  * Send a router solicitation message
00987  *
00988  * @param netif the netif on which to send the message
00989  */
00990 static err_t
00991 nd6_send_rs(struct netif * netif)
00992 {
00993   struct rs_header * rs_hdr;
00994   struct lladdr_option * lladdr_opt;
00995   struct pbuf * p;
00996   const ip6_addr_t * src_addr;
00997   err_t err;
00998   u16_t lladdr_opt_len = 0;
00999 
01000   /* Link-local source address, or unspecified address? */
01001   if (ip6_addr_isvalid(netif_ip6_addr_state(netif, 0))) {
01002     src_addr = netif_ip6_addr(netif, 0);
01003   } else {
01004     src_addr = IP6_ADDR_ANY6;
01005   }
01006 
01007   /* Generate the all routers target address. */
01008   ip6_addr_set_allrouters_linklocal(&multicast_address);
01009 
01010   /* Allocate a packet. */
01011   if (src_addr != IP6_ADDR_ANY6) {
01012     lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
01013   }
01014   p = pbuf_alloc(PBUF_IP, sizeof(struct rs_header) + (lladdr_opt_len << 3), PBUF_RAM);
01015   if (p == NULL) {
01016     ND6_STATS_INC(nd6.memerr);
01017     return ERR_BUF;
01018   }
01019 
01020   /* Set fields. */
01021   rs_hdr = (struct rs_header *)p->payload;
01022 
01023   rs_hdr->type = ICMP6_TYPE_RS;
01024   rs_hdr->code = 0;
01025   rs_hdr->chksum = 0;
01026   rs_hdr->reserved = 0;
01027 
01028   if (src_addr != IP6_ADDR_ANY6) {
01029     /* Include our hw address. */
01030     lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct rs_header));
01031     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
01032     lladdr_opt->length = (u8_t)lladdr_opt_len;
01033     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
01034   }
01035 
01036 #if CHECKSUM_GEN_ICMP6
01037   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
01038     rs_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
01039       &multicast_address);
01040   }
01041 #endif /* CHECKSUM_GEN_ICMP6 */
01042 
01043   /* Send the packet out. */
01044   ND6_STATS_INC(nd6.xmit);
01045 
01046   err = ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, &multicast_address,
01047       LWIP_ICMP6_HL, 0, IP6_NEXTH_ICMP6, netif);
01048   pbuf_free(p);
01049 
01050   return err;
01051 }
01052 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
01053 
01054 /**
01055  * Search for a neighbor cache entry
01056  *
01057  * @param ip6addr the IPv6 address of the neighbor
01058  * @return The neighbor cache entry index that matched, -1 if no
01059  * entry is found
01060  */
01061 static s8_t
01062 nd6_find_neighbor_cache_entry(const ip6_addr_t * ip6addr)
01063 {
01064   s8_t i;
01065   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01066     if (ip6_addr_cmp(ip6addr, &(neighbor_cache[i].next_hop_address))) {
01067       return i;
01068     }
01069   }
01070   return -1;
01071 }
01072 
01073 /**
01074  * Create a new neighbor cache entry.
01075  *
01076  * If no unused entry is found, will try to recycle an old entry
01077  * according to ad-hoc "age" heuristic.
01078  *
01079  * @return The neighbor cache entry index that was created, -1 if no
01080  * entry could be created
01081  */
01082 static s8_t
01083 nd6_new_neighbor_cache_entry(void)
01084 {
01085   s8_t i;
01086   s8_t j;
01087   u32_t time;
01088 
01089 
01090   /* First, try to find an empty entry. */
01091   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01092     if (neighbor_cache[i].state == ND6_NO_ENTRY) {
01093       return i;
01094     }
01095   }
01096 
01097   /* We need to recycle an entry. in general, do not recycle if it is a router. */
01098 
01099   /* Next, try to find a Stale entry. */
01100   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01101     if ((neighbor_cache[i].state == ND6_STALE) &&
01102         (!neighbor_cache[i].isrouter)) {
01103       nd6_free_neighbor_cache_entry(i);
01104       return i;
01105     }
01106   }
01107 
01108   /* Next, try to find a Probe entry. */
01109   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01110     if ((neighbor_cache[i].state == ND6_PROBE) &&
01111         (!neighbor_cache[i].isrouter)) {
01112       nd6_free_neighbor_cache_entry(i);
01113       return i;
01114     }
01115   }
01116 
01117   /* Next, try to find a Delayed entry. */
01118   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01119     if ((neighbor_cache[i].state == ND6_DELAY) &&
01120         (!neighbor_cache[i].isrouter)) {
01121       nd6_free_neighbor_cache_entry(i);
01122       return i;
01123     }
01124   }
01125 
01126   /* Next, try to find the oldest reachable entry. */
01127   time = 0xfffffffful;
01128   j = -1;
01129   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01130     if ((neighbor_cache[i].state == ND6_REACHABLE) &&
01131         (!neighbor_cache[i].isrouter)) {
01132       if (neighbor_cache[i].counter.reachable_time < time) {
01133         j = i;
01134         time = neighbor_cache[i].counter.reachable_time;
01135       }
01136     }
01137   }
01138   if (j >= 0) {
01139     nd6_free_neighbor_cache_entry(j);
01140     return j;
01141   }
01142 
01143   /* Next, find oldest incomplete entry without queued packets. */
01144   time = 0;
01145   j = -1;
01146   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01147     if (
01148         (neighbor_cache[i].q == NULL) &&
01149         (neighbor_cache[i].state == ND6_INCOMPLETE) &&
01150         (!neighbor_cache[i].isrouter)) {
01151       if (neighbor_cache[i].counter.probes_sent >= time) {
01152         j = i;
01153         time = neighbor_cache[i].counter.probes_sent;
01154       }
01155     }
01156   }
01157   if (j >= 0) {
01158     nd6_free_neighbor_cache_entry(j);
01159     return j;
01160   }
01161 
01162   /* Next, find oldest incomplete entry with queued packets. */
01163   time = 0;
01164   j = -1;
01165   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01166     if ((neighbor_cache[i].state == ND6_INCOMPLETE) &&
01167         (!neighbor_cache[i].isrouter)) {
01168       if (neighbor_cache[i].counter.probes_sent >= time) {
01169         j = i;
01170         time = neighbor_cache[i].counter.probes_sent;
01171       }
01172     }
01173   }
01174   if (j >= 0) {
01175     nd6_free_neighbor_cache_entry(j);
01176     return j;
01177   }
01178 
01179   /* No more entries to try. */
01180   return -1;
01181 }
01182 
01183 /**
01184  * Will free any resources associated with a neighbor cache
01185  * entry, and will mark it as unused.
01186  *
01187  * @param i the neighbor cache entry index to free
01188  */
01189 static void
01190 nd6_free_neighbor_cache_entry(s8_t i)
01191 {
01192   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
01193     return;
01194   }
01195   if (neighbor_cache[i].isrouter) {
01196     /* isrouter needs to be cleared before deleting a neighbor cache entry */
01197     return;
01198   }
01199 
01200   /* Free any queued packets. */
01201   if (neighbor_cache[i].q != NULL) {
01202     nd6_free_q(neighbor_cache[i].q);
01203     neighbor_cache[i].q = NULL;
01204   }
01205 
01206   neighbor_cache[i].state = ND6_NO_ENTRY;
01207   neighbor_cache[i].isrouter = 0;
01208   neighbor_cache[i].netif = NULL;
01209   neighbor_cache[i].counter.reachable_time = 0;
01210   ip6_addr_set_zero(&(neighbor_cache[i].next_hop_address));
01211 }
01212 
01213 /**
01214  * Search for a destination cache entry
01215  *
01216  * @param ip6addr the IPv6 address of the destination
01217  * @return The destination cache entry index that matched, -1 if no
01218  * entry is found
01219  */
01220 static s8_t
01221 nd6_find_destination_cache_entry(const ip6_addr_t * ip6addr)
01222 {
01223   s8_t i;
01224   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01225     if (ip6_addr_cmp(ip6addr, &(destination_cache[i].destination_addr))) {
01226       return i;
01227     }
01228   }
01229   return -1;
01230 }
01231 
01232 /**
01233  * Create a new destination cache entry. If no unused entry is found,
01234  * will recycle oldest entry.
01235  *
01236  * @return The destination cache entry index that was created, -1 if no
01237  * entry was created
01238  */
01239 static s8_t
01240 nd6_new_destination_cache_entry(void)
01241 {
01242   s8_t i, j;
01243   u32_t age;
01244 
01245   /* Find an empty entry. */
01246   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01247     if (ip6_addr_isany(&(destination_cache[i].destination_addr))) {
01248       return i;
01249     }
01250   }
01251 
01252   /* Find oldest entry. */
01253   age = 0;
01254   j = LWIP_ND6_NUM_DESTINATIONS - 1;
01255   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01256     if (destination_cache[i].age > age) {
01257       j = i;
01258     }
01259   }
01260 
01261   return j;
01262 }
01263 
01264 /**
01265  * Determine whether an address matches an on-link prefix.
01266  *
01267  * @param ip6addr the IPv6 address to match
01268  * @return 1 if the address is on-link, 0 otherwise
01269  */
01270 static s8_t
01271 nd6_is_prefix_in_netif(const ip6_addr_t * ip6addr, struct netif * netif)
01272 {
01273   s8_t i;
01274   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
01275     if ((prefix_list[i].netif == netif) &&
01276         (prefix_list[i].invalidation_timer > 0) &&
01277         ip6_addr_netcmp(ip6addr, &(prefix_list[i].prefix))) {
01278       return 1;
01279     }
01280   }
01281   /* Check to see if address prefix matches a (manually?) configured address. */
01282   for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
01283     if (ip6_addr_isvalid(netif_ip6_addr_state(netif, i)) &&
01284         ip6_addr_netcmp(ip6addr, netif_ip6_addr(netif, i))) {
01285       return 1;
01286     }
01287   }
01288   return 0;
01289 }
01290 
01291 /**
01292  * Select a default router for a destination.
01293  *
01294  * @param ip6addr the destination address
01295  * @param netif the netif for the outgoing packet, if known
01296  * @return the default router entry index, or -1 if no suitable
01297  *         router is found
01298  */
01299 s8_t
01300 nd6_select_router(const ip6_addr_t * ip6addr, struct netif * netif)
01301 {
01302   s8_t i;
01303   /* last_router is used for round-robin router selection (as recommended
01304    * in RFC). This is more robust in case one router is not reachable,
01305    * we are not stuck trying to resolve it. */
01306   static s8_t last_router;
01307   (void)ip6addr; /* @todo match preferred routes!! (must implement ND6_OPTION_TYPE_ROUTE_INFO) */
01308 
01309   /* @todo: implement default router preference */
01310 
01311   /* Look for reachable routers. */
01312   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01313     if (++last_router >= LWIP_ND6_NUM_ROUTERS) {
01314       last_router = 0;
01315     }
01316     if ((default_router_list[i].neighbor_entry != NULL) &&
01317         (netif != NULL ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
01318         (default_router_list[i].invalidation_timer > 0) &&
01319         (default_router_list[i].neighbor_entry->state == ND6_REACHABLE)) {
01320       return i;
01321     }
01322   }
01323 
01324   /* Look for router in other reachability states, but still valid according to timer. */
01325   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01326     if (++last_router >= LWIP_ND6_NUM_ROUTERS) {
01327       last_router = 0;
01328     }
01329     if ((default_router_list[i].neighbor_entry != NULL) &&
01330         (netif != NULL ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
01331         (default_router_list[i].invalidation_timer > 0)) {
01332       return i;
01333     }
01334   }
01335 
01336   /* Look for any router for which we have any information at all. */
01337   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01338     if (++last_router >= LWIP_ND6_NUM_ROUTERS) {
01339       last_router = 0;
01340     }
01341     if (default_router_list[i].neighbor_entry != NULL &&
01342         (netif != NULL ? netif == default_router_list[i].neighbor_entry->netif : 1)) {
01343       return i;
01344     }
01345   }
01346 
01347   /* no suitable router found. */
01348   return -1;
01349 }
01350 
01351 /**
01352  * Find an entry for a default router.
01353  *
01354  * @param router_addr the IPv6 address of the router
01355  * @param netif the netif on which the router is found, if known
01356  * @return the index of the router entry, or -1 if not found
01357  */
01358 static s8_t
01359 nd6_get_router(const ip6_addr_t * router_addr, struct netif * netif)
01360 {
01361   s8_t i;
01362 
01363   /* Look for router. */
01364   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01365     if ((default_router_list[i].neighbor_entry != NULL) &&
01366         ((netif != NULL) ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
01367         ip6_addr_cmp(router_addr, &(default_router_list[i].neighbor_entry->next_hop_address))) {
01368       return i;
01369     }
01370   }
01371 
01372   /* router not found. */
01373   return -1;
01374 }
01375 
01376 /**
01377  * Create a new entry for a default router.
01378  *
01379  * @param router_addr the IPv6 address of the router
01380  * @param netif the netif on which the router is connected, if known
01381  * @return the index on the router table, or -1 if could not be created
01382  */
01383 static s8_t
01384 nd6_new_router(const ip6_addr_t * router_addr, struct netif * netif)
01385 {
01386   s8_t router_index;
01387   s8_t neighbor_index;
01388 
01389   /* Do we have a neighbor entry for this router? */
01390   neighbor_index = nd6_find_neighbor_cache_entry(router_addr);
01391   if (neighbor_index < 0) {
01392     /* Create a neighbor entry for this router. */
01393     neighbor_index = nd6_new_neighbor_cache_entry();
01394     if (neighbor_index < 0) {
01395       /* Could not create neighbor entry for this router. */
01396       return -1;
01397     }
01398     ip6_addr_set(&(neighbor_cache[neighbor_index].next_hop_address), router_addr);
01399     neighbor_cache[neighbor_index].netif = netif;
01400     neighbor_cache[neighbor_index].q = NULL;
01401     neighbor_cache[neighbor_index].state = ND6_INCOMPLETE;
01402     neighbor_cache[neighbor_index].counter.probes_sent = 0;
01403   }
01404 
01405   /* Mark neighbor as router. */
01406   neighbor_cache[neighbor_index].isrouter = 1;
01407 
01408   /* Look for empty entry. */
01409   for (router_index = 0; router_index < LWIP_ND6_NUM_ROUTERS; router_index++) {
01410     if (default_router_list[router_index].neighbor_entry == NULL) {
01411       default_router_list[router_index].neighbor_entry = &(neighbor_cache[neighbor_index]);
01412       return router_index;
01413     }
01414   }
01415 
01416   /* Could not create a router entry. */
01417 
01418   /* Mark neighbor entry as not-router. Entry might be useful as neighbor still. */
01419   neighbor_cache[neighbor_index].isrouter = 0;
01420 
01421   /* router not found. */
01422   return -1;
01423 }
01424 
01425 /**
01426  * Find the cached entry for an on-link prefix.
01427  *
01428  * @param prefix the IPv6 prefix that is on-link
01429  * @param netif the netif on which the prefix is on-link
01430  * @return the index on the prefix table, or -1 if not found
01431  */
01432 static s8_t
01433 nd6_get_onlink_prefix(ip6_addr_t * prefix, struct netif * netif)
01434 {
01435   s8_t i;
01436 
01437   /* Look for prefix in list. */
01438   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
01439     if ((ip6_addr_netcmp(&(prefix_list[i].prefix), prefix)) &&
01440         (prefix_list[i].netif == netif)) {
01441       return i;
01442     }
01443   }
01444 
01445   /* Entry not available. */
01446   return -1;
01447 }
01448 
01449 /**
01450  * Creates a new entry for an on-link prefix.
01451  *
01452  * @param prefix the IPv6 prefix that is on-link
01453  * @param netif the netif on which the prefix is on-link
01454  * @return the index on the prefix table, or -1 if not created
01455  */
01456 static s8_t
01457 nd6_new_onlink_prefix(ip6_addr_t * prefix, struct netif * netif)
01458 {
01459   s8_t i;
01460 
01461   /* Create new entry. */
01462   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
01463     if ((prefix_list[i].netif == NULL) ||
01464         (prefix_list[i].invalidation_timer == 0)) {
01465       /* Found empty prefix entry. */
01466       prefix_list[i].netif = netif;
01467       ip6_addr_set(&(prefix_list[i].prefix), prefix);
01468 #if LWIP_IPV6_AUTOCONFIG
01469       prefix_list[i].flags = 0;
01470 #endif /* LWIP_IPV6_AUTOCONFIG */
01471       return i;
01472     }
01473   }
01474 
01475   /* Entry not available. */
01476   return -1;
01477 }
01478 
01479 /**
01480  * Determine the next hop for a destination. Will determine if the
01481  * destination is on-link, else a suitable on-link router is selected.
01482  *
01483  * The last entry index is cached for fast entry search.
01484  *
01485  * @param ip6addr the destination address
01486  * @param netif the netif on which the packet will be sent
01487  * @return the neighbor cache entry for the next hop, ERR_RTE if no
01488  *         suitable next hop was found, ERR_MEM if no cache entry
01489  *         could be created
01490  */
01491 s8_t
01492 nd6_get_next_hop_entry(const ip6_addr_t * ip6addr, struct netif * netif)
01493 {
01494   s8_t i;
01495 
01496 #if LWIP_NETIF_HWADDRHINT
01497   if (netif->addr_hint != NULL) {
01498     /* per-pcb cached entry was given */
01499     u8_t addr_hint = *(netif->addr_hint);
01500     if (addr_hint < LWIP_ND6_NUM_DESTINATIONS) {
01501       nd6_cached_destination_index = addr_hint;
01502     }
01503   }
01504 #endif /* LWIP_NETIF_HWADDRHINT */
01505 
01506   /* Look for ip6addr in destination cache. */
01507   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
01508     /* the cached entry index is the right one! */
01509     /* do nothing. */
01510     ND6_STATS_INC(nd6.cachehit);
01511   } else {
01512     /* Search destination cache. */
01513     i = nd6_find_destination_cache_entry(ip6addr);
01514     if (i >= 0) {
01515       /* found destination entry. make it our new cached index. */
01516       nd6_cached_destination_index = i;
01517     } else {
01518       /* Not found. Create a new destination entry. */
01519       i = nd6_new_destination_cache_entry();
01520       if (i >= 0) {
01521         /* got new destination entry. make it our new cached index. */
01522         nd6_cached_destination_index = i;
01523       } else {
01524         /* Could not create a destination cache entry. */
01525         return ERR_MEM;
01526       }
01527 
01528       /* Copy dest address to destination cache. */
01529       ip6_addr_set(&(destination_cache[nd6_cached_destination_index].destination_addr), ip6addr);
01530 
01531       /* Now find the next hop. is it a neighbor? */
01532       if (ip6_addr_islinklocal(ip6addr) ||
01533           nd6_is_prefix_in_netif(ip6addr, netif)) {
01534         /* Destination in local link. */
01535         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu;
01536         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, destination_cache[nd6_cached_destination_index].destination_addr);
01537       } else {
01538         /* We need to select a router. */
01539         i = nd6_select_router(ip6addr, netif);
01540         if (i < 0) {
01541           /* No router found. */
01542           ip6_addr_set_any(&(destination_cache[nd6_cached_destination_index].destination_addr));
01543           return ERR_RTE;
01544         }
01545         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu; /* Start with netif mtu, correct through ICMPv6 if necessary */
01546         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, default_router_list[i].neighbor_entry->next_hop_address);
01547       }
01548     }
01549   }
01550 
01551 #if LWIP_NETIF_HWADDRHINT
01552   if (netif->addr_hint != NULL) {
01553     /* per-pcb cached entry was given */
01554     *(netif->addr_hint) = nd6_cached_destination_index;
01555   }
01556 #endif /* LWIP_NETIF_HWADDRHINT */
01557 
01558   /* Look in neighbor cache for the next-hop address. */
01559   if (ip6_addr_cmp(&(destination_cache[nd6_cached_destination_index].next_hop_addr),
01560                    &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
01561     /* Cache hit. */
01562     /* Do nothing. */
01563     ND6_STATS_INC(nd6.cachehit);
01564   } else {
01565     i = nd6_find_neighbor_cache_entry(&(destination_cache[nd6_cached_destination_index].next_hop_addr));
01566     if (i >= 0) {
01567       /* Found a matching record, make it new cached entry. */
01568       nd6_cached_neighbor_index = i;
01569     } else {
01570       /* Neighbor not in cache. Make a new entry. */
01571       i = nd6_new_neighbor_cache_entry();
01572       if (i >= 0) {
01573         /* got new neighbor entry. make it our new cached index. */
01574         nd6_cached_neighbor_index = i;
01575       } else {
01576         /* Could not create a neighbor cache entry. */
01577         return ERR_MEM;
01578       }
01579 
01580       /* Initialize fields. */
01581       ip6_addr_copy(neighbor_cache[i].next_hop_address,
01582                    destination_cache[nd6_cached_destination_index].next_hop_addr);
01583       neighbor_cache[i].isrouter = 0;
01584       neighbor_cache[i].netif = netif;
01585       neighbor_cache[i].state = ND6_INCOMPLETE;
01586       neighbor_cache[i].counter.probes_sent = 0;
01587     }
01588   }
01589 
01590   /* Reset this destination's age. */
01591   destination_cache[nd6_cached_destination_index].age = 0;
01592 
01593   return nd6_cached_neighbor_index;
01594 }
01595 
01596 /**
01597  * Queue a packet for a neighbor.
01598  *
01599  * @param neighbor_index the index in the neighbor cache table
01600  * @param q packet to be queued
01601  * @return ERR_OK if succeeded, ERR_MEM if out of memory
01602  */
01603 err_t
01604 nd6_queue_packet(s8_t neighbor_index, struct pbuf * q)
01605 {
01606   err_t result = ERR_MEM;
01607   struct pbuf *p;
01608   int copy_needed = 0;
01609 #if LWIP_ND6_QUEUEING
01610   struct nd6_q_entry *new_entry, *r;
01611 #endif /* LWIP_ND6_QUEUEING */
01612 
01613   if ((neighbor_index < 0) || (neighbor_index >= LWIP_ND6_NUM_NEIGHBORS)) {
01614     return ERR_ARG;
01615   }
01616 
01617   /* IF q includes a PBUF_REF, PBUF_POOL or PBUF_RAM, we have no choice but
01618    * to copy the whole queue into a new PBUF_RAM (see bug #11400)
01619    * PBUF_ROMs can be left as they are, since ROM must not get changed. */
01620   p = q;
01621   while (p) {
01622     if (p->type != PBUF_ROM) {
01623       copy_needed = 1;
01624       break;
01625     }
01626     p = p->next;
01627   }
01628   if (copy_needed) {
01629     /* copy the whole packet into new pbufs */
01630     p = pbuf_alloc(PBUF_LINK, q->tot_len, PBUF_RAM);
01631     while ((p == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
01632       /* Free oldest packet (as per RFC recommendation) */
01633 #if LWIP_ND6_QUEUEING
01634       r = neighbor_cache[neighbor_index].q;
01635       neighbor_cache[neighbor_index].q = r->next;
01636       r->next = NULL;
01637       nd6_free_q(r);
01638 #else /* LWIP_ND6_QUEUEING */
01639       pbuf_free(neighbor_cache[neighbor_index].q);
01640       neighbor_cache[neighbor_index].q = NULL;
01641 #endif /* LWIP_ND6_QUEUEING */
01642       p = pbuf_alloc(PBUF_LINK, q->tot_len, PBUF_RAM);
01643     }
01644     if (p != NULL) {
01645       if (pbuf_copy(p, q) != ERR_OK) {
01646         pbuf_free(p);
01647         p = NULL;
01648       }
01649     }
01650   } else {
01651     /* referencing the old pbuf is enough */
01652     p = q;
01653     pbuf_ref(p);
01654   }
01655   /* packet was copied/ref'd? */
01656   if (p != NULL) {
01657     /* queue packet ... */
01658 #if LWIP_ND6_QUEUEING
01659     /* allocate a new nd6 queue entry */
01660     new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
01661     if ((new_entry == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
01662       /* Free oldest packet (as per RFC recommendation) */
01663       r = neighbor_cache[neighbor_index].q;
01664       neighbor_cache[neighbor_index].q = r->next;
01665       r->next = NULL;
01666       nd6_free_q(r);
01667       new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
01668     }
01669     if (new_entry != NULL) {
01670       new_entry->next = NULL;
01671       new_entry->p = p;
01672       if (neighbor_cache[neighbor_index].q != NULL) {
01673         /* queue was already existent, append the new entry to the end */
01674         r = neighbor_cache[neighbor_index].q;
01675         while (r->next != NULL) {
01676           r = r->next;
01677         }
01678         r->next = new_entry;
01679       } else {
01680         /* queue did not exist, first item in queue */
01681         neighbor_cache[neighbor_index].q = new_entry;
01682       }
01683       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
01684       result = ERR_OK;
01685     } else {
01686       /* the pool MEMP_ND6_QUEUE is empty */
01687       pbuf_free(p);
01688       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)p));
01689       /* { result == ERR_MEM } through initialization */
01690     }
01691 #else /* LWIP_ND6_QUEUEING */
01692     /* Queue a single packet. If an older packet is already queued, free it as per RFC. */
01693     if (neighbor_cache[neighbor_index].q != NULL) {
01694       pbuf_free(neighbor_cache[neighbor_index].q);
01695     }
01696     neighbor_cache[neighbor_index].q = p;
01697     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
01698     result = ERR_OK;
01699 #endif /* LWIP_ND6_QUEUEING */
01700   } else {
01701     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)q));
01702     /* { result == ERR_MEM } through initialization */
01703   }
01704 
01705   return result;
01706 }
01707 
01708 #if LWIP_ND6_QUEUEING
01709 /**
01710  * Free a complete queue of nd6 q entries
01711  *
01712  * @param q a queue of nd6_q_entry to free
01713  */
01714 static void
01715 nd6_free_q(struct nd6_q_entry *q)
01716 {
01717   struct nd6_q_entry *r;
01718   LWIP_ASSERT("q != NULL", q != NULL);
01719   LWIP_ASSERT("q->p != NULL", q->p != NULL);
01720   while (q) {
01721     r = q;
01722     q = q->next;
01723     LWIP_ASSERT("r->p != NULL", (r->p != NULL));
01724     pbuf_free(r->p);
01725     memp_free(MEMP_ND6_QUEUE, r);
01726   }
01727 }
01728 #endif /* LWIP_ND6_QUEUEING */
01729 
01730 /**
01731  * Send queued packets for a neighbor
01732  *
01733  * @param i the neighbor to send packets to
01734  */
01735 static void
01736 nd6_send_q(s8_t i)
01737 {
01738   struct ip6_hdr *ip6hdr;
01739 #if LWIP_ND6_QUEUEING
01740   struct nd6_q_entry *q;
01741 #endif /* LWIP_ND6_QUEUEING */
01742 
01743   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
01744     return;
01745   }
01746 
01747 #if LWIP_ND6_QUEUEING
01748   while (neighbor_cache[i].q != NULL) {
01749     /* remember first in queue */
01750     q = neighbor_cache[i].q;
01751     /* pop first item off the queue */
01752     neighbor_cache[i].q = q->next;
01753     /* Get ipv6 header. */
01754     ip6hdr = (struct ip6_hdr *)(q->p->payload);
01755     /* Override ip6_current_dest_addr() so that we have an aligned copy. */
01756     ip6_addr_set(ip6_current_dest_addr(), &(ip6hdr->dest));
01757     /* send the queued IPv6 packet */
01758     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, q->p, ip6_current_dest_addr());
01759     /* free the queued IP packet */
01760     pbuf_free(q->p);
01761     /* now queue entry can be freed */
01762     memp_free(MEMP_ND6_QUEUE, q);
01763   }
01764 #else /* LWIP_ND6_QUEUEING */
01765   if (neighbor_cache[i].q != NULL) {
01766     /* Get ipv6 header. */
01767     ip6hdr = (struct ip6_hdr *)(neighbor_cache[i].q->payload);
01768     /* Override ip6_current_dest_addr() so that we have an aligned copy. */
01769     ip6_addr_set(ip6_current_dest_addr(), &(ip6hdr->dest));
01770     /* send the queued IPv6 packet */
01771     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, neighbor_cache[i].q, ip6_current_dest_addr());
01772     /* free the queued IP packet */
01773     pbuf_free(neighbor_cache[i].q);
01774     neighbor_cache[i].q = NULL;
01775   }
01776 #endif /* LWIP_ND6_QUEUEING */
01777 }
01778 
01779 
01780 /**
01781  * Get the Path MTU for a destination.
01782  *
01783  * @param ip6addr the destination address
01784  * @param netif the netif on which the packet will be sent
01785  * @return the Path MTU, if known, or the netif default MTU
01786  */
01787 u16_t
01788 nd6_get_destination_mtu(const ip6_addr_t * ip6addr, struct netif * netif)
01789 {
01790   s8_t i;
01791 
01792   i = nd6_find_destination_cache_entry(ip6addr);
01793   if (i >= 0) {
01794     if (destination_cache[i].pmtu > 0) {
01795       return destination_cache[i].pmtu;
01796     }
01797   }
01798 
01799   if (netif != NULL) {
01800     return netif->mtu;
01801   }
01802 
01803   return 1280; /* Minimum MTU */
01804 }
01805 
01806 
01807 #if LWIP_ND6_TCP_REACHABILITY_HINTS
01808 /**
01809  * Provide the Neighbor discovery process with a hint that a
01810  * destination is reachable. Called by tcp_receive when ACKs are
01811  * received or sent (as per RFC). This is useful to avoid sending
01812  * NS messages every 30 seconds.
01813  *
01814  * @param ip6addr the destination address which is know to be reachable
01815  *                by an upper layer protocol (TCP)
01816  */
01817 void
01818 nd6_reachability_hint(const ip6_addr_t * ip6addr)
01819 {
01820   s8_t i;
01821 
01822   /* Find destination in cache. */
01823   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
01824     i = nd6_cached_destination_index;
01825     ND6_STATS_INC(nd6.cachehit);
01826   } else {
01827     i = nd6_find_destination_cache_entry(ip6addr);
01828   }
01829   if (i < 0) {
01830     return;
01831   }
01832 
01833   /* Find next hop neighbor in cache. */
01834   if (ip6_addr_cmp(&(destination_cache[i].next_hop_addr), &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
01835     i = nd6_cached_neighbor_index;
01836     ND6_STATS_INC(nd6.cachehit);
01837   } else {
01838     i = nd6_find_neighbor_cache_entry(&(destination_cache[i].next_hop_addr));
01839   }
01840   if (i < 0) {
01841     return;
01842   }
01843 
01844   /* For safety: don't set as reachable if we don't have a LL address yet. Misuse protection. */
01845   if (neighbor_cache[i].state == ND6_INCOMPLETE || neighbor_cache[i].state == ND6_NO_ENTRY) {
01846     return;
01847   }
01848 
01849   /* Set reachability state. */
01850   neighbor_cache[i].state = ND6_REACHABLE;
01851   neighbor_cache[i].counter.reachable_time = reachable_time;
01852 }
01853 #endif /* LWIP_ND6_TCP_REACHABILITY_HINTS */
01854 
01855 /**
01856  * Remove all prefix, neighbor_cache and router entries of the specified netif.
01857  *
01858  * @param netif points to a network interface
01859  */
01860 void
01861 nd6_cleanup_netif(struct netif * netif)
01862 {
01863   u8_t i;
01864   s8_t router_index;
01865   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
01866     if (prefix_list[i].netif == netif) {
01867       prefix_list[i].netif = NULL;
01868       prefix_list[i].flags = 0;
01869     }
01870   }
01871   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01872     if (neighbor_cache[i].netif == netif) {
01873       for (router_index = 0; router_index < LWIP_ND6_NUM_ROUTERS; router_index++) {
01874         if (default_router_list[router_index].neighbor_entry == &neighbor_cache[i]) {
01875           default_router_list[router_index].neighbor_entry = NULL;
01876           default_router_list[router_index].flags = 0;
01877         }
01878       }
01879       neighbor_cache[i].isrouter = 0;
01880       nd6_free_neighbor_cache_entry(i);
01881     }
01882   }
01883 }
01884 
01885 #endif /* LWIP_IPV6 */