ON Semiconductor / mbed-os

Dependents:   mbed-TFT-example-NCS36510 mbed-Accelerometer-example-NCS36510 mbed-Accelerometer-example-NCS36510

Committer:
group-onsemi
Date:
Wed Jan 25 20:34:15 2017 +0000
Revision:
0:098463de4c5d
Initial commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
group-onsemi 0:098463de4c5d 1 /* ----------------------------------------------------------------------
group-onsemi 0:098463de4c5d 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
group-onsemi 0:098463de4c5d 3 *
group-onsemi 0:098463de4c5d 4 * $Date: 20. October 2015
group-onsemi 0:098463de4c5d 5 * $Revision: V1.4.5 b
group-onsemi 0:098463de4c5d 6 *
group-onsemi 0:098463de4c5d 7 * Project: CMSIS DSP Library
group-onsemi 0:098463de4c5d 8 * Title: arm_math.h
group-onsemi 0:098463de4c5d 9 *
group-onsemi 0:098463de4c5d 10 * Description: Public header file for CMSIS DSP Library
group-onsemi 0:098463de4c5d 11 *
group-onsemi 0:098463de4c5d 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
group-onsemi 0:098463de4c5d 13 *
group-onsemi 0:098463de4c5d 14 * Redistribution and use in source and binary forms, with or without
group-onsemi 0:098463de4c5d 15 * modification, are permitted provided that the following conditions
group-onsemi 0:098463de4c5d 16 * are met:
group-onsemi 0:098463de4c5d 17 * - Redistributions of source code must retain the above copyright
group-onsemi 0:098463de4c5d 18 * notice, this list of conditions and the following disclaimer.
group-onsemi 0:098463de4c5d 19 * - Redistributions in binary form must reproduce the above copyright
group-onsemi 0:098463de4c5d 20 * notice, this list of conditions and the following disclaimer in
group-onsemi 0:098463de4c5d 21 * the documentation and/or other materials provided with the
group-onsemi 0:098463de4c5d 22 * distribution.
group-onsemi 0:098463de4c5d 23 * - Neither the name of ARM LIMITED nor the names of its contributors
group-onsemi 0:098463de4c5d 24 * may be used to endorse or promote products derived from this
group-onsemi 0:098463de4c5d 25 * software without specific prior written permission.
group-onsemi 0:098463de4c5d 26 *
group-onsemi 0:098463de4c5d 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
group-onsemi 0:098463de4c5d 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
group-onsemi 0:098463de4c5d 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
group-onsemi 0:098463de4c5d 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
group-onsemi 0:098463de4c5d 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
group-onsemi 0:098463de4c5d 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
group-onsemi 0:098463de4c5d 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
group-onsemi 0:098463de4c5d 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
group-onsemi 0:098463de4c5d 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
group-onsemi 0:098463de4c5d 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
group-onsemi 0:098463de4c5d 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
group-onsemi 0:098463de4c5d 38 * POSSIBILITY OF SUCH DAMAGE.
group-onsemi 0:098463de4c5d 39 * -------------------------------------------------------------------- */
group-onsemi 0:098463de4c5d 40
group-onsemi 0:098463de4c5d 41 /**
group-onsemi 0:098463de4c5d 42 \mainpage CMSIS DSP Software Library
group-onsemi 0:098463de4c5d 43 *
group-onsemi 0:098463de4c5d 44 * Introduction
group-onsemi 0:098463de4c5d 45 * ------------
group-onsemi 0:098463de4c5d 46 *
group-onsemi 0:098463de4c5d 47 * This user manual describes the CMSIS DSP software library,
group-onsemi 0:098463de4c5d 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
group-onsemi 0:098463de4c5d 49 *
group-onsemi 0:098463de4c5d 50 * The library is divided into a number of functions each covering a specific category:
group-onsemi 0:098463de4c5d 51 * - Basic math functions
group-onsemi 0:098463de4c5d 52 * - Fast math functions
group-onsemi 0:098463de4c5d 53 * - Complex math functions
group-onsemi 0:098463de4c5d 54 * - Filters
group-onsemi 0:098463de4c5d 55 * - Matrix functions
group-onsemi 0:098463de4c5d 56 * - Transforms
group-onsemi 0:098463de4c5d 57 * - Motor control functions
group-onsemi 0:098463de4c5d 58 * - Statistical functions
group-onsemi 0:098463de4c5d 59 * - Support functions
group-onsemi 0:098463de4c5d 60 * - Interpolation functions
group-onsemi 0:098463de4c5d 61 *
group-onsemi 0:098463de4c5d 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
group-onsemi 0:098463de4c5d 63 * 32-bit integer and 32-bit floating-point values.
group-onsemi 0:098463de4c5d 64 *
group-onsemi 0:098463de4c5d 65 * Using the Library
group-onsemi 0:098463de4c5d 66 * ------------
group-onsemi 0:098463de4c5d 67 *
group-onsemi 0:098463de4c5d 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
group-onsemi 0:098463de4c5d 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
group-onsemi 0:098463de4c5d 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
group-onsemi 0:098463de4c5d 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
group-onsemi 0:098463de4c5d 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
group-onsemi 0:098463de4c5d 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
group-onsemi 0:098463de4c5d 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
group-onsemi 0:098463de4c5d 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
group-onsemi 0:098463de4c5d 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
group-onsemi 0:098463de4c5d 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
group-onsemi 0:098463de4c5d 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
group-onsemi 0:098463de4c5d 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
group-onsemi 0:098463de4c5d 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
group-onsemi 0:098463de4c5d 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
group-onsemi 0:098463de4c5d 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
group-onsemi 0:098463de4c5d 83 *
group-onsemi 0:098463de4c5d 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
group-onsemi 0:098463de4c5d 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
group-onsemi 0:098463de4c5d 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
group-onsemi 0:098463de4c5d 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
group-onsemi 0:098463de4c5d 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
group-onsemi 0:098463de4c5d 89 *
group-onsemi 0:098463de4c5d 90 * Examples
group-onsemi 0:098463de4c5d 91 * --------
group-onsemi 0:098463de4c5d 92 *
group-onsemi 0:098463de4c5d 93 * The library ships with a number of examples which demonstrate how to use the library functions.
group-onsemi 0:098463de4c5d 94 *
group-onsemi 0:098463de4c5d 95 * Toolchain Support
group-onsemi 0:098463de4c5d 96 * ------------
group-onsemi 0:098463de4c5d 97 *
group-onsemi 0:098463de4c5d 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
group-onsemi 0:098463de4c5d 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
group-onsemi 0:098463de4c5d 100 *
group-onsemi 0:098463de4c5d 101 * Building the Library
group-onsemi 0:098463de4c5d 102 * ------------
group-onsemi 0:098463de4c5d 103 *
group-onsemi 0:098463de4c5d 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
group-onsemi 0:098463de4c5d 105 * - arm_cortexM_math.uvprojx
group-onsemi 0:098463de4c5d 106 *
group-onsemi 0:098463de4c5d 107 *
group-onsemi 0:098463de4c5d 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
group-onsemi 0:098463de4c5d 109 *
group-onsemi 0:098463de4c5d 110 * Pre-processor Macros
group-onsemi 0:098463de4c5d 111 * ------------
group-onsemi 0:098463de4c5d 112 *
group-onsemi 0:098463de4c5d 113 * Each library project have differant pre-processor macros.
group-onsemi 0:098463de4c5d 114 *
group-onsemi 0:098463de4c5d 115 * - UNALIGNED_SUPPORT_DISABLE:
group-onsemi 0:098463de4c5d 116 *
group-onsemi 0:098463de4c5d 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
group-onsemi 0:098463de4c5d 118 *
group-onsemi 0:098463de4c5d 119 * - ARM_MATH_BIG_ENDIAN:
group-onsemi 0:098463de4c5d 120 *
group-onsemi 0:098463de4c5d 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
group-onsemi 0:098463de4c5d 122 *
group-onsemi 0:098463de4c5d 123 * - ARM_MATH_MATRIX_CHECK:
group-onsemi 0:098463de4c5d 124 *
group-onsemi 0:098463de4c5d 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
group-onsemi 0:098463de4c5d 126 *
group-onsemi 0:098463de4c5d 127 * - ARM_MATH_ROUNDING:
group-onsemi 0:098463de4c5d 128 *
group-onsemi 0:098463de4c5d 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
group-onsemi 0:098463de4c5d 130 *
group-onsemi 0:098463de4c5d 131 * - ARM_MATH_CMx:
group-onsemi 0:098463de4c5d 132 *
group-onsemi 0:098463de4c5d 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
group-onsemi 0:098463de4c5d 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
group-onsemi 0:098463de4c5d 135 * ARM_MATH_CM7 for building the library on cortex-M7.
group-onsemi 0:098463de4c5d 136 *
group-onsemi 0:098463de4c5d 137 * - __FPU_PRESENT:
group-onsemi 0:098463de4c5d 138 *
group-onsemi 0:098463de4c5d 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
group-onsemi 0:098463de4c5d 140 *
group-onsemi 0:098463de4c5d 141 * <hr>
group-onsemi 0:098463de4c5d 142 * CMSIS-DSP in ARM::CMSIS Pack
group-onsemi 0:098463de4c5d 143 * -----------------------------
group-onsemi 0:098463de4c5d 144 *
group-onsemi 0:098463de4c5d 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
group-onsemi 0:098463de4c5d 146 * |File/Folder |Content |
group-onsemi 0:098463de4c5d 147 * |------------------------------|------------------------------------------------------------------------|
group-onsemi 0:098463de4c5d 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
group-onsemi 0:098463de4c5d 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
group-onsemi 0:098463de4c5d 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
group-onsemi 0:098463de4c5d 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
group-onsemi 0:098463de4c5d 152 *
group-onsemi 0:098463de4c5d 153 * <hr>
group-onsemi 0:098463de4c5d 154 * Revision History of CMSIS-DSP
group-onsemi 0:098463de4c5d 155 * ------------
group-onsemi 0:098463de4c5d 156 * Please refer to \ref ChangeLog_pg.
group-onsemi 0:098463de4c5d 157 *
group-onsemi 0:098463de4c5d 158 * Copyright Notice
group-onsemi 0:098463de4c5d 159 * ------------
group-onsemi 0:098463de4c5d 160 *
group-onsemi 0:098463de4c5d 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
group-onsemi 0:098463de4c5d 162 */
group-onsemi 0:098463de4c5d 163
group-onsemi 0:098463de4c5d 164
group-onsemi 0:098463de4c5d 165 /**
group-onsemi 0:098463de4c5d 166 * @defgroup groupMath Basic Math Functions
group-onsemi 0:098463de4c5d 167 */
group-onsemi 0:098463de4c5d 168
group-onsemi 0:098463de4c5d 169 /**
group-onsemi 0:098463de4c5d 170 * @defgroup groupFastMath Fast Math Functions
group-onsemi 0:098463de4c5d 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
group-onsemi 0:098463de4c5d 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
group-onsemi 0:098463de4c5d 173 * operate on individual values and not arrays.
group-onsemi 0:098463de4c5d 174 * There are separate functions for Q15, Q31, and floating-point data.
group-onsemi 0:098463de4c5d 175 *
group-onsemi 0:098463de4c5d 176 */
group-onsemi 0:098463de4c5d 177
group-onsemi 0:098463de4c5d 178 /**
group-onsemi 0:098463de4c5d 179 * @defgroup groupCmplxMath Complex Math Functions
group-onsemi 0:098463de4c5d 180 * This set of functions operates on complex data vectors.
group-onsemi 0:098463de4c5d 181 * The data in the complex arrays is stored in an interleaved fashion
group-onsemi 0:098463de4c5d 182 * (real, imag, real, imag, ...).
group-onsemi 0:098463de4c5d 183 * In the API functions, the number of samples in a complex array refers
group-onsemi 0:098463de4c5d 184 * to the number of complex values; the array contains twice this number of
group-onsemi 0:098463de4c5d 185 * real values.
group-onsemi 0:098463de4c5d 186 */
group-onsemi 0:098463de4c5d 187
group-onsemi 0:098463de4c5d 188 /**
group-onsemi 0:098463de4c5d 189 * @defgroup groupFilters Filtering Functions
group-onsemi 0:098463de4c5d 190 */
group-onsemi 0:098463de4c5d 191
group-onsemi 0:098463de4c5d 192 /**
group-onsemi 0:098463de4c5d 193 * @defgroup groupMatrix Matrix Functions
group-onsemi 0:098463de4c5d 194 *
group-onsemi 0:098463de4c5d 195 * This set of functions provides basic matrix math operations.
group-onsemi 0:098463de4c5d 196 * The functions operate on matrix data structures. For example,
group-onsemi 0:098463de4c5d 197 * the type
group-onsemi 0:098463de4c5d 198 * definition for the floating-point matrix structure is shown
group-onsemi 0:098463de4c5d 199 * below:
group-onsemi 0:098463de4c5d 200 * <pre>
group-onsemi 0:098463de4c5d 201 * typedef struct
group-onsemi 0:098463de4c5d 202 * {
group-onsemi 0:098463de4c5d 203 * uint16_t numRows; // number of rows of the matrix.
group-onsemi 0:098463de4c5d 204 * uint16_t numCols; // number of columns of the matrix.
group-onsemi 0:098463de4c5d 205 * float32_t *pData; // points to the data of the matrix.
group-onsemi 0:098463de4c5d 206 * } arm_matrix_instance_f32;
group-onsemi 0:098463de4c5d 207 * </pre>
group-onsemi 0:098463de4c5d 208 * There are similar definitions for Q15 and Q31 data types.
group-onsemi 0:098463de4c5d 209 *
group-onsemi 0:098463de4c5d 210 * The structure specifies the size of the matrix and then points to
group-onsemi 0:098463de4c5d 211 * an array of data. The array is of size <code>numRows X numCols</code>
group-onsemi 0:098463de4c5d 212 * and the values are arranged in row order. That is, the
group-onsemi 0:098463de4c5d 213 * matrix element (i, j) is stored at:
group-onsemi 0:098463de4c5d 214 * <pre>
group-onsemi 0:098463de4c5d 215 * pData[i*numCols + j]
group-onsemi 0:098463de4c5d 216 * </pre>
group-onsemi 0:098463de4c5d 217 *
group-onsemi 0:098463de4c5d 218 * \par Init Functions
group-onsemi 0:098463de4c5d 219 * There is an associated initialization function for each type of matrix
group-onsemi 0:098463de4c5d 220 * data structure.
group-onsemi 0:098463de4c5d 221 * The initialization function sets the values of the internal structure fields.
group-onsemi 0:098463de4c5d 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
group-onsemi 0:098463de4c5d 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
group-onsemi 0:098463de4c5d 224 *
group-onsemi 0:098463de4c5d 225 * \par
group-onsemi 0:098463de4c5d 226 * Use of the initialization function is optional. However, if initialization function is used
group-onsemi 0:098463de4c5d 227 * then the instance structure cannot be placed into a const data section.
group-onsemi 0:098463de4c5d 228 * To place the instance structure in a const data
group-onsemi 0:098463de4c5d 229 * section, manually initialize the data structure. For example:
group-onsemi 0:098463de4c5d 230 * <pre>
group-onsemi 0:098463de4c5d 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
group-onsemi 0:098463de4c5d 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
group-onsemi 0:098463de4c5d 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
group-onsemi 0:098463de4c5d 234 * </pre>
group-onsemi 0:098463de4c5d 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
group-onsemi 0:098463de4c5d 236 * specifies the number of columns, and <code>pData</code> points to the
group-onsemi 0:098463de4c5d 237 * data array.
group-onsemi 0:098463de4c5d 238 *
group-onsemi 0:098463de4c5d 239 * \par Size Checking
group-onsemi 0:098463de4c5d 240 * By default all of the matrix functions perform size checking on the input and
group-onsemi 0:098463de4c5d 241 * output matrices. For example, the matrix addition function verifies that the
group-onsemi 0:098463de4c5d 242 * two input matrices and the output matrix all have the same number of rows and
group-onsemi 0:098463de4c5d 243 * columns. If the size check fails the functions return:
group-onsemi 0:098463de4c5d 244 * <pre>
group-onsemi 0:098463de4c5d 245 * ARM_MATH_SIZE_MISMATCH
group-onsemi 0:098463de4c5d 246 * </pre>
group-onsemi 0:098463de4c5d 247 * Otherwise the functions return
group-onsemi 0:098463de4c5d 248 * <pre>
group-onsemi 0:098463de4c5d 249 * ARM_MATH_SUCCESS
group-onsemi 0:098463de4c5d 250 * </pre>
group-onsemi 0:098463de4c5d 251 * There is some overhead associated with this matrix size checking.
group-onsemi 0:098463de4c5d 252 * The matrix size checking is enabled via the \#define
group-onsemi 0:098463de4c5d 253 * <pre>
group-onsemi 0:098463de4c5d 254 * ARM_MATH_MATRIX_CHECK
group-onsemi 0:098463de4c5d 255 * </pre>
group-onsemi 0:098463de4c5d 256 * within the library project settings. By default this macro is defined
group-onsemi 0:098463de4c5d 257 * and size checking is enabled. By changing the project settings and
group-onsemi 0:098463de4c5d 258 * undefining this macro size checking is eliminated and the functions
group-onsemi 0:098463de4c5d 259 * run a bit faster. With size checking disabled the functions always
group-onsemi 0:098463de4c5d 260 * return <code>ARM_MATH_SUCCESS</code>.
group-onsemi 0:098463de4c5d 261 */
group-onsemi 0:098463de4c5d 262
group-onsemi 0:098463de4c5d 263 /**
group-onsemi 0:098463de4c5d 264 * @defgroup groupTransforms Transform Functions
group-onsemi 0:098463de4c5d 265 */
group-onsemi 0:098463de4c5d 266
group-onsemi 0:098463de4c5d 267 /**
group-onsemi 0:098463de4c5d 268 * @defgroup groupController Controller Functions
group-onsemi 0:098463de4c5d 269 */
group-onsemi 0:098463de4c5d 270
group-onsemi 0:098463de4c5d 271 /**
group-onsemi 0:098463de4c5d 272 * @defgroup groupStats Statistics Functions
group-onsemi 0:098463de4c5d 273 */
group-onsemi 0:098463de4c5d 274 /**
group-onsemi 0:098463de4c5d 275 * @defgroup groupSupport Support Functions
group-onsemi 0:098463de4c5d 276 */
group-onsemi 0:098463de4c5d 277
group-onsemi 0:098463de4c5d 278 /**
group-onsemi 0:098463de4c5d 279 * @defgroup groupInterpolation Interpolation Functions
group-onsemi 0:098463de4c5d 280 * These functions perform 1- and 2-dimensional interpolation of data.
group-onsemi 0:098463de4c5d 281 * Linear interpolation is used for 1-dimensional data and
group-onsemi 0:098463de4c5d 282 * bilinear interpolation is used for 2-dimensional data.
group-onsemi 0:098463de4c5d 283 */
group-onsemi 0:098463de4c5d 284
group-onsemi 0:098463de4c5d 285 /**
group-onsemi 0:098463de4c5d 286 * @defgroup groupExamples Examples
group-onsemi 0:098463de4c5d 287 */
group-onsemi 0:098463de4c5d 288 #ifndef _ARM_MATH_H
group-onsemi 0:098463de4c5d 289 #define _ARM_MATH_H
group-onsemi 0:098463de4c5d 290
group-onsemi 0:098463de4c5d 291 /* ignore some GCC warnings */
group-onsemi 0:098463de4c5d 292 #if defined ( __GNUC__ )
group-onsemi 0:098463de4c5d 293 #pragma GCC diagnostic push
group-onsemi 0:098463de4c5d 294 #pragma GCC diagnostic ignored "-Wsign-conversion"
group-onsemi 0:098463de4c5d 295 #pragma GCC diagnostic ignored "-Wconversion"
group-onsemi 0:098463de4c5d 296 #pragma GCC diagnostic ignored "-Wunused-parameter"
group-onsemi 0:098463de4c5d 297 #endif
group-onsemi 0:098463de4c5d 298
group-onsemi 0:098463de4c5d 299 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
group-onsemi 0:098463de4c5d 300
group-onsemi 0:098463de4c5d 301 #if defined(ARM_MATH_CM7)
group-onsemi 0:098463de4c5d 302 #include "core_cm7.h"
group-onsemi 0:098463de4c5d 303 #elif defined (ARM_MATH_CM4)
group-onsemi 0:098463de4c5d 304 #include "core_cm4.h"
group-onsemi 0:098463de4c5d 305 #elif defined (ARM_MATH_CM3)
group-onsemi 0:098463de4c5d 306 #include "core_cm3.h"
group-onsemi 0:098463de4c5d 307 #elif defined (ARM_MATH_CM0)
group-onsemi 0:098463de4c5d 308 #include "core_cm0.h"
group-onsemi 0:098463de4c5d 309 #define ARM_MATH_CM0_FAMILY
group-onsemi 0:098463de4c5d 310 #elif defined (ARM_MATH_CM0PLUS)
group-onsemi 0:098463de4c5d 311 #include "core_cm0plus.h"
group-onsemi 0:098463de4c5d 312 #define ARM_MATH_CM0_FAMILY
group-onsemi 0:098463de4c5d 313 #else
group-onsemi 0:098463de4c5d 314 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
group-onsemi 0:098463de4c5d 315 #endif
group-onsemi 0:098463de4c5d 316
group-onsemi 0:098463de4c5d 317 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
group-onsemi 0:098463de4c5d 318 #include "string.h"
group-onsemi 0:098463de4c5d 319 #include "math.h"
group-onsemi 0:098463de4c5d 320
group-onsemi 0:098463de4c5d 321 #ifdef __cplusplus
group-onsemi 0:098463de4c5d 322 extern "C"
group-onsemi 0:098463de4c5d 323 {
group-onsemi 0:098463de4c5d 324 #endif
group-onsemi 0:098463de4c5d 325
group-onsemi 0:098463de4c5d 326
group-onsemi 0:098463de4c5d 327 /**
group-onsemi 0:098463de4c5d 328 * @brief Macros required for reciprocal calculation in Normalized LMS
group-onsemi 0:098463de4c5d 329 */
group-onsemi 0:098463de4c5d 330
group-onsemi 0:098463de4c5d 331 #define DELTA_Q31 (0x100)
group-onsemi 0:098463de4c5d 332 #define DELTA_Q15 0x5
group-onsemi 0:098463de4c5d 333 #define INDEX_MASK 0x0000003F
group-onsemi 0:098463de4c5d 334 #ifndef PI
group-onsemi 0:098463de4c5d 335 #define PI 3.14159265358979f
group-onsemi 0:098463de4c5d 336 #endif
group-onsemi 0:098463de4c5d 337
group-onsemi 0:098463de4c5d 338 /**
group-onsemi 0:098463de4c5d 339 * @brief Macros required for SINE and COSINE Fast math approximations
group-onsemi 0:098463de4c5d 340 */
group-onsemi 0:098463de4c5d 341
group-onsemi 0:098463de4c5d 342 #define FAST_MATH_TABLE_SIZE 512
group-onsemi 0:098463de4c5d 343 #define FAST_MATH_Q31_SHIFT (32 - 10)
group-onsemi 0:098463de4c5d 344 #define FAST_MATH_Q15_SHIFT (16 - 10)
group-onsemi 0:098463de4c5d 345 #define CONTROLLER_Q31_SHIFT (32 - 9)
group-onsemi 0:098463de4c5d 346 #define TABLE_SIZE 256
group-onsemi 0:098463de4c5d 347 #define TABLE_SPACING_Q31 0x400000
group-onsemi 0:098463de4c5d 348 #define TABLE_SPACING_Q15 0x80
group-onsemi 0:098463de4c5d 349
group-onsemi 0:098463de4c5d 350 /**
group-onsemi 0:098463de4c5d 351 * @brief Macros required for SINE and COSINE Controller functions
group-onsemi 0:098463de4c5d 352 */
group-onsemi 0:098463de4c5d 353 /* 1.31(q31) Fixed value of 2/360 */
group-onsemi 0:098463de4c5d 354 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
group-onsemi 0:098463de4c5d 355 #define INPUT_SPACING 0xB60B61
group-onsemi 0:098463de4c5d 356
group-onsemi 0:098463de4c5d 357 /**
group-onsemi 0:098463de4c5d 358 * @brief Macro for Unaligned Support
group-onsemi 0:098463de4c5d 359 */
group-onsemi 0:098463de4c5d 360 #ifndef UNALIGNED_SUPPORT_DISABLE
group-onsemi 0:098463de4c5d 361 #define ALIGN4
group-onsemi 0:098463de4c5d 362 #else
group-onsemi 0:098463de4c5d 363 #if defined (__GNUC__)
group-onsemi 0:098463de4c5d 364 #define ALIGN4 __attribute__((aligned(4)))
group-onsemi 0:098463de4c5d 365 #else
group-onsemi 0:098463de4c5d 366 #define ALIGN4 __align(4)
group-onsemi 0:098463de4c5d 367 #endif
group-onsemi 0:098463de4c5d 368 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
group-onsemi 0:098463de4c5d 369
group-onsemi 0:098463de4c5d 370 /**
group-onsemi 0:098463de4c5d 371 * @brief Error status returned by some functions in the library.
group-onsemi 0:098463de4c5d 372 */
group-onsemi 0:098463de4c5d 373
group-onsemi 0:098463de4c5d 374 typedef enum
group-onsemi 0:098463de4c5d 375 {
group-onsemi 0:098463de4c5d 376 ARM_MATH_SUCCESS = 0, /**< No error */
group-onsemi 0:098463de4c5d 377 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
group-onsemi 0:098463de4c5d 378 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
group-onsemi 0:098463de4c5d 379 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
group-onsemi 0:098463de4c5d 380 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
group-onsemi 0:098463de4c5d 381 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
group-onsemi 0:098463de4c5d 382 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
group-onsemi 0:098463de4c5d 383 } arm_status;
group-onsemi 0:098463de4c5d 384
group-onsemi 0:098463de4c5d 385 /**
group-onsemi 0:098463de4c5d 386 * @brief 8-bit fractional data type in 1.7 format.
group-onsemi 0:098463de4c5d 387 */
group-onsemi 0:098463de4c5d 388 typedef int8_t q7_t;
group-onsemi 0:098463de4c5d 389
group-onsemi 0:098463de4c5d 390 /**
group-onsemi 0:098463de4c5d 391 * @brief 16-bit fractional data type in 1.15 format.
group-onsemi 0:098463de4c5d 392 */
group-onsemi 0:098463de4c5d 393 typedef int16_t q15_t;
group-onsemi 0:098463de4c5d 394
group-onsemi 0:098463de4c5d 395 /**
group-onsemi 0:098463de4c5d 396 * @brief 32-bit fractional data type in 1.31 format.
group-onsemi 0:098463de4c5d 397 */
group-onsemi 0:098463de4c5d 398 typedef int32_t q31_t;
group-onsemi 0:098463de4c5d 399
group-onsemi 0:098463de4c5d 400 /**
group-onsemi 0:098463de4c5d 401 * @brief 64-bit fractional data type in 1.63 format.
group-onsemi 0:098463de4c5d 402 */
group-onsemi 0:098463de4c5d 403 typedef int64_t q63_t;
group-onsemi 0:098463de4c5d 404
group-onsemi 0:098463de4c5d 405 /**
group-onsemi 0:098463de4c5d 406 * @brief 32-bit floating-point type definition.
group-onsemi 0:098463de4c5d 407 */
group-onsemi 0:098463de4c5d 408 typedef float float32_t;
group-onsemi 0:098463de4c5d 409
group-onsemi 0:098463de4c5d 410 /**
group-onsemi 0:098463de4c5d 411 * @brief 64-bit floating-point type definition.
group-onsemi 0:098463de4c5d 412 */
group-onsemi 0:098463de4c5d 413 typedef double float64_t;
group-onsemi 0:098463de4c5d 414
group-onsemi 0:098463de4c5d 415 /**
group-onsemi 0:098463de4c5d 416 * @brief definition to read/write two 16 bit values.
group-onsemi 0:098463de4c5d 417 */
group-onsemi 0:098463de4c5d 418 #if defined __CC_ARM
group-onsemi 0:098463de4c5d 419 #define __SIMD32_TYPE int32_t __packed
group-onsemi 0:098463de4c5d 420 #define CMSIS_UNUSED __attribute__((unused))
group-onsemi 0:098463de4c5d 421
group-onsemi 0:098463de4c5d 422 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
group-onsemi 0:098463de4c5d 423 #define __SIMD32_TYPE int32_t
group-onsemi 0:098463de4c5d 424 #define CMSIS_UNUSED __attribute__((unused))
group-onsemi 0:098463de4c5d 425
group-onsemi 0:098463de4c5d 426 #elif defined __GNUC__
group-onsemi 0:098463de4c5d 427 #define __SIMD32_TYPE int32_t
group-onsemi 0:098463de4c5d 428 #define CMSIS_UNUSED __attribute__((unused))
group-onsemi 0:098463de4c5d 429
group-onsemi 0:098463de4c5d 430 #elif defined __ICCARM__
group-onsemi 0:098463de4c5d 431 #define __SIMD32_TYPE int32_t __packed
group-onsemi 0:098463de4c5d 432 #define CMSIS_UNUSED
group-onsemi 0:098463de4c5d 433
group-onsemi 0:098463de4c5d 434 #elif defined __CSMC__
group-onsemi 0:098463de4c5d 435 #define __SIMD32_TYPE int32_t
group-onsemi 0:098463de4c5d 436 #define CMSIS_UNUSED
group-onsemi 0:098463de4c5d 437
group-onsemi 0:098463de4c5d 438 #elif defined __TASKING__
group-onsemi 0:098463de4c5d 439 #define __SIMD32_TYPE __unaligned int32_t
group-onsemi 0:098463de4c5d 440 #define CMSIS_UNUSED
group-onsemi 0:098463de4c5d 441
group-onsemi 0:098463de4c5d 442 #else
group-onsemi 0:098463de4c5d 443 #error Unknown compiler
group-onsemi 0:098463de4c5d 444 #endif
group-onsemi 0:098463de4c5d 445
group-onsemi 0:098463de4c5d 446 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
group-onsemi 0:098463de4c5d 447 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
group-onsemi 0:098463de4c5d 448 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
group-onsemi 0:098463de4c5d 449 #define __SIMD64(addr) (*(int64_t **) & (addr))
group-onsemi 0:098463de4c5d 450
group-onsemi 0:098463de4c5d 451 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
group-onsemi 0:098463de4c5d 452 /**
group-onsemi 0:098463de4c5d 453 * @brief definition to pack two 16 bit values.
group-onsemi 0:098463de4c5d 454 */
group-onsemi 0:098463de4c5d 455 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
group-onsemi 0:098463de4c5d 456 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
group-onsemi 0:098463de4c5d 457 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
group-onsemi 0:098463de4c5d 458 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
group-onsemi 0:098463de4c5d 459
group-onsemi 0:098463de4c5d 460 #endif
group-onsemi 0:098463de4c5d 461
group-onsemi 0:098463de4c5d 462
group-onsemi 0:098463de4c5d 463 /**
group-onsemi 0:098463de4c5d 464 * @brief definition to pack four 8 bit values.
group-onsemi 0:098463de4c5d 465 */
group-onsemi 0:098463de4c5d 466 #ifndef ARM_MATH_BIG_ENDIAN
group-onsemi 0:098463de4c5d 467
group-onsemi 0:098463de4c5d 468 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
group-onsemi 0:098463de4c5d 469 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
group-onsemi 0:098463de4c5d 470 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
group-onsemi 0:098463de4c5d 471 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
group-onsemi 0:098463de4c5d 472 #else
group-onsemi 0:098463de4c5d 473
group-onsemi 0:098463de4c5d 474 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
group-onsemi 0:098463de4c5d 475 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
group-onsemi 0:098463de4c5d 476 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
group-onsemi 0:098463de4c5d 477 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
group-onsemi 0:098463de4c5d 478
group-onsemi 0:098463de4c5d 479 #endif
group-onsemi 0:098463de4c5d 480
group-onsemi 0:098463de4c5d 481
group-onsemi 0:098463de4c5d 482 /**
group-onsemi 0:098463de4c5d 483 * @brief Clips Q63 to Q31 values.
group-onsemi 0:098463de4c5d 484 */
group-onsemi 0:098463de4c5d 485 static __INLINE q31_t clip_q63_to_q31(
group-onsemi 0:098463de4c5d 486 q63_t x)
group-onsemi 0:098463de4c5d 487 {
group-onsemi 0:098463de4c5d 488 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
group-onsemi 0:098463de4c5d 489 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
group-onsemi 0:098463de4c5d 490 }
group-onsemi 0:098463de4c5d 491
group-onsemi 0:098463de4c5d 492 /**
group-onsemi 0:098463de4c5d 493 * @brief Clips Q63 to Q15 values.
group-onsemi 0:098463de4c5d 494 */
group-onsemi 0:098463de4c5d 495 static __INLINE q15_t clip_q63_to_q15(
group-onsemi 0:098463de4c5d 496 q63_t x)
group-onsemi 0:098463de4c5d 497 {
group-onsemi 0:098463de4c5d 498 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
group-onsemi 0:098463de4c5d 499 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
group-onsemi 0:098463de4c5d 500 }
group-onsemi 0:098463de4c5d 501
group-onsemi 0:098463de4c5d 502 /**
group-onsemi 0:098463de4c5d 503 * @brief Clips Q31 to Q7 values.
group-onsemi 0:098463de4c5d 504 */
group-onsemi 0:098463de4c5d 505 static __INLINE q7_t clip_q31_to_q7(
group-onsemi 0:098463de4c5d 506 q31_t x)
group-onsemi 0:098463de4c5d 507 {
group-onsemi 0:098463de4c5d 508 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
group-onsemi 0:098463de4c5d 509 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
group-onsemi 0:098463de4c5d 510 }
group-onsemi 0:098463de4c5d 511
group-onsemi 0:098463de4c5d 512 /**
group-onsemi 0:098463de4c5d 513 * @brief Clips Q31 to Q15 values.
group-onsemi 0:098463de4c5d 514 */
group-onsemi 0:098463de4c5d 515 static __INLINE q15_t clip_q31_to_q15(
group-onsemi 0:098463de4c5d 516 q31_t x)
group-onsemi 0:098463de4c5d 517 {
group-onsemi 0:098463de4c5d 518 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
group-onsemi 0:098463de4c5d 519 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
group-onsemi 0:098463de4c5d 520 }
group-onsemi 0:098463de4c5d 521
group-onsemi 0:098463de4c5d 522 /**
group-onsemi 0:098463de4c5d 523 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
group-onsemi 0:098463de4c5d 524 */
group-onsemi 0:098463de4c5d 525
group-onsemi 0:098463de4c5d 526 static __INLINE q63_t mult32x64(
group-onsemi 0:098463de4c5d 527 q63_t x,
group-onsemi 0:098463de4c5d 528 q31_t y)
group-onsemi 0:098463de4c5d 529 {
group-onsemi 0:098463de4c5d 530 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
group-onsemi 0:098463de4c5d 531 (((q63_t) (x >> 32) * y)));
group-onsemi 0:098463de4c5d 532 }
group-onsemi 0:098463de4c5d 533
group-onsemi 0:098463de4c5d 534 /*
group-onsemi 0:098463de4c5d 535 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
group-onsemi 0:098463de4c5d 536 #define __CLZ __clz
group-onsemi 0:098463de4c5d 537 #endif
group-onsemi 0:098463de4c5d 538 */
group-onsemi 0:098463de4c5d 539 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
group-onsemi 0:098463de4c5d 540 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
group-onsemi 0:098463de4c5d 541 static __INLINE uint32_t __CLZ(
group-onsemi 0:098463de4c5d 542 q31_t data);
group-onsemi 0:098463de4c5d 543
group-onsemi 0:098463de4c5d 544 static __INLINE uint32_t __CLZ(
group-onsemi 0:098463de4c5d 545 q31_t data)
group-onsemi 0:098463de4c5d 546 {
group-onsemi 0:098463de4c5d 547 uint32_t count = 0;
group-onsemi 0:098463de4c5d 548 uint32_t mask = 0x80000000;
group-onsemi 0:098463de4c5d 549
group-onsemi 0:098463de4c5d 550 while((data & mask) == 0)
group-onsemi 0:098463de4c5d 551 {
group-onsemi 0:098463de4c5d 552 count += 1u;
group-onsemi 0:098463de4c5d 553 mask = mask >> 1u;
group-onsemi 0:098463de4c5d 554 }
group-onsemi 0:098463de4c5d 555
group-onsemi 0:098463de4c5d 556 return (count);
group-onsemi 0:098463de4c5d 557 }
group-onsemi 0:098463de4c5d 558 #endif
group-onsemi 0:098463de4c5d 559
group-onsemi 0:098463de4c5d 560 /**
group-onsemi 0:098463de4c5d 561 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
group-onsemi 0:098463de4c5d 562 */
group-onsemi 0:098463de4c5d 563
group-onsemi 0:098463de4c5d 564 static __INLINE uint32_t arm_recip_q31(
group-onsemi 0:098463de4c5d 565 q31_t in,
group-onsemi 0:098463de4c5d 566 q31_t * dst,
group-onsemi 0:098463de4c5d 567 q31_t * pRecipTable)
group-onsemi 0:098463de4c5d 568 {
group-onsemi 0:098463de4c5d 569 q31_t out;
group-onsemi 0:098463de4c5d 570 uint32_t tempVal;
group-onsemi 0:098463de4c5d 571 uint32_t index, i;
group-onsemi 0:098463de4c5d 572 uint32_t signBits;
group-onsemi 0:098463de4c5d 573
group-onsemi 0:098463de4c5d 574 if(in > 0)
group-onsemi 0:098463de4c5d 575 {
group-onsemi 0:098463de4c5d 576 signBits = ((uint32_t) (__CLZ( in) - 1));
group-onsemi 0:098463de4c5d 577 }
group-onsemi 0:098463de4c5d 578 else
group-onsemi 0:098463de4c5d 579 {
group-onsemi 0:098463de4c5d 580 signBits = ((uint32_t) (__CLZ(-in) - 1));
group-onsemi 0:098463de4c5d 581 }
group-onsemi 0:098463de4c5d 582
group-onsemi 0:098463de4c5d 583 /* Convert input sample to 1.31 format */
group-onsemi 0:098463de4c5d 584 in = (in << signBits);
group-onsemi 0:098463de4c5d 585
group-onsemi 0:098463de4c5d 586 /* calculation of index for initial approximated Val */
group-onsemi 0:098463de4c5d 587 index = (uint32_t)(in >> 24);
group-onsemi 0:098463de4c5d 588 index = (index & INDEX_MASK);
group-onsemi 0:098463de4c5d 589
group-onsemi 0:098463de4c5d 590 /* 1.31 with exp 1 */
group-onsemi 0:098463de4c5d 591 out = pRecipTable[index];
group-onsemi 0:098463de4c5d 592
group-onsemi 0:098463de4c5d 593 /* calculation of reciprocal value */
group-onsemi 0:098463de4c5d 594 /* running approximation for two iterations */
group-onsemi 0:098463de4c5d 595 for (i = 0u; i < 2u; i++)
group-onsemi 0:098463de4c5d 596 {
group-onsemi 0:098463de4c5d 597 tempVal = (uint32_t) (((q63_t) in * out) >> 31);
group-onsemi 0:098463de4c5d 598 tempVal = 0x7FFFFFFFu - tempVal;
group-onsemi 0:098463de4c5d 599 /* 1.31 with exp 1 */
group-onsemi 0:098463de4c5d 600 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
group-onsemi 0:098463de4c5d 601 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
group-onsemi 0:098463de4c5d 602 }
group-onsemi 0:098463de4c5d 603
group-onsemi 0:098463de4c5d 604 /* write output */
group-onsemi 0:098463de4c5d 605 *dst = out;
group-onsemi 0:098463de4c5d 606
group-onsemi 0:098463de4c5d 607 /* return num of signbits of out = 1/in value */
group-onsemi 0:098463de4c5d 608 return (signBits + 1u);
group-onsemi 0:098463de4c5d 609 }
group-onsemi 0:098463de4c5d 610
group-onsemi 0:098463de4c5d 611
group-onsemi 0:098463de4c5d 612 /**
group-onsemi 0:098463de4c5d 613 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
group-onsemi 0:098463de4c5d 614 */
group-onsemi 0:098463de4c5d 615 static __INLINE uint32_t arm_recip_q15(
group-onsemi 0:098463de4c5d 616 q15_t in,
group-onsemi 0:098463de4c5d 617 q15_t * dst,
group-onsemi 0:098463de4c5d 618 q15_t * pRecipTable)
group-onsemi 0:098463de4c5d 619 {
group-onsemi 0:098463de4c5d 620 q15_t out = 0;
group-onsemi 0:098463de4c5d 621 uint32_t tempVal = 0;
group-onsemi 0:098463de4c5d 622 uint32_t index = 0, i = 0;
group-onsemi 0:098463de4c5d 623 uint32_t signBits = 0;
group-onsemi 0:098463de4c5d 624
group-onsemi 0:098463de4c5d 625 if(in > 0)
group-onsemi 0:098463de4c5d 626 {
group-onsemi 0:098463de4c5d 627 signBits = ((uint32_t)(__CLZ( in) - 17));
group-onsemi 0:098463de4c5d 628 }
group-onsemi 0:098463de4c5d 629 else
group-onsemi 0:098463de4c5d 630 {
group-onsemi 0:098463de4c5d 631 signBits = ((uint32_t)(__CLZ(-in) - 17));
group-onsemi 0:098463de4c5d 632 }
group-onsemi 0:098463de4c5d 633
group-onsemi 0:098463de4c5d 634 /* Convert input sample to 1.15 format */
group-onsemi 0:098463de4c5d 635 in = (in << signBits);
group-onsemi 0:098463de4c5d 636
group-onsemi 0:098463de4c5d 637 /* calculation of index for initial approximated Val */
group-onsemi 0:098463de4c5d 638 index = (uint32_t)(in >> 8);
group-onsemi 0:098463de4c5d 639 index = (index & INDEX_MASK);
group-onsemi 0:098463de4c5d 640
group-onsemi 0:098463de4c5d 641 /* 1.15 with exp 1 */
group-onsemi 0:098463de4c5d 642 out = pRecipTable[index];
group-onsemi 0:098463de4c5d 643
group-onsemi 0:098463de4c5d 644 /* calculation of reciprocal value */
group-onsemi 0:098463de4c5d 645 /* running approximation for two iterations */
group-onsemi 0:098463de4c5d 646 for (i = 0u; i < 2u; i++)
group-onsemi 0:098463de4c5d 647 {
group-onsemi 0:098463de4c5d 648 tempVal = (uint32_t) (((q31_t) in * out) >> 15);
group-onsemi 0:098463de4c5d 649 tempVal = 0x7FFFu - tempVal;
group-onsemi 0:098463de4c5d 650 /* 1.15 with exp 1 */
group-onsemi 0:098463de4c5d 651 out = (q15_t) (((q31_t) out * tempVal) >> 14);
group-onsemi 0:098463de4c5d 652 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
group-onsemi 0:098463de4c5d 653 }
group-onsemi 0:098463de4c5d 654
group-onsemi 0:098463de4c5d 655 /* write output */
group-onsemi 0:098463de4c5d 656 *dst = out;
group-onsemi 0:098463de4c5d 657
group-onsemi 0:098463de4c5d 658 /* return num of signbits of out = 1/in value */
group-onsemi 0:098463de4c5d 659 return (signBits + 1);
group-onsemi 0:098463de4c5d 660 }
group-onsemi 0:098463de4c5d 661
group-onsemi 0:098463de4c5d 662
group-onsemi 0:098463de4c5d 663 /*
group-onsemi 0:098463de4c5d 664 * @brief C custom defined intrinisic function for only M0 processors
group-onsemi 0:098463de4c5d 665 */
group-onsemi 0:098463de4c5d 666 #if defined(ARM_MATH_CM0_FAMILY)
group-onsemi 0:098463de4c5d 667 static __INLINE q31_t __SSAT(
group-onsemi 0:098463de4c5d 668 q31_t x,
group-onsemi 0:098463de4c5d 669 uint32_t y)
group-onsemi 0:098463de4c5d 670 {
group-onsemi 0:098463de4c5d 671 int32_t posMax, negMin;
group-onsemi 0:098463de4c5d 672 uint32_t i;
group-onsemi 0:098463de4c5d 673
group-onsemi 0:098463de4c5d 674 posMax = 1;
group-onsemi 0:098463de4c5d 675 for (i = 0; i < (y - 1); i++)
group-onsemi 0:098463de4c5d 676 {
group-onsemi 0:098463de4c5d 677 posMax = posMax * 2;
group-onsemi 0:098463de4c5d 678 }
group-onsemi 0:098463de4c5d 679
group-onsemi 0:098463de4c5d 680 if(x > 0)
group-onsemi 0:098463de4c5d 681 {
group-onsemi 0:098463de4c5d 682 posMax = (posMax - 1);
group-onsemi 0:098463de4c5d 683
group-onsemi 0:098463de4c5d 684 if(x > posMax)
group-onsemi 0:098463de4c5d 685 {
group-onsemi 0:098463de4c5d 686 x = posMax;
group-onsemi 0:098463de4c5d 687 }
group-onsemi 0:098463de4c5d 688 }
group-onsemi 0:098463de4c5d 689 else
group-onsemi 0:098463de4c5d 690 {
group-onsemi 0:098463de4c5d 691 negMin = -posMax;
group-onsemi 0:098463de4c5d 692
group-onsemi 0:098463de4c5d 693 if(x < negMin)
group-onsemi 0:098463de4c5d 694 {
group-onsemi 0:098463de4c5d 695 x = negMin;
group-onsemi 0:098463de4c5d 696 }
group-onsemi 0:098463de4c5d 697 }
group-onsemi 0:098463de4c5d 698 return (x);
group-onsemi 0:098463de4c5d 699 }
group-onsemi 0:098463de4c5d 700 #endif /* end of ARM_MATH_CM0_FAMILY */
group-onsemi 0:098463de4c5d 701
group-onsemi 0:098463de4c5d 702
group-onsemi 0:098463de4c5d 703 /*
group-onsemi 0:098463de4c5d 704 * @brief C custom defined intrinsic function for M3 and M0 processors
group-onsemi 0:098463de4c5d 705 */
group-onsemi 0:098463de4c5d 706 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
group-onsemi 0:098463de4c5d 707
group-onsemi 0:098463de4c5d 708 /*
group-onsemi 0:098463de4c5d 709 * @brief C custom defined QADD8 for M3 and M0 processors
group-onsemi 0:098463de4c5d 710 */
group-onsemi 0:098463de4c5d 711 static __INLINE uint32_t __QADD8(
group-onsemi 0:098463de4c5d 712 uint32_t x,
group-onsemi 0:098463de4c5d 713 uint32_t y)
group-onsemi 0:098463de4c5d 714 {
group-onsemi 0:098463de4c5d 715 q31_t r, s, t, u;
group-onsemi 0:098463de4c5d 716
group-onsemi 0:098463de4c5d 717 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 718 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 719 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 720 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 721
group-onsemi 0:098463de4c5d 722 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
group-onsemi 0:098463de4c5d 723 }
group-onsemi 0:098463de4c5d 724
group-onsemi 0:098463de4c5d 725
group-onsemi 0:098463de4c5d 726 /*
group-onsemi 0:098463de4c5d 727 * @brief C custom defined QSUB8 for M3 and M0 processors
group-onsemi 0:098463de4c5d 728 */
group-onsemi 0:098463de4c5d 729 static __INLINE uint32_t __QSUB8(
group-onsemi 0:098463de4c5d 730 uint32_t x,
group-onsemi 0:098463de4c5d 731 uint32_t y)
group-onsemi 0:098463de4c5d 732 {
group-onsemi 0:098463de4c5d 733 q31_t r, s, t, u;
group-onsemi 0:098463de4c5d 734
group-onsemi 0:098463de4c5d 735 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 736 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 737 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 738 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
group-onsemi 0:098463de4c5d 739
group-onsemi 0:098463de4c5d 740 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
group-onsemi 0:098463de4c5d 741 }
group-onsemi 0:098463de4c5d 742
group-onsemi 0:098463de4c5d 743
group-onsemi 0:098463de4c5d 744 /*
group-onsemi 0:098463de4c5d 745 * @brief C custom defined QADD16 for M3 and M0 processors
group-onsemi 0:098463de4c5d 746 */
group-onsemi 0:098463de4c5d 747 static __INLINE uint32_t __QADD16(
group-onsemi 0:098463de4c5d 748 uint32_t x,
group-onsemi 0:098463de4c5d 749 uint32_t y)
group-onsemi 0:098463de4c5d 750 {
group-onsemi 0:098463de4c5d 751 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
group-onsemi 0:098463de4c5d 752 q31_t r = 0, s = 0;
group-onsemi 0:098463de4c5d 753
group-onsemi 0:098463de4c5d 754 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 755 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 756
group-onsemi 0:098463de4c5d 757 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 758 }
group-onsemi 0:098463de4c5d 759
group-onsemi 0:098463de4c5d 760
group-onsemi 0:098463de4c5d 761 /*
group-onsemi 0:098463de4c5d 762 * @brief C custom defined SHADD16 for M3 and M0 processors
group-onsemi 0:098463de4c5d 763 */
group-onsemi 0:098463de4c5d 764 static __INLINE uint32_t __SHADD16(
group-onsemi 0:098463de4c5d 765 uint32_t x,
group-onsemi 0:098463de4c5d 766 uint32_t y)
group-onsemi 0:098463de4c5d 767 {
group-onsemi 0:098463de4c5d 768 q31_t r, s;
group-onsemi 0:098463de4c5d 769
group-onsemi 0:098463de4c5d 770 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 771 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 772
group-onsemi 0:098463de4c5d 773 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 774 }
group-onsemi 0:098463de4c5d 775
group-onsemi 0:098463de4c5d 776
group-onsemi 0:098463de4c5d 777 /*
group-onsemi 0:098463de4c5d 778 * @brief C custom defined QSUB16 for M3 and M0 processors
group-onsemi 0:098463de4c5d 779 */
group-onsemi 0:098463de4c5d 780 static __INLINE uint32_t __QSUB16(
group-onsemi 0:098463de4c5d 781 uint32_t x,
group-onsemi 0:098463de4c5d 782 uint32_t y)
group-onsemi 0:098463de4c5d 783 {
group-onsemi 0:098463de4c5d 784 q31_t r, s;
group-onsemi 0:098463de4c5d 785
group-onsemi 0:098463de4c5d 786 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 787 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 788
group-onsemi 0:098463de4c5d 789 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 790 }
group-onsemi 0:098463de4c5d 791
group-onsemi 0:098463de4c5d 792
group-onsemi 0:098463de4c5d 793 /*
group-onsemi 0:098463de4c5d 794 * @brief C custom defined SHSUB16 for M3 and M0 processors
group-onsemi 0:098463de4c5d 795 */
group-onsemi 0:098463de4c5d 796 static __INLINE uint32_t __SHSUB16(
group-onsemi 0:098463de4c5d 797 uint32_t x,
group-onsemi 0:098463de4c5d 798 uint32_t y)
group-onsemi 0:098463de4c5d 799 {
group-onsemi 0:098463de4c5d 800 q31_t r, s;
group-onsemi 0:098463de4c5d 801
group-onsemi 0:098463de4c5d 802 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 803 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 804
group-onsemi 0:098463de4c5d 805 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 806 }
group-onsemi 0:098463de4c5d 807
group-onsemi 0:098463de4c5d 808
group-onsemi 0:098463de4c5d 809 /*
group-onsemi 0:098463de4c5d 810 * @brief C custom defined QASX for M3 and M0 processors
group-onsemi 0:098463de4c5d 811 */
group-onsemi 0:098463de4c5d 812 static __INLINE uint32_t __QASX(
group-onsemi 0:098463de4c5d 813 uint32_t x,
group-onsemi 0:098463de4c5d 814 uint32_t y)
group-onsemi 0:098463de4c5d 815 {
group-onsemi 0:098463de4c5d 816 q31_t r, s;
group-onsemi 0:098463de4c5d 817
group-onsemi 0:098463de4c5d 818 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 819 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 820
group-onsemi 0:098463de4c5d 821 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 822 }
group-onsemi 0:098463de4c5d 823
group-onsemi 0:098463de4c5d 824
group-onsemi 0:098463de4c5d 825 /*
group-onsemi 0:098463de4c5d 826 * @brief C custom defined SHASX for M3 and M0 processors
group-onsemi 0:098463de4c5d 827 */
group-onsemi 0:098463de4c5d 828 static __INLINE uint32_t __SHASX(
group-onsemi 0:098463de4c5d 829 uint32_t x,
group-onsemi 0:098463de4c5d 830 uint32_t y)
group-onsemi 0:098463de4c5d 831 {
group-onsemi 0:098463de4c5d 832 q31_t r, s;
group-onsemi 0:098463de4c5d 833
group-onsemi 0:098463de4c5d 834 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 835 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 836
group-onsemi 0:098463de4c5d 837 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 838 }
group-onsemi 0:098463de4c5d 839
group-onsemi 0:098463de4c5d 840
group-onsemi 0:098463de4c5d 841 /*
group-onsemi 0:098463de4c5d 842 * @brief C custom defined QSAX for M3 and M0 processors
group-onsemi 0:098463de4c5d 843 */
group-onsemi 0:098463de4c5d 844 static __INLINE uint32_t __QSAX(
group-onsemi 0:098463de4c5d 845 uint32_t x,
group-onsemi 0:098463de4c5d 846 uint32_t y)
group-onsemi 0:098463de4c5d 847 {
group-onsemi 0:098463de4c5d 848 q31_t r, s;
group-onsemi 0:098463de4c5d 849
group-onsemi 0:098463de4c5d 850 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 851 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 852
group-onsemi 0:098463de4c5d 853 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 854 }
group-onsemi 0:098463de4c5d 855
group-onsemi 0:098463de4c5d 856
group-onsemi 0:098463de4c5d 857 /*
group-onsemi 0:098463de4c5d 858 * @brief C custom defined SHSAX for M3 and M0 processors
group-onsemi 0:098463de4c5d 859 */
group-onsemi 0:098463de4c5d 860 static __INLINE uint32_t __SHSAX(
group-onsemi 0:098463de4c5d 861 uint32_t x,
group-onsemi 0:098463de4c5d 862 uint32_t y)
group-onsemi 0:098463de4c5d 863 {
group-onsemi 0:098463de4c5d 864 q31_t r, s;
group-onsemi 0:098463de4c5d 865
group-onsemi 0:098463de4c5d 866 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 867 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
group-onsemi 0:098463de4c5d 868
group-onsemi 0:098463de4c5d 869 return ((uint32_t)((s << 16) | (r )));
group-onsemi 0:098463de4c5d 870 }
group-onsemi 0:098463de4c5d 871
group-onsemi 0:098463de4c5d 872
group-onsemi 0:098463de4c5d 873 /*
group-onsemi 0:098463de4c5d 874 * @brief C custom defined SMUSDX for M3 and M0 processors
group-onsemi 0:098463de4c5d 875 */
group-onsemi 0:098463de4c5d 876 static __INLINE uint32_t __SMUSDX(
group-onsemi 0:098463de4c5d 877 uint32_t x,
group-onsemi 0:098463de4c5d 878 uint32_t y)
group-onsemi 0:098463de4c5d 879 {
group-onsemi 0:098463de4c5d 880 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
group-onsemi 0:098463de4c5d 881 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
group-onsemi 0:098463de4c5d 882 }
group-onsemi 0:098463de4c5d 883
group-onsemi 0:098463de4c5d 884 /*
group-onsemi 0:098463de4c5d 885 * @brief C custom defined SMUADX for M3 and M0 processors
group-onsemi 0:098463de4c5d 886 */
group-onsemi 0:098463de4c5d 887 static __INLINE uint32_t __SMUADX(
group-onsemi 0:098463de4c5d 888 uint32_t x,
group-onsemi 0:098463de4c5d 889 uint32_t y)
group-onsemi 0:098463de4c5d 890 {
group-onsemi 0:098463de4c5d 891 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
group-onsemi 0:098463de4c5d 892 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
group-onsemi 0:098463de4c5d 893 }
group-onsemi 0:098463de4c5d 894
group-onsemi 0:098463de4c5d 895
group-onsemi 0:098463de4c5d 896 /*
group-onsemi 0:098463de4c5d 897 * @brief C custom defined QADD for M3 and M0 processors
group-onsemi 0:098463de4c5d 898 */
group-onsemi 0:098463de4c5d 899 static __INLINE int32_t __QADD(
group-onsemi 0:098463de4c5d 900 int32_t x,
group-onsemi 0:098463de4c5d 901 int32_t y)
group-onsemi 0:098463de4c5d 902 {
group-onsemi 0:098463de4c5d 903 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
group-onsemi 0:098463de4c5d 904 }
group-onsemi 0:098463de4c5d 905
group-onsemi 0:098463de4c5d 906
group-onsemi 0:098463de4c5d 907 /*
group-onsemi 0:098463de4c5d 908 * @brief C custom defined QSUB for M3 and M0 processors
group-onsemi 0:098463de4c5d 909 */
group-onsemi 0:098463de4c5d 910 static __INLINE int32_t __QSUB(
group-onsemi 0:098463de4c5d 911 int32_t x,
group-onsemi 0:098463de4c5d 912 int32_t y)
group-onsemi 0:098463de4c5d 913 {
group-onsemi 0:098463de4c5d 914 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
group-onsemi 0:098463de4c5d 915 }
group-onsemi 0:098463de4c5d 916
group-onsemi 0:098463de4c5d 917
group-onsemi 0:098463de4c5d 918 /*
group-onsemi 0:098463de4c5d 919 * @brief C custom defined SMLAD for M3 and M0 processors
group-onsemi 0:098463de4c5d 920 */
group-onsemi 0:098463de4c5d 921 static __INLINE uint32_t __SMLAD(
group-onsemi 0:098463de4c5d 922 uint32_t x,
group-onsemi 0:098463de4c5d 923 uint32_t y,
group-onsemi 0:098463de4c5d 924 uint32_t sum)
group-onsemi 0:098463de4c5d 925 {
group-onsemi 0:098463de4c5d 926 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
group-onsemi 0:098463de4c5d 927 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
group-onsemi 0:098463de4c5d 928 ( ((q31_t)sum ) ) ));
group-onsemi 0:098463de4c5d 929 }
group-onsemi 0:098463de4c5d 930
group-onsemi 0:098463de4c5d 931
group-onsemi 0:098463de4c5d 932 /*
group-onsemi 0:098463de4c5d 933 * @brief C custom defined SMLADX for M3 and M0 processors
group-onsemi 0:098463de4c5d 934 */
group-onsemi 0:098463de4c5d 935 static __INLINE uint32_t __SMLADX(
group-onsemi 0:098463de4c5d 936 uint32_t x,
group-onsemi 0:098463de4c5d 937 uint32_t y,
group-onsemi 0:098463de4c5d 938 uint32_t sum)
group-onsemi 0:098463de4c5d 939 {
group-onsemi 0:098463de4c5d 940 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
group-onsemi 0:098463de4c5d 941 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
group-onsemi 0:098463de4c5d 942 ( ((q31_t)sum ) ) ));
group-onsemi 0:098463de4c5d 943 }
group-onsemi 0:098463de4c5d 944
group-onsemi 0:098463de4c5d 945
group-onsemi 0:098463de4c5d 946 /*
group-onsemi 0:098463de4c5d 947 * @brief C custom defined SMLSDX for M3 and M0 processors
group-onsemi 0:098463de4c5d 948 */
group-onsemi 0:098463de4c5d 949 static __INLINE uint32_t __SMLSDX(
group-onsemi 0:098463de4c5d 950 uint32_t x,
group-onsemi 0:098463de4c5d 951 uint32_t y,
group-onsemi 0:098463de4c5d 952 uint32_t sum)
group-onsemi 0:098463de4c5d 953 {
group-onsemi 0:098463de4c5d 954 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
group-onsemi 0:098463de4c5d 955 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
group-onsemi 0:098463de4c5d 956 ( ((q31_t)sum ) ) ));
group-onsemi 0:098463de4c5d 957 }
group-onsemi 0:098463de4c5d 958
group-onsemi 0:098463de4c5d 959
group-onsemi 0:098463de4c5d 960 /*
group-onsemi 0:098463de4c5d 961 * @brief C custom defined SMLALD for M3 and M0 processors
group-onsemi 0:098463de4c5d 962 */
group-onsemi 0:098463de4c5d 963 static __INLINE uint64_t __SMLALD(
group-onsemi 0:098463de4c5d 964 uint32_t x,
group-onsemi 0:098463de4c5d 965 uint32_t y,
group-onsemi 0:098463de4c5d 966 uint64_t sum)
group-onsemi 0:098463de4c5d 967 {
group-onsemi 0:098463de4c5d 968 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
group-onsemi 0:098463de4c5d 969 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
group-onsemi 0:098463de4c5d 970 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
group-onsemi 0:098463de4c5d 971 ( ((q63_t)sum ) ) ));
group-onsemi 0:098463de4c5d 972 }
group-onsemi 0:098463de4c5d 973
group-onsemi 0:098463de4c5d 974
group-onsemi 0:098463de4c5d 975 /*
group-onsemi 0:098463de4c5d 976 * @brief C custom defined SMLALDX for M3 and M0 processors
group-onsemi 0:098463de4c5d 977 */
group-onsemi 0:098463de4c5d 978 static __INLINE uint64_t __SMLALDX(
group-onsemi 0:098463de4c5d 979 uint32_t x,
group-onsemi 0:098463de4c5d 980 uint32_t y,
group-onsemi 0:098463de4c5d 981 uint64_t sum)
group-onsemi 0:098463de4c5d 982 {
group-onsemi 0:098463de4c5d 983 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
group-onsemi 0:098463de4c5d 984 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
group-onsemi 0:098463de4c5d 985 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
group-onsemi 0:098463de4c5d 986 ( ((q63_t)sum ) ) ));
group-onsemi 0:098463de4c5d 987 }
group-onsemi 0:098463de4c5d 988
group-onsemi 0:098463de4c5d 989
group-onsemi 0:098463de4c5d 990 /*
group-onsemi 0:098463de4c5d 991 * @brief C custom defined SMUAD for M3 and M0 processors
group-onsemi 0:098463de4c5d 992 */
group-onsemi 0:098463de4c5d 993 static __INLINE uint32_t __SMUAD(
group-onsemi 0:098463de4c5d 994 uint32_t x,
group-onsemi 0:098463de4c5d 995 uint32_t y)
group-onsemi 0:098463de4c5d 996 {
group-onsemi 0:098463de4c5d 997 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
group-onsemi 0:098463de4c5d 998 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
group-onsemi 0:098463de4c5d 999 }
group-onsemi 0:098463de4c5d 1000
group-onsemi 0:098463de4c5d 1001
group-onsemi 0:098463de4c5d 1002 /*
group-onsemi 0:098463de4c5d 1003 * @brief C custom defined SMUSD for M3 and M0 processors
group-onsemi 0:098463de4c5d 1004 */
group-onsemi 0:098463de4c5d 1005 static __INLINE uint32_t __SMUSD(
group-onsemi 0:098463de4c5d 1006 uint32_t x,
group-onsemi 0:098463de4c5d 1007 uint32_t y)
group-onsemi 0:098463de4c5d 1008 {
group-onsemi 0:098463de4c5d 1009 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
group-onsemi 0:098463de4c5d 1010 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
group-onsemi 0:098463de4c5d 1011 }
group-onsemi 0:098463de4c5d 1012
group-onsemi 0:098463de4c5d 1013
group-onsemi 0:098463de4c5d 1014 /*
group-onsemi 0:098463de4c5d 1015 * @brief C custom defined SXTB16 for M3 and M0 processors
group-onsemi 0:098463de4c5d 1016 */
group-onsemi 0:098463de4c5d 1017 static __INLINE uint32_t __SXTB16(
group-onsemi 0:098463de4c5d 1018 uint32_t x)
group-onsemi 0:098463de4c5d 1019 {
group-onsemi 0:098463de4c5d 1020 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
group-onsemi 0:098463de4c5d 1021 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
group-onsemi 0:098463de4c5d 1022 }
group-onsemi 0:098463de4c5d 1023
group-onsemi 0:098463de4c5d 1024 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
group-onsemi 0:098463de4c5d 1025
group-onsemi 0:098463de4c5d 1026
group-onsemi 0:098463de4c5d 1027 /**
group-onsemi 0:098463de4c5d 1028 * @brief Instance structure for the Q7 FIR filter.
group-onsemi 0:098463de4c5d 1029 */
group-onsemi 0:098463de4c5d 1030 typedef struct
group-onsemi 0:098463de4c5d 1031 {
group-onsemi 0:098463de4c5d 1032 uint16_t numTaps; /**< number of filter coefficients in the filter. */
group-onsemi 0:098463de4c5d 1033 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 1034 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 1035 } arm_fir_instance_q7;
group-onsemi 0:098463de4c5d 1036
group-onsemi 0:098463de4c5d 1037 /**
group-onsemi 0:098463de4c5d 1038 * @brief Instance structure for the Q15 FIR filter.
group-onsemi 0:098463de4c5d 1039 */
group-onsemi 0:098463de4c5d 1040 typedef struct
group-onsemi 0:098463de4c5d 1041 {
group-onsemi 0:098463de4c5d 1042 uint16_t numTaps; /**< number of filter coefficients in the filter. */
group-onsemi 0:098463de4c5d 1043 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 1044 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 1045 } arm_fir_instance_q15;
group-onsemi 0:098463de4c5d 1046
group-onsemi 0:098463de4c5d 1047 /**
group-onsemi 0:098463de4c5d 1048 * @brief Instance structure for the Q31 FIR filter.
group-onsemi 0:098463de4c5d 1049 */
group-onsemi 0:098463de4c5d 1050 typedef struct
group-onsemi 0:098463de4c5d 1051 {
group-onsemi 0:098463de4c5d 1052 uint16_t numTaps; /**< number of filter coefficients in the filter. */
group-onsemi 0:098463de4c5d 1053 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 1054 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 1055 } arm_fir_instance_q31;
group-onsemi 0:098463de4c5d 1056
group-onsemi 0:098463de4c5d 1057 /**
group-onsemi 0:098463de4c5d 1058 * @brief Instance structure for the floating-point FIR filter.
group-onsemi 0:098463de4c5d 1059 */
group-onsemi 0:098463de4c5d 1060 typedef struct
group-onsemi 0:098463de4c5d 1061 {
group-onsemi 0:098463de4c5d 1062 uint16_t numTaps; /**< number of filter coefficients in the filter. */
group-onsemi 0:098463de4c5d 1063 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 1064 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 1065 } arm_fir_instance_f32;
group-onsemi 0:098463de4c5d 1066
group-onsemi 0:098463de4c5d 1067
group-onsemi 0:098463de4c5d 1068 /**
group-onsemi 0:098463de4c5d 1069 * @brief Processing function for the Q7 FIR filter.
group-onsemi 0:098463de4c5d 1070 * @param[in] S points to an instance of the Q7 FIR filter structure.
group-onsemi 0:098463de4c5d 1071 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1072 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1073 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1074 */
group-onsemi 0:098463de4c5d 1075 void arm_fir_q7(
group-onsemi 0:098463de4c5d 1076 const arm_fir_instance_q7 * S,
group-onsemi 0:098463de4c5d 1077 q7_t * pSrc,
group-onsemi 0:098463de4c5d 1078 q7_t * pDst,
group-onsemi 0:098463de4c5d 1079 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1080
group-onsemi 0:098463de4c5d 1081
group-onsemi 0:098463de4c5d 1082 /**
group-onsemi 0:098463de4c5d 1083 * @brief Initialization function for the Q7 FIR filter.
group-onsemi 0:098463de4c5d 1084 * @param[in,out] S points to an instance of the Q7 FIR structure.
group-onsemi 0:098463de4c5d 1085 * @param[in] numTaps Number of filter coefficients in the filter.
group-onsemi 0:098463de4c5d 1086 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1087 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1088 * @param[in] blockSize number of samples that are processed.
group-onsemi 0:098463de4c5d 1089 */
group-onsemi 0:098463de4c5d 1090 void arm_fir_init_q7(
group-onsemi 0:098463de4c5d 1091 arm_fir_instance_q7 * S,
group-onsemi 0:098463de4c5d 1092 uint16_t numTaps,
group-onsemi 0:098463de4c5d 1093 q7_t * pCoeffs,
group-onsemi 0:098463de4c5d 1094 q7_t * pState,
group-onsemi 0:098463de4c5d 1095 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1096
group-onsemi 0:098463de4c5d 1097
group-onsemi 0:098463de4c5d 1098 /**
group-onsemi 0:098463de4c5d 1099 * @brief Processing function for the Q15 FIR filter.
group-onsemi 0:098463de4c5d 1100 * @param[in] S points to an instance of the Q15 FIR structure.
group-onsemi 0:098463de4c5d 1101 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1102 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1103 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1104 */
group-onsemi 0:098463de4c5d 1105 void arm_fir_q15(
group-onsemi 0:098463de4c5d 1106 const arm_fir_instance_q15 * S,
group-onsemi 0:098463de4c5d 1107 q15_t * pSrc,
group-onsemi 0:098463de4c5d 1108 q15_t * pDst,
group-onsemi 0:098463de4c5d 1109 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1110
group-onsemi 0:098463de4c5d 1111
group-onsemi 0:098463de4c5d 1112 /**
group-onsemi 0:098463de4c5d 1113 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 1114 * @param[in] S points to an instance of the Q15 FIR filter structure.
group-onsemi 0:098463de4c5d 1115 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1116 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1117 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1118 */
group-onsemi 0:098463de4c5d 1119 void arm_fir_fast_q15(
group-onsemi 0:098463de4c5d 1120 const arm_fir_instance_q15 * S,
group-onsemi 0:098463de4c5d 1121 q15_t * pSrc,
group-onsemi 0:098463de4c5d 1122 q15_t * pDst,
group-onsemi 0:098463de4c5d 1123 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1124
group-onsemi 0:098463de4c5d 1125
group-onsemi 0:098463de4c5d 1126 /**
group-onsemi 0:098463de4c5d 1127 * @brief Initialization function for the Q15 FIR filter.
group-onsemi 0:098463de4c5d 1128 * @param[in,out] S points to an instance of the Q15 FIR filter structure.
group-onsemi 0:098463de4c5d 1129 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
group-onsemi 0:098463de4c5d 1130 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1131 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1132 * @param[in] blockSize number of samples that are processed at a time.
group-onsemi 0:098463de4c5d 1133 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
group-onsemi 0:098463de4c5d 1134 * <code>numTaps</code> is not a supported value.
group-onsemi 0:098463de4c5d 1135 */
group-onsemi 0:098463de4c5d 1136 arm_status arm_fir_init_q15(
group-onsemi 0:098463de4c5d 1137 arm_fir_instance_q15 * S,
group-onsemi 0:098463de4c5d 1138 uint16_t numTaps,
group-onsemi 0:098463de4c5d 1139 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 1140 q15_t * pState,
group-onsemi 0:098463de4c5d 1141 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1142
group-onsemi 0:098463de4c5d 1143
group-onsemi 0:098463de4c5d 1144 /**
group-onsemi 0:098463de4c5d 1145 * @brief Processing function for the Q31 FIR filter.
group-onsemi 0:098463de4c5d 1146 * @param[in] S points to an instance of the Q31 FIR filter structure.
group-onsemi 0:098463de4c5d 1147 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1148 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1149 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1150 */
group-onsemi 0:098463de4c5d 1151 void arm_fir_q31(
group-onsemi 0:098463de4c5d 1152 const arm_fir_instance_q31 * S,
group-onsemi 0:098463de4c5d 1153 q31_t * pSrc,
group-onsemi 0:098463de4c5d 1154 q31_t * pDst,
group-onsemi 0:098463de4c5d 1155 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1156
group-onsemi 0:098463de4c5d 1157
group-onsemi 0:098463de4c5d 1158 /**
group-onsemi 0:098463de4c5d 1159 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 1160 * @param[in] S points to an instance of the Q31 FIR structure.
group-onsemi 0:098463de4c5d 1161 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1162 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1163 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1164 */
group-onsemi 0:098463de4c5d 1165 void arm_fir_fast_q31(
group-onsemi 0:098463de4c5d 1166 const arm_fir_instance_q31 * S,
group-onsemi 0:098463de4c5d 1167 q31_t * pSrc,
group-onsemi 0:098463de4c5d 1168 q31_t * pDst,
group-onsemi 0:098463de4c5d 1169 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1170
group-onsemi 0:098463de4c5d 1171
group-onsemi 0:098463de4c5d 1172 /**
group-onsemi 0:098463de4c5d 1173 * @brief Initialization function for the Q31 FIR filter.
group-onsemi 0:098463de4c5d 1174 * @param[in,out] S points to an instance of the Q31 FIR structure.
group-onsemi 0:098463de4c5d 1175 * @param[in] numTaps Number of filter coefficients in the filter.
group-onsemi 0:098463de4c5d 1176 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1177 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1178 * @param[in] blockSize number of samples that are processed at a time.
group-onsemi 0:098463de4c5d 1179 */
group-onsemi 0:098463de4c5d 1180 void arm_fir_init_q31(
group-onsemi 0:098463de4c5d 1181 arm_fir_instance_q31 * S,
group-onsemi 0:098463de4c5d 1182 uint16_t numTaps,
group-onsemi 0:098463de4c5d 1183 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 1184 q31_t * pState,
group-onsemi 0:098463de4c5d 1185 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1186
group-onsemi 0:098463de4c5d 1187
group-onsemi 0:098463de4c5d 1188 /**
group-onsemi 0:098463de4c5d 1189 * @brief Processing function for the floating-point FIR filter.
group-onsemi 0:098463de4c5d 1190 * @param[in] S points to an instance of the floating-point FIR structure.
group-onsemi 0:098463de4c5d 1191 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1192 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1193 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1194 */
group-onsemi 0:098463de4c5d 1195 void arm_fir_f32(
group-onsemi 0:098463de4c5d 1196 const arm_fir_instance_f32 * S,
group-onsemi 0:098463de4c5d 1197 float32_t * pSrc,
group-onsemi 0:098463de4c5d 1198 float32_t * pDst,
group-onsemi 0:098463de4c5d 1199 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1200
group-onsemi 0:098463de4c5d 1201
group-onsemi 0:098463de4c5d 1202 /**
group-onsemi 0:098463de4c5d 1203 * @brief Initialization function for the floating-point FIR filter.
group-onsemi 0:098463de4c5d 1204 * @param[in,out] S points to an instance of the floating-point FIR filter structure.
group-onsemi 0:098463de4c5d 1205 * @param[in] numTaps Number of filter coefficients in the filter.
group-onsemi 0:098463de4c5d 1206 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1207 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1208 * @param[in] blockSize number of samples that are processed at a time.
group-onsemi 0:098463de4c5d 1209 */
group-onsemi 0:098463de4c5d 1210 void arm_fir_init_f32(
group-onsemi 0:098463de4c5d 1211 arm_fir_instance_f32 * S,
group-onsemi 0:098463de4c5d 1212 uint16_t numTaps,
group-onsemi 0:098463de4c5d 1213 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 1214 float32_t * pState,
group-onsemi 0:098463de4c5d 1215 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1216
group-onsemi 0:098463de4c5d 1217
group-onsemi 0:098463de4c5d 1218 /**
group-onsemi 0:098463de4c5d 1219 * @brief Instance structure for the Q15 Biquad cascade filter.
group-onsemi 0:098463de4c5d 1220 */
group-onsemi 0:098463de4c5d 1221 typedef struct
group-onsemi 0:098463de4c5d 1222 {
group-onsemi 0:098463de4c5d 1223 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 1224 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
group-onsemi 0:098463de4c5d 1225 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 1226 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
group-onsemi 0:098463de4c5d 1227 } arm_biquad_casd_df1_inst_q15;
group-onsemi 0:098463de4c5d 1228
group-onsemi 0:098463de4c5d 1229 /**
group-onsemi 0:098463de4c5d 1230 * @brief Instance structure for the Q31 Biquad cascade filter.
group-onsemi 0:098463de4c5d 1231 */
group-onsemi 0:098463de4c5d 1232 typedef struct
group-onsemi 0:098463de4c5d 1233 {
group-onsemi 0:098463de4c5d 1234 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 1235 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
group-onsemi 0:098463de4c5d 1236 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 1237 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
group-onsemi 0:098463de4c5d 1238 } arm_biquad_casd_df1_inst_q31;
group-onsemi 0:098463de4c5d 1239
group-onsemi 0:098463de4c5d 1240 /**
group-onsemi 0:098463de4c5d 1241 * @brief Instance structure for the floating-point Biquad cascade filter.
group-onsemi 0:098463de4c5d 1242 */
group-onsemi 0:098463de4c5d 1243 typedef struct
group-onsemi 0:098463de4c5d 1244 {
group-onsemi 0:098463de4c5d 1245 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 1246 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
group-onsemi 0:098463de4c5d 1247 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 1248 } arm_biquad_casd_df1_inst_f32;
group-onsemi 0:098463de4c5d 1249
group-onsemi 0:098463de4c5d 1250
group-onsemi 0:098463de4c5d 1251 /**
group-onsemi 0:098463de4c5d 1252 * @brief Processing function for the Q15 Biquad cascade filter.
group-onsemi 0:098463de4c5d 1253 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
group-onsemi 0:098463de4c5d 1254 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1255 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1256 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1257 */
group-onsemi 0:098463de4c5d 1258 void arm_biquad_cascade_df1_q15(
group-onsemi 0:098463de4c5d 1259 const arm_biquad_casd_df1_inst_q15 * S,
group-onsemi 0:098463de4c5d 1260 q15_t * pSrc,
group-onsemi 0:098463de4c5d 1261 q15_t * pDst,
group-onsemi 0:098463de4c5d 1262 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1263
group-onsemi 0:098463de4c5d 1264
group-onsemi 0:098463de4c5d 1265 /**
group-onsemi 0:098463de4c5d 1266 * @brief Initialization function for the Q15 Biquad cascade filter.
group-onsemi 0:098463de4c5d 1267 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
group-onsemi 0:098463de4c5d 1268 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 1269 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1270 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1271 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
group-onsemi 0:098463de4c5d 1272 */
group-onsemi 0:098463de4c5d 1273 void arm_biquad_cascade_df1_init_q15(
group-onsemi 0:098463de4c5d 1274 arm_biquad_casd_df1_inst_q15 * S,
group-onsemi 0:098463de4c5d 1275 uint8_t numStages,
group-onsemi 0:098463de4c5d 1276 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 1277 q15_t * pState,
group-onsemi 0:098463de4c5d 1278 int8_t postShift);
group-onsemi 0:098463de4c5d 1279
group-onsemi 0:098463de4c5d 1280
group-onsemi 0:098463de4c5d 1281 /**
group-onsemi 0:098463de4c5d 1282 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 1283 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
group-onsemi 0:098463de4c5d 1284 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1285 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1286 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1287 */
group-onsemi 0:098463de4c5d 1288 void arm_biquad_cascade_df1_fast_q15(
group-onsemi 0:098463de4c5d 1289 const arm_biquad_casd_df1_inst_q15 * S,
group-onsemi 0:098463de4c5d 1290 q15_t * pSrc,
group-onsemi 0:098463de4c5d 1291 q15_t * pDst,
group-onsemi 0:098463de4c5d 1292 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1293
group-onsemi 0:098463de4c5d 1294
group-onsemi 0:098463de4c5d 1295 /**
group-onsemi 0:098463de4c5d 1296 * @brief Processing function for the Q31 Biquad cascade filter
group-onsemi 0:098463de4c5d 1297 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
group-onsemi 0:098463de4c5d 1298 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1299 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1300 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1301 */
group-onsemi 0:098463de4c5d 1302 void arm_biquad_cascade_df1_q31(
group-onsemi 0:098463de4c5d 1303 const arm_biquad_casd_df1_inst_q31 * S,
group-onsemi 0:098463de4c5d 1304 q31_t * pSrc,
group-onsemi 0:098463de4c5d 1305 q31_t * pDst,
group-onsemi 0:098463de4c5d 1306 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1307
group-onsemi 0:098463de4c5d 1308
group-onsemi 0:098463de4c5d 1309 /**
group-onsemi 0:098463de4c5d 1310 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 1311 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
group-onsemi 0:098463de4c5d 1312 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1313 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1314 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1315 */
group-onsemi 0:098463de4c5d 1316 void arm_biquad_cascade_df1_fast_q31(
group-onsemi 0:098463de4c5d 1317 const arm_biquad_casd_df1_inst_q31 * S,
group-onsemi 0:098463de4c5d 1318 q31_t * pSrc,
group-onsemi 0:098463de4c5d 1319 q31_t * pDst,
group-onsemi 0:098463de4c5d 1320 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1321
group-onsemi 0:098463de4c5d 1322
group-onsemi 0:098463de4c5d 1323 /**
group-onsemi 0:098463de4c5d 1324 * @brief Initialization function for the Q31 Biquad cascade filter.
group-onsemi 0:098463de4c5d 1325 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
group-onsemi 0:098463de4c5d 1326 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 1327 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1328 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1329 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
group-onsemi 0:098463de4c5d 1330 */
group-onsemi 0:098463de4c5d 1331 void arm_biquad_cascade_df1_init_q31(
group-onsemi 0:098463de4c5d 1332 arm_biquad_casd_df1_inst_q31 * S,
group-onsemi 0:098463de4c5d 1333 uint8_t numStages,
group-onsemi 0:098463de4c5d 1334 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 1335 q31_t * pState,
group-onsemi 0:098463de4c5d 1336 int8_t postShift);
group-onsemi 0:098463de4c5d 1337
group-onsemi 0:098463de4c5d 1338
group-onsemi 0:098463de4c5d 1339 /**
group-onsemi 0:098463de4c5d 1340 * @brief Processing function for the floating-point Biquad cascade filter.
group-onsemi 0:098463de4c5d 1341 * @param[in] S points to an instance of the floating-point Biquad cascade structure.
group-onsemi 0:098463de4c5d 1342 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 1343 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 1344 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 1345 */
group-onsemi 0:098463de4c5d 1346 void arm_biquad_cascade_df1_f32(
group-onsemi 0:098463de4c5d 1347 const arm_biquad_casd_df1_inst_f32 * S,
group-onsemi 0:098463de4c5d 1348 float32_t * pSrc,
group-onsemi 0:098463de4c5d 1349 float32_t * pDst,
group-onsemi 0:098463de4c5d 1350 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1351
group-onsemi 0:098463de4c5d 1352
group-onsemi 0:098463de4c5d 1353 /**
group-onsemi 0:098463de4c5d 1354 * @brief Initialization function for the floating-point Biquad cascade filter.
group-onsemi 0:098463de4c5d 1355 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
group-onsemi 0:098463de4c5d 1356 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 1357 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 1358 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 1359 */
group-onsemi 0:098463de4c5d 1360 void arm_biquad_cascade_df1_init_f32(
group-onsemi 0:098463de4c5d 1361 arm_biquad_casd_df1_inst_f32 * S,
group-onsemi 0:098463de4c5d 1362 uint8_t numStages,
group-onsemi 0:098463de4c5d 1363 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 1364 float32_t * pState);
group-onsemi 0:098463de4c5d 1365
group-onsemi 0:098463de4c5d 1366
group-onsemi 0:098463de4c5d 1367 /**
group-onsemi 0:098463de4c5d 1368 * @brief Instance structure for the floating-point matrix structure.
group-onsemi 0:098463de4c5d 1369 */
group-onsemi 0:098463de4c5d 1370 typedef struct
group-onsemi 0:098463de4c5d 1371 {
group-onsemi 0:098463de4c5d 1372 uint16_t numRows; /**< number of rows of the matrix. */
group-onsemi 0:098463de4c5d 1373 uint16_t numCols; /**< number of columns of the matrix. */
group-onsemi 0:098463de4c5d 1374 float32_t *pData; /**< points to the data of the matrix. */
group-onsemi 0:098463de4c5d 1375 } arm_matrix_instance_f32;
group-onsemi 0:098463de4c5d 1376
group-onsemi 0:098463de4c5d 1377
group-onsemi 0:098463de4c5d 1378 /**
group-onsemi 0:098463de4c5d 1379 * @brief Instance structure for the floating-point matrix structure.
group-onsemi 0:098463de4c5d 1380 */
group-onsemi 0:098463de4c5d 1381 typedef struct
group-onsemi 0:098463de4c5d 1382 {
group-onsemi 0:098463de4c5d 1383 uint16_t numRows; /**< number of rows of the matrix. */
group-onsemi 0:098463de4c5d 1384 uint16_t numCols; /**< number of columns of the matrix. */
group-onsemi 0:098463de4c5d 1385 float64_t *pData; /**< points to the data of the matrix. */
group-onsemi 0:098463de4c5d 1386 } arm_matrix_instance_f64;
group-onsemi 0:098463de4c5d 1387
group-onsemi 0:098463de4c5d 1388 /**
group-onsemi 0:098463de4c5d 1389 * @brief Instance structure for the Q15 matrix structure.
group-onsemi 0:098463de4c5d 1390 */
group-onsemi 0:098463de4c5d 1391 typedef struct
group-onsemi 0:098463de4c5d 1392 {
group-onsemi 0:098463de4c5d 1393 uint16_t numRows; /**< number of rows of the matrix. */
group-onsemi 0:098463de4c5d 1394 uint16_t numCols; /**< number of columns of the matrix. */
group-onsemi 0:098463de4c5d 1395 q15_t *pData; /**< points to the data of the matrix. */
group-onsemi 0:098463de4c5d 1396 } arm_matrix_instance_q15;
group-onsemi 0:098463de4c5d 1397
group-onsemi 0:098463de4c5d 1398 /**
group-onsemi 0:098463de4c5d 1399 * @brief Instance structure for the Q31 matrix structure.
group-onsemi 0:098463de4c5d 1400 */
group-onsemi 0:098463de4c5d 1401 typedef struct
group-onsemi 0:098463de4c5d 1402 {
group-onsemi 0:098463de4c5d 1403 uint16_t numRows; /**< number of rows of the matrix. */
group-onsemi 0:098463de4c5d 1404 uint16_t numCols; /**< number of columns of the matrix. */
group-onsemi 0:098463de4c5d 1405 q31_t *pData; /**< points to the data of the matrix. */
group-onsemi 0:098463de4c5d 1406 } arm_matrix_instance_q31;
group-onsemi 0:098463de4c5d 1407
group-onsemi 0:098463de4c5d 1408
group-onsemi 0:098463de4c5d 1409 /**
group-onsemi 0:098463de4c5d 1410 * @brief Floating-point matrix addition.
group-onsemi 0:098463de4c5d 1411 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1412 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1413 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1414 * @return The function returns either
group-onsemi 0:098463de4c5d 1415 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1416 */
group-onsemi 0:098463de4c5d 1417 arm_status arm_mat_add_f32(
group-onsemi 0:098463de4c5d 1418 const arm_matrix_instance_f32 * pSrcA,
group-onsemi 0:098463de4c5d 1419 const arm_matrix_instance_f32 * pSrcB,
group-onsemi 0:098463de4c5d 1420 arm_matrix_instance_f32 * pDst);
group-onsemi 0:098463de4c5d 1421
group-onsemi 0:098463de4c5d 1422
group-onsemi 0:098463de4c5d 1423 /**
group-onsemi 0:098463de4c5d 1424 * @brief Q15 matrix addition.
group-onsemi 0:098463de4c5d 1425 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1426 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1427 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1428 * @return The function returns either
group-onsemi 0:098463de4c5d 1429 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1430 */
group-onsemi 0:098463de4c5d 1431 arm_status arm_mat_add_q15(
group-onsemi 0:098463de4c5d 1432 const arm_matrix_instance_q15 * pSrcA,
group-onsemi 0:098463de4c5d 1433 const arm_matrix_instance_q15 * pSrcB,
group-onsemi 0:098463de4c5d 1434 arm_matrix_instance_q15 * pDst);
group-onsemi 0:098463de4c5d 1435
group-onsemi 0:098463de4c5d 1436
group-onsemi 0:098463de4c5d 1437 /**
group-onsemi 0:098463de4c5d 1438 * @brief Q31 matrix addition.
group-onsemi 0:098463de4c5d 1439 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1440 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1441 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1442 * @return The function returns either
group-onsemi 0:098463de4c5d 1443 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1444 */
group-onsemi 0:098463de4c5d 1445 arm_status arm_mat_add_q31(
group-onsemi 0:098463de4c5d 1446 const arm_matrix_instance_q31 * pSrcA,
group-onsemi 0:098463de4c5d 1447 const arm_matrix_instance_q31 * pSrcB,
group-onsemi 0:098463de4c5d 1448 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1449
group-onsemi 0:098463de4c5d 1450
group-onsemi 0:098463de4c5d 1451 /**
group-onsemi 0:098463de4c5d 1452 * @brief Floating-point, complex, matrix multiplication.
group-onsemi 0:098463de4c5d 1453 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1454 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1455 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1456 * @return The function returns either
group-onsemi 0:098463de4c5d 1457 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1458 */
group-onsemi 0:098463de4c5d 1459 arm_status arm_mat_cmplx_mult_f32(
group-onsemi 0:098463de4c5d 1460 const arm_matrix_instance_f32 * pSrcA,
group-onsemi 0:098463de4c5d 1461 const arm_matrix_instance_f32 * pSrcB,
group-onsemi 0:098463de4c5d 1462 arm_matrix_instance_f32 * pDst);
group-onsemi 0:098463de4c5d 1463
group-onsemi 0:098463de4c5d 1464
group-onsemi 0:098463de4c5d 1465 /**
group-onsemi 0:098463de4c5d 1466 * @brief Q15, complex, matrix multiplication.
group-onsemi 0:098463de4c5d 1467 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1468 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1469 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1470 * @return The function returns either
group-onsemi 0:098463de4c5d 1471 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1472 */
group-onsemi 0:098463de4c5d 1473 arm_status arm_mat_cmplx_mult_q15(
group-onsemi 0:098463de4c5d 1474 const arm_matrix_instance_q15 * pSrcA,
group-onsemi 0:098463de4c5d 1475 const arm_matrix_instance_q15 * pSrcB,
group-onsemi 0:098463de4c5d 1476 arm_matrix_instance_q15 * pDst,
group-onsemi 0:098463de4c5d 1477 q15_t * pScratch);
group-onsemi 0:098463de4c5d 1478
group-onsemi 0:098463de4c5d 1479
group-onsemi 0:098463de4c5d 1480 /**
group-onsemi 0:098463de4c5d 1481 * @brief Q31, complex, matrix multiplication.
group-onsemi 0:098463de4c5d 1482 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1483 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1484 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1485 * @return The function returns either
group-onsemi 0:098463de4c5d 1486 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1487 */
group-onsemi 0:098463de4c5d 1488 arm_status arm_mat_cmplx_mult_q31(
group-onsemi 0:098463de4c5d 1489 const arm_matrix_instance_q31 * pSrcA,
group-onsemi 0:098463de4c5d 1490 const arm_matrix_instance_q31 * pSrcB,
group-onsemi 0:098463de4c5d 1491 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1492
group-onsemi 0:098463de4c5d 1493
group-onsemi 0:098463de4c5d 1494 /**
group-onsemi 0:098463de4c5d 1495 * @brief Floating-point matrix transpose.
group-onsemi 0:098463de4c5d 1496 * @param[in] pSrc points to the input matrix
group-onsemi 0:098463de4c5d 1497 * @param[out] pDst points to the output matrix
group-onsemi 0:098463de4c5d 1498 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
group-onsemi 0:098463de4c5d 1499 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1500 */
group-onsemi 0:098463de4c5d 1501 arm_status arm_mat_trans_f32(
group-onsemi 0:098463de4c5d 1502 const arm_matrix_instance_f32 * pSrc,
group-onsemi 0:098463de4c5d 1503 arm_matrix_instance_f32 * pDst);
group-onsemi 0:098463de4c5d 1504
group-onsemi 0:098463de4c5d 1505
group-onsemi 0:098463de4c5d 1506 /**
group-onsemi 0:098463de4c5d 1507 * @brief Q15 matrix transpose.
group-onsemi 0:098463de4c5d 1508 * @param[in] pSrc points to the input matrix
group-onsemi 0:098463de4c5d 1509 * @param[out] pDst points to the output matrix
group-onsemi 0:098463de4c5d 1510 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
group-onsemi 0:098463de4c5d 1511 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1512 */
group-onsemi 0:098463de4c5d 1513 arm_status arm_mat_trans_q15(
group-onsemi 0:098463de4c5d 1514 const arm_matrix_instance_q15 * pSrc,
group-onsemi 0:098463de4c5d 1515 arm_matrix_instance_q15 * pDst);
group-onsemi 0:098463de4c5d 1516
group-onsemi 0:098463de4c5d 1517
group-onsemi 0:098463de4c5d 1518 /**
group-onsemi 0:098463de4c5d 1519 * @brief Q31 matrix transpose.
group-onsemi 0:098463de4c5d 1520 * @param[in] pSrc points to the input matrix
group-onsemi 0:098463de4c5d 1521 * @param[out] pDst points to the output matrix
group-onsemi 0:098463de4c5d 1522 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
group-onsemi 0:098463de4c5d 1523 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1524 */
group-onsemi 0:098463de4c5d 1525 arm_status arm_mat_trans_q31(
group-onsemi 0:098463de4c5d 1526 const arm_matrix_instance_q31 * pSrc,
group-onsemi 0:098463de4c5d 1527 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1528
group-onsemi 0:098463de4c5d 1529
group-onsemi 0:098463de4c5d 1530 /**
group-onsemi 0:098463de4c5d 1531 * @brief Floating-point matrix multiplication
group-onsemi 0:098463de4c5d 1532 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1533 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1534 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1535 * @return The function returns either
group-onsemi 0:098463de4c5d 1536 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1537 */
group-onsemi 0:098463de4c5d 1538 arm_status arm_mat_mult_f32(
group-onsemi 0:098463de4c5d 1539 const arm_matrix_instance_f32 * pSrcA,
group-onsemi 0:098463de4c5d 1540 const arm_matrix_instance_f32 * pSrcB,
group-onsemi 0:098463de4c5d 1541 arm_matrix_instance_f32 * pDst);
group-onsemi 0:098463de4c5d 1542
group-onsemi 0:098463de4c5d 1543
group-onsemi 0:098463de4c5d 1544 /**
group-onsemi 0:098463de4c5d 1545 * @brief Q15 matrix multiplication
group-onsemi 0:098463de4c5d 1546 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1547 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1548 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1549 * @param[in] pState points to the array for storing intermediate results
group-onsemi 0:098463de4c5d 1550 * @return The function returns either
group-onsemi 0:098463de4c5d 1551 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1552 */
group-onsemi 0:098463de4c5d 1553 arm_status arm_mat_mult_q15(
group-onsemi 0:098463de4c5d 1554 const arm_matrix_instance_q15 * pSrcA,
group-onsemi 0:098463de4c5d 1555 const arm_matrix_instance_q15 * pSrcB,
group-onsemi 0:098463de4c5d 1556 arm_matrix_instance_q15 * pDst,
group-onsemi 0:098463de4c5d 1557 q15_t * pState);
group-onsemi 0:098463de4c5d 1558
group-onsemi 0:098463de4c5d 1559
group-onsemi 0:098463de4c5d 1560 /**
group-onsemi 0:098463de4c5d 1561 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 1562 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1563 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1564 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1565 * @param[in] pState points to the array for storing intermediate results
group-onsemi 0:098463de4c5d 1566 * @return The function returns either
group-onsemi 0:098463de4c5d 1567 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1568 */
group-onsemi 0:098463de4c5d 1569 arm_status arm_mat_mult_fast_q15(
group-onsemi 0:098463de4c5d 1570 const arm_matrix_instance_q15 * pSrcA,
group-onsemi 0:098463de4c5d 1571 const arm_matrix_instance_q15 * pSrcB,
group-onsemi 0:098463de4c5d 1572 arm_matrix_instance_q15 * pDst,
group-onsemi 0:098463de4c5d 1573 q15_t * pState);
group-onsemi 0:098463de4c5d 1574
group-onsemi 0:098463de4c5d 1575
group-onsemi 0:098463de4c5d 1576 /**
group-onsemi 0:098463de4c5d 1577 * @brief Q31 matrix multiplication
group-onsemi 0:098463de4c5d 1578 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1579 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1580 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1581 * @return The function returns either
group-onsemi 0:098463de4c5d 1582 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1583 */
group-onsemi 0:098463de4c5d 1584 arm_status arm_mat_mult_q31(
group-onsemi 0:098463de4c5d 1585 const arm_matrix_instance_q31 * pSrcA,
group-onsemi 0:098463de4c5d 1586 const arm_matrix_instance_q31 * pSrcB,
group-onsemi 0:098463de4c5d 1587 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1588
group-onsemi 0:098463de4c5d 1589
group-onsemi 0:098463de4c5d 1590 /**
group-onsemi 0:098463de4c5d 1591 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 1592 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1593 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1594 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1595 * @return The function returns either
group-onsemi 0:098463de4c5d 1596 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1597 */
group-onsemi 0:098463de4c5d 1598 arm_status arm_mat_mult_fast_q31(
group-onsemi 0:098463de4c5d 1599 const arm_matrix_instance_q31 * pSrcA,
group-onsemi 0:098463de4c5d 1600 const arm_matrix_instance_q31 * pSrcB,
group-onsemi 0:098463de4c5d 1601 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1602
group-onsemi 0:098463de4c5d 1603
group-onsemi 0:098463de4c5d 1604 /**
group-onsemi 0:098463de4c5d 1605 * @brief Floating-point matrix subtraction
group-onsemi 0:098463de4c5d 1606 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1607 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1608 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1609 * @return The function returns either
group-onsemi 0:098463de4c5d 1610 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1611 */
group-onsemi 0:098463de4c5d 1612 arm_status arm_mat_sub_f32(
group-onsemi 0:098463de4c5d 1613 const arm_matrix_instance_f32 * pSrcA,
group-onsemi 0:098463de4c5d 1614 const arm_matrix_instance_f32 * pSrcB,
group-onsemi 0:098463de4c5d 1615 arm_matrix_instance_f32 * pDst);
group-onsemi 0:098463de4c5d 1616
group-onsemi 0:098463de4c5d 1617
group-onsemi 0:098463de4c5d 1618 /**
group-onsemi 0:098463de4c5d 1619 * @brief Q15 matrix subtraction
group-onsemi 0:098463de4c5d 1620 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1621 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1622 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1623 * @return The function returns either
group-onsemi 0:098463de4c5d 1624 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1625 */
group-onsemi 0:098463de4c5d 1626 arm_status arm_mat_sub_q15(
group-onsemi 0:098463de4c5d 1627 const arm_matrix_instance_q15 * pSrcA,
group-onsemi 0:098463de4c5d 1628 const arm_matrix_instance_q15 * pSrcB,
group-onsemi 0:098463de4c5d 1629 arm_matrix_instance_q15 * pDst);
group-onsemi 0:098463de4c5d 1630
group-onsemi 0:098463de4c5d 1631
group-onsemi 0:098463de4c5d 1632 /**
group-onsemi 0:098463de4c5d 1633 * @brief Q31 matrix subtraction
group-onsemi 0:098463de4c5d 1634 * @param[in] pSrcA points to the first input matrix structure
group-onsemi 0:098463de4c5d 1635 * @param[in] pSrcB points to the second input matrix structure
group-onsemi 0:098463de4c5d 1636 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1637 * @return The function returns either
group-onsemi 0:098463de4c5d 1638 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1639 */
group-onsemi 0:098463de4c5d 1640 arm_status arm_mat_sub_q31(
group-onsemi 0:098463de4c5d 1641 const arm_matrix_instance_q31 * pSrcA,
group-onsemi 0:098463de4c5d 1642 const arm_matrix_instance_q31 * pSrcB,
group-onsemi 0:098463de4c5d 1643 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1644
group-onsemi 0:098463de4c5d 1645
group-onsemi 0:098463de4c5d 1646 /**
group-onsemi 0:098463de4c5d 1647 * @brief Floating-point matrix scaling.
group-onsemi 0:098463de4c5d 1648 * @param[in] pSrc points to the input matrix
group-onsemi 0:098463de4c5d 1649 * @param[in] scale scale factor
group-onsemi 0:098463de4c5d 1650 * @param[out] pDst points to the output matrix
group-onsemi 0:098463de4c5d 1651 * @return The function returns either
group-onsemi 0:098463de4c5d 1652 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1653 */
group-onsemi 0:098463de4c5d 1654 arm_status arm_mat_scale_f32(
group-onsemi 0:098463de4c5d 1655 const arm_matrix_instance_f32 * pSrc,
group-onsemi 0:098463de4c5d 1656 float32_t scale,
group-onsemi 0:098463de4c5d 1657 arm_matrix_instance_f32 * pDst);
group-onsemi 0:098463de4c5d 1658
group-onsemi 0:098463de4c5d 1659
group-onsemi 0:098463de4c5d 1660 /**
group-onsemi 0:098463de4c5d 1661 * @brief Q15 matrix scaling.
group-onsemi 0:098463de4c5d 1662 * @param[in] pSrc points to input matrix
group-onsemi 0:098463de4c5d 1663 * @param[in] scaleFract fractional portion of the scale factor
group-onsemi 0:098463de4c5d 1664 * @param[in] shift number of bits to shift the result by
group-onsemi 0:098463de4c5d 1665 * @param[out] pDst points to output matrix
group-onsemi 0:098463de4c5d 1666 * @return The function returns either
group-onsemi 0:098463de4c5d 1667 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1668 */
group-onsemi 0:098463de4c5d 1669 arm_status arm_mat_scale_q15(
group-onsemi 0:098463de4c5d 1670 const arm_matrix_instance_q15 * pSrc,
group-onsemi 0:098463de4c5d 1671 q15_t scaleFract,
group-onsemi 0:098463de4c5d 1672 int32_t shift,
group-onsemi 0:098463de4c5d 1673 arm_matrix_instance_q15 * pDst);
group-onsemi 0:098463de4c5d 1674
group-onsemi 0:098463de4c5d 1675
group-onsemi 0:098463de4c5d 1676 /**
group-onsemi 0:098463de4c5d 1677 * @brief Q31 matrix scaling.
group-onsemi 0:098463de4c5d 1678 * @param[in] pSrc points to input matrix
group-onsemi 0:098463de4c5d 1679 * @param[in] scaleFract fractional portion of the scale factor
group-onsemi 0:098463de4c5d 1680 * @param[in] shift number of bits to shift the result by
group-onsemi 0:098463de4c5d 1681 * @param[out] pDst points to output matrix structure
group-onsemi 0:098463de4c5d 1682 * @return The function returns either
group-onsemi 0:098463de4c5d 1683 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
group-onsemi 0:098463de4c5d 1684 */
group-onsemi 0:098463de4c5d 1685 arm_status arm_mat_scale_q31(
group-onsemi 0:098463de4c5d 1686 const arm_matrix_instance_q31 * pSrc,
group-onsemi 0:098463de4c5d 1687 q31_t scaleFract,
group-onsemi 0:098463de4c5d 1688 int32_t shift,
group-onsemi 0:098463de4c5d 1689 arm_matrix_instance_q31 * pDst);
group-onsemi 0:098463de4c5d 1690
group-onsemi 0:098463de4c5d 1691
group-onsemi 0:098463de4c5d 1692 /**
group-onsemi 0:098463de4c5d 1693 * @brief Q31 matrix initialization.
group-onsemi 0:098463de4c5d 1694 * @param[in,out] S points to an instance of the floating-point matrix structure.
group-onsemi 0:098463de4c5d 1695 * @param[in] nRows number of rows in the matrix.
group-onsemi 0:098463de4c5d 1696 * @param[in] nColumns number of columns in the matrix.
group-onsemi 0:098463de4c5d 1697 * @param[in] pData points to the matrix data array.
group-onsemi 0:098463de4c5d 1698 */
group-onsemi 0:098463de4c5d 1699 void arm_mat_init_q31(
group-onsemi 0:098463de4c5d 1700 arm_matrix_instance_q31 * S,
group-onsemi 0:098463de4c5d 1701 uint16_t nRows,
group-onsemi 0:098463de4c5d 1702 uint16_t nColumns,
group-onsemi 0:098463de4c5d 1703 q31_t * pData);
group-onsemi 0:098463de4c5d 1704
group-onsemi 0:098463de4c5d 1705
group-onsemi 0:098463de4c5d 1706 /**
group-onsemi 0:098463de4c5d 1707 * @brief Q15 matrix initialization.
group-onsemi 0:098463de4c5d 1708 * @param[in,out] S points to an instance of the floating-point matrix structure.
group-onsemi 0:098463de4c5d 1709 * @param[in] nRows number of rows in the matrix.
group-onsemi 0:098463de4c5d 1710 * @param[in] nColumns number of columns in the matrix.
group-onsemi 0:098463de4c5d 1711 * @param[in] pData points to the matrix data array.
group-onsemi 0:098463de4c5d 1712 */
group-onsemi 0:098463de4c5d 1713 void arm_mat_init_q15(
group-onsemi 0:098463de4c5d 1714 arm_matrix_instance_q15 * S,
group-onsemi 0:098463de4c5d 1715 uint16_t nRows,
group-onsemi 0:098463de4c5d 1716 uint16_t nColumns,
group-onsemi 0:098463de4c5d 1717 q15_t * pData);
group-onsemi 0:098463de4c5d 1718
group-onsemi 0:098463de4c5d 1719
group-onsemi 0:098463de4c5d 1720 /**
group-onsemi 0:098463de4c5d 1721 * @brief Floating-point matrix initialization.
group-onsemi 0:098463de4c5d 1722 * @param[in,out] S points to an instance of the floating-point matrix structure.
group-onsemi 0:098463de4c5d 1723 * @param[in] nRows number of rows in the matrix.
group-onsemi 0:098463de4c5d 1724 * @param[in] nColumns number of columns in the matrix.
group-onsemi 0:098463de4c5d 1725 * @param[in] pData points to the matrix data array.
group-onsemi 0:098463de4c5d 1726 */
group-onsemi 0:098463de4c5d 1727 void arm_mat_init_f32(
group-onsemi 0:098463de4c5d 1728 arm_matrix_instance_f32 * S,
group-onsemi 0:098463de4c5d 1729 uint16_t nRows,
group-onsemi 0:098463de4c5d 1730 uint16_t nColumns,
group-onsemi 0:098463de4c5d 1731 float32_t * pData);
group-onsemi 0:098463de4c5d 1732
group-onsemi 0:098463de4c5d 1733
group-onsemi 0:098463de4c5d 1734
group-onsemi 0:098463de4c5d 1735 /**
group-onsemi 0:098463de4c5d 1736 * @brief Instance structure for the Q15 PID Control.
group-onsemi 0:098463de4c5d 1737 */
group-onsemi 0:098463de4c5d 1738 typedef struct
group-onsemi 0:098463de4c5d 1739 {
group-onsemi 0:098463de4c5d 1740 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
group-onsemi 0:098463de4c5d 1741 #ifdef ARM_MATH_CM0_FAMILY
group-onsemi 0:098463de4c5d 1742 q15_t A1;
group-onsemi 0:098463de4c5d 1743 q15_t A2;
group-onsemi 0:098463de4c5d 1744 #else
group-onsemi 0:098463de4c5d 1745 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
group-onsemi 0:098463de4c5d 1746 #endif
group-onsemi 0:098463de4c5d 1747 q15_t state[3]; /**< The state array of length 3. */
group-onsemi 0:098463de4c5d 1748 q15_t Kp; /**< The proportional gain. */
group-onsemi 0:098463de4c5d 1749 q15_t Ki; /**< The integral gain. */
group-onsemi 0:098463de4c5d 1750 q15_t Kd; /**< The derivative gain. */
group-onsemi 0:098463de4c5d 1751 } arm_pid_instance_q15;
group-onsemi 0:098463de4c5d 1752
group-onsemi 0:098463de4c5d 1753 /**
group-onsemi 0:098463de4c5d 1754 * @brief Instance structure for the Q31 PID Control.
group-onsemi 0:098463de4c5d 1755 */
group-onsemi 0:098463de4c5d 1756 typedef struct
group-onsemi 0:098463de4c5d 1757 {
group-onsemi 0:098463de4c5d 1758 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
group-onsemi 0:098463de4c5d 1759 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
group-onsemi 0:098463de4c5d 1760 q31_t A2; /**< The derived gain, A2 = Kd . */
group-onsemi 0:098463de4c5d 1761 q31_t state[3]; /**< The state array of length 3. */
group-onsemi 0:098463de4c5d 1762 q31_t Kp; /**< The proportional gain. */
group-onsemi 0:098463de4c5d 1763 q31_t Ki; /**< The integral gain. */
group-onsemi 0:098463de4c5d 1764 q31_t Kd; /**< The derivative gain. */
group-onsemi 0:098463de4c5d 1765 } arm_pid_instance_q31;
group-onsemi 0:098463de4c5d 1766
group-onsemi 0:098463de4c5d 1767 /**
group-onsemi 0:098463de4c5d 1768 * @brief Instance structure for the floating-point PID Control.
group-onsemi 0:098463de4c5d 1769 */
group-onsemi 0:098463de4c5d 1770 typedef struct
group-onsemi 0:098463de4c5d 1771 {
group-onsemi 0:098463de4c5d 1772 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
group-onsemi 0:098463de4c5d 1773 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
group-onsemi 0:098463de4c5d 1774 float32_t A2; /**< The derived gain, A2 = Kd . */
group-onsemi 0:098463de4c5d 1775 float32_t state[3]; /**< The state array of length 3. */
group-onsemi 0:098463de4c5d 1776 float32_t Kp; /**< The proportional gain. */
group-onsemi 0:098463de4c5d 1777 float32_t Ki; /**< The integral gain. */
group-onsemi 0:098463de4c5d 1778 float32_t Kd; /**< The derivative gain. */
group-onsemi 0:098463de4c5d 1779 } arm_pid_instance_f32;
group-onsemi 0:098463de4c5d 1780
group-onsemi 0:098463de4c5d 1781
group-onsemi 0:098463de4c5d 1782
group-onsemi 0:098463de4c5d 1783 /**
group-onsemi 0:098463de4c5d 1784 * @brief Initialization function for the floating-point PID Control.
group-onsemi 0:098463de4c5d 1785 * @param[in,out] S points to an instance of the PID structure.
group-onsemi 0:098463de4c5d 1786 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
group-onsemi 0:098463de4c5d 1787 */
group-onsemi 0:098463de4c5d 1788 void arm_pid_init_f32(
group-onsemi 0:098463de4c5d 1789 arm_pid_instance_f32 * S,
group-onsemi 0:098463de4c5d 1790 int32_t resetStateFlag);
group-onsemi 0:098463de4c5d 1791
group-onsemi 0:098463de4c5d 1792
group-onsemi 0:098463de4c5d 1793 /**
group-onsemi 0:098463de4c5d 1794 * @brief Reset function for the floating-point PID Control.
group-onsemi 0:098463de4c5d 1795 * @param[in,out] S is an instance of the floating-point PID Control structure
group-onsemi 0:098463de4c5d 1796 */
group-onsemi 0:098463de4c5d 1797 void arm_pid_reset_f32(
group-onsemi 0:098463de4c5d 1798 arm_pid_instance_f32 * S);
group-onsemi 0:098463de4c5d 1799
group-onsemi 0:098463de4c5d 1800
group-onsemi 0:098463de4c5d 1801 /**
group-onsemi 0:098463de4c5d 1802 * @brief Initialization function for the Q31 PID Control.
group-onsemi 0:098463de4c5d 1803 * @param[in,out] S points to an instance of the Q15 PID structure.
group-onsemi 0:098463de4c5d 1804 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
group-onsemi 0:098463de4c5d 1805 */
group-onsemi 0:098463de4c5d 1806 void arm_pid_init_q31(
group-onsemi 0:098463de4c5d 1807 arm_pid_instance_q31 * S,
group-onsemi 0:098463de4c5d 1808 int32_t resetStateFlag);
group-onsemi 0:098463de4c5d 1809
group-onsemi 0:098463de4c5d 1810
group-onsemi 0:098463de4c5d 1811 /**
group-onsemi 0:098463de4c5d 1812 * @brief Reset function for the Q31 PID Control.
group-onsemi 0:098463de4c5d 1813 * @param[in,out] S points to an instance of the Q31 PID Control structure
group-onsemi 0:098463de4c5d 1814 */
group-onsemi 0:098463de4c5d 1815
group-onsemi 0:098463de4c5d 1816 void arm_pid_reset_q31(
group-onsemi 0:098463de4c5d 1817 arm_pid_instance_q31 * S);
group-onsemi 0:098463de4c5d 1818
group-onsemi 0:098463de4c5d 1819
group-onsemi 0:098463de4c5d 1820 /**
group-onsemi 0:098463de4c5d 1821 * @brief Initialization function for the Q15 PID Control.
group-onsemi 0:098463de4c5d 1822 * @param[in,out] S points to an instance of the Q15 PID structure.
group-onsemi 0:098463de4c5d 1823 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
group-onsemi 0:098463de4c5d 1824 */
group-onsemi 0:098463de4c5d 1825 void arm_pid_init_q15(
group-onsemi 0:098463de4c5d 1826 arm_pid_instance_q15 * S,
group-onsemi 0:098463de4c5d 1827 int32_t resetStateFlag);
group-onsemi 0:098463de4c5d 1828
group-onsemi 0:098463de4c5d 1829
group-onsemi 0:098463de4c5d 1830 /**
group-onsemi 0:098463de4c5d 1831 * @brief Reset function for the Q15 PID Control.
group-onsemi 0:098463de4c5d 1832 * @param[in,out] S points to an instance of the q15 PID Control structure
group-onsemi 0:098463de4c5d 1833 */
group-onsemi 0:098463de4c5d 1834 void arm_pid_reset_q15(
group-onsemi 0:098463de4c5d 1835 arm_pid_instance_q15 * S);
group-onsemi 0:098463de4c5d 1836
group-onsemi 0:098463de4c5d 1837
group-onsemi 0:098463de4c5d 1838 /**
group-onsemi 0:098463de4c5d 1839 * @brief Instance structure for the floating-point Linear Interpolate function.
group-onsemi 0:098463de4c5d 1840 */
group-onsemi 0:098463de4c5d 1841 typedef struct
group-onsemi 0:098463de4c5d 1842 {
group-onsemi 0:098463de4c5d 1843 uint32_t nValues; /**< nValues */
group-onsemi 0:098463de4c5d 1844 float32_t x1; /**< x1 */
group-onsemi 0:098463de4c5d 1845 float32_t xSpacing; /**< xSpacing */
group-onsemi 0:098463de4c5d 1846 float32_t *pYData; /**< pointer to the table of Y values */
group-onsemi 0:098463de4c5d 1847 } arm_linear_interp_instance_f32;
group-onsemi 0:098463de4c5d 1848
group-onsemi 0:098463de4c5d 1849 /**
group-onsemi 0:098463de4c5d 1850 * @brief Instance structure for the floating-point bilinear interpolation function.
group-onsemi 0:098463de4c5d 1851 */
group-onsemi 0:098463de4c5d 1852 typedef struct
group-onsemi 0:098463de4c5d 1853 {
group-onsemi 0:098463de4c5d 1854 uint16_t numRows; /**< number of rows in the data table. */
group-onsemi 0:098463de4c5d 1855 uint16_t numCols; /**< number of columns in the data table. */
group-onsemi 0:098463de4c5d 1856 float32_t *pData; /**< points to the data table. */
group-onsemi 0:098463de4c5d 1857 } arm_bilinear_interp_instance_f32;
group-onsemi 0:098463de4c5d 1858
group-onsemi 0:098463de4c5d 1859 /**
group-onsemi 0:098463de4c5d 1860 * @brief Instance structure for the Q31 bilinear interpolation function.
group-onsemi 0:098463de4c5d 1861 */
group-onsemi 0:098463de4c5d 1862 typedef struct
group-onsemi 0:098463de4c5d 1863 {
group-onsemi 0:098463de4c5d 1864 uint16_t numRows; /**< number of rows in the data table. */
group-onsemi 0:098463de4c5d 1865 uint16_t numCols; /**< number of columns in the data table. */
group-onsemi 0:098463de4c5d 1866 q31_t *pData; /**< points to the data table. */
group-onsemi 0:098463de4c5d 1867 } arm_bilinear_interp_instance_q31;
group-onsemi 0:098463de4c5d 1868
group-onsemi 0:098463de4c5d 1869 /**
group-onsemi 0:098463de4c5d 1870 * @brief Instance structure for the Q15 bilinear interpolation function.
group-onsemi 0:098463de4c5d 1871 */
group-onsemi 0:098463de4c5d 1872 typedef struct
group-onsemi 0:098463de4c5d 1873 {
group-onsemi 0:098463de4c5d 1874 uint16_t numRows; /**< number of rows in the data table. */
group-onsemi 0:098463de4c5d 1875 uint16_t numCols; /**< number of columns in the data table. */
group-onsemi 0:098463de4c5d 1876 q15_t *pData; /**< points to the data table. */
group-onsemi 0:098463de4c5d 1877 } arm_bilinear_interp_instance_q15;
group-onsemi 0:098463de4c5d 1878
group-onsemi 0:098463de4c5d 1879 /**
group-onsemi 0:098463de4c5d 1880 * @brief Instance structure for the Q15 bilinear interpolation function.
group-onsemi 0:098463de4c5d 1881 */
group-onsemi 0:098463de4c5d 1882 typedef struct
group-onsemi 0:098463de4c5d 1883 {
group-onsemi 0:098463de4c5d 1884 uint16_t numRows; /**< number of rows in the data table. */
group-onsemi 0:098463de4c5d 1885 uint16_t numCols; /**< number of columns in the data table. */
group-onsemi 0:098463de4c5d 1886 q7_t *pData; /**< points to the data table. */
group-onsemi 0:098463de4c5d 1887 } arm_bilinear_interp_instance_q7;
group-onsemi 0:098463de4c5d 1888
group-onsemi 0:098463de4c5d 1889
group-onsemi 0:098463de4c5d 1890 /**
group-onsemi 0:098463de4c5d 1891 * @brief Q7 vector multiplication.
group-onsemi 0:098463de4c5d 1892 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 1893 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 1894 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 1895 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 1896 */
group-onsemi 0:098463de4c5d 1897 void arm_mult_q7(
group-onsemi 0:098463de4c5d 1898 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 1899 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 1900 q7_t * pDst,
group-onsemi 0:098463de4c5d 1901 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1902
group-onsemi 0:098463de4c5d 1903
group-onsemi 0:098463de4c5d 1904 /**
group-onsemi 0:098463de4c5d 1905 * @brief Q15 vector multiplication.
group-onsemi 0:098463de4c5d 1906 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 1907 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 1908 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 1909 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 1910 */
group-onsemi 0:098463de4c5d 1911 void arm_mult_q15(
group-onsemi 0:098463de4c5d 1912 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 1913 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 1914 q15_t * pDst,
group-onsemi 0:098463de4c5d 1915 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1916
group-onsemi 0:098463de4c5d 1917
group-onsemi 0:098463de4c5d 1918 /**
group-onsemi 0:098463de4c5d 1919 * @brief Q31 vector multiplication.
group-onsemi 0:098463de4c5d 1920 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 1921 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 1922 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 1923 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 1924 */
group-onsemi 0:098463de4c5d 1925 void arm_mult_q31(
group-onsemi 0:098463de4c5d 1926 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 1927 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 1928 q31_t * pDst,
group-onsemi 0:098463de4c5d 1929 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1930
group-onsemi 0:098463de4c5d 1931
group-onsemi 0:098463de4c5d 1932 /**
group-onsemi 0:098463de4c5d 1933 * @brief Floating-point vector multiplication.
group-onsemi 0:098463de4c5d 1934 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 1935 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 1936 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 1937 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 1938 */
group-onsemi 0:098463de4c5d 1939 void arm_mult_f32(
group-onsemi 0:098463de4c5d 1940 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 1941 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 1942 float32_t * pDst,
group-onsemi 0:098463de4c5d 1943 uint32_t blockSize);
group-onsemi 0:098463de4c5d 1944
group-onsemi 0:098463de4c5d 1945
group-onsemi 0:098463de4c5d 1946 /**
group-onsemi 0:098463de4c5d 1947 * @brief Instance structure for the Q15 CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 1948 */
group-onsemi 0:098463de4c5d 1949 typedef struct
group-onsemi 0:098463de4c5d 1950 {
group-onsemi 0:098463de4c5d 1951 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 1952 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
group-onsemi 0:098463de4c5d 1953 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 1954 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
group-onsemi 0:098463de4c5d 1955 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 1956 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 1957 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
group-onsemi 0:098463de4c5d 1958 } arm_cfft_radix2_instance_q15;
group-onsemi 0:098463de4c5d 1959
group-onsemi 0:098463de4c5d 1960 /* Deprecated */
group-onsemi 0:098463de4c5d 1961 arm_status arm_cfft_radix2_init_q15(
group-onsemi 0:098463de4c5d 1962 arm_cfft_radix2_instance_q15 * S,
group-onsemi 0:098463de4c5d 1963 uint16_t fftLen,
group-onsemi 0:098463de4c5d 1964 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 1965 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 1966
group-onsemi 0:098463de4c5d 1967 /* Deprecated */
group-onsemi 0:098463de4c5d 1968 void arm_cfft_radix2_q15(
group-onsemi 0:098463de4c5d 1969 const arm_cfft_radix2_instance_q15 * S,
group-onsemi 0:098463de4c5d 1970 q15_t * pSrc);
group-onsemi 0:098463de4c5d 1971
group-onsemi 0:098463de4c5d 1972
group-onsemi 0:098463de4c5d 1973 /**
group-onsemi 0:098463de4c5d 1974 * @brief Instance structure for the Q15 CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 1975 */
group-onsemi 0:098463de4c5d 1976 typedef struct
group-onsemi 0:098463de4c5d 1977 {
group-onsemi 0:098463de4c5d 1978 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 1979 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
group-onsemi 0:098463de4c5d 1980 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 1981 q15_t *pTwiddle; /**< points to the twiddle factor table. */
group-onsemi 0:098463de4c5d 1982 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 1983 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 1984 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
group-onsemi 0:098463de4c5d 1985 } arm_cfft_radix4_instance_q15;
group-onsemi 0:098463de4c5d 1986
group-onsemi 0:098463de4c5d 1987 /* Deprecated */
group-onsemi 0:098463de4c5d 1988 arm_status arm_cfft_radix4_init_q15(
group-onsemi 0:098463de4c5d 1989 arm_cfft_radix4_instance_q15 * S,
group-onsemi 0:098463de4c5d 1990 uint16_t fftLen,
group-onsemi 0:098463de4c5d 1991 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 1992 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 1993
group-onsemi 0:098463de4c5d 1994 /* Deprecated */
group-onsemi 0:098463de4c5d 1995 void arm_cfft_radix4_q15(
group-onsemi 0:098463de4c5d 1996 const arm_cfft_radix4_instance_q15 * S,
group-onsemi 0:098463de4c5d 1997 q15_t * pSrc);
group-onsemi 0:098463de4c5d 1998
group-onsemi 0:098463de4c5d 1999 /**
group-onsemi 0:098463de4c5d 2000 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2001 */
group-onsemi 0:098463de4c5d 2002 typedef struct
group-onsemi 0:098463de4c5d 2003 {
group-onsemi 0:098463de4c5d 2004 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2005 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
group-onsemi 0:098463de4c5d 2006 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2007 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
group-onsemi 0:098463de4c5d 2008 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2009 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2010 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
group-onsemi 0:098463de4c5d 2011 } arm_cfft_radix2_instance_q31;
group-onsemi 0:098463de4c5d 2012
group-onsemi 0:098463de4c5d 2013 /* Deprecated */
group-onsemi 0:098463de4c5d 2014 arm_status arm_cfft_radix2_init_q31(
group-onsemi 0:098463de4c5d 2015 arm_cfft_radix2_instance_q31 * S,
group-onsemi 0:098463de4c5d 2016 uint16_t fftLen,
group-onsemi 0:098463de4c5d 2017 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2018 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2019
group-onsemi 0:098463de4c5d 2020 /* Deprecated */
group-onsemi 0:098463de4c5d 2021 void arm_cfft_radix2_q31(
group-onsemi 0:098463de4c5d 2022 const arm_cfft_radix2_instance_q31 * S,
group-onsemi 0:098463de4c5d 2023 q31_t * pSrc);
group-onsemi 0:098463de4c5d 2024
group-onsemi 0:098463de4c5d 2025 /**
group-onsemi 0:098463de4c5d 2026 * @brief Instance structure for the Q31 CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2027 */
group-onsemi 0:098463de4c5d 2028 typedef struct
group-onsemi 0:098463de4c5d 2029 {
group-onsemi 0:098463de4c5d 2030 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2031 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
group-onsemi 0:098463de4c5d 2032 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2033 q31_t *pTwiddle; /**< points to the twiddle factor table. */
group-onsemi 0:098463de4c5d 2034 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2035 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2036 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
group-onsemi 0:098463de4c5d 2037 } arm_cfft_radix4_instance_q31;
group-onsemi 0:098463de4c5d 2038
group-onsemi 0:098463de4c5d 2039 /* Deprecated */
group-onsemi 0:098463de4c5d 2040 void arm_cfft_radix4_q31(
group-onsemi 0:098463de4c5d 2041 const arm_cfft_radix4_instance_q31 * S,
group-onsemi 0:098463de4c5d 2042 q31_t * pSrc);
group-onsemi 0:098463de4c5d 2043
group-onsemi 0:098463de4c5d 2044 /* Deprecated */
group-onsemi 0:098463de4c5d 2045 arm_status arm_cfft_radix4_init_q31(
group-onsemi 0:098463de4c5d 2046 arm_cfft_radix4_instance_q31 * S,
group-onsemi 0:098463de4c5d 2047 uint16_t fftLen,
group-onsemi 0:098463de4c5d 2048 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2049 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2050
group-onsemi 0:098463de4c5d 2051 /**
group-onsemi 0:098463de4c5d 2052 * @brief Instance structure for the floating-point CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2053 */
group-onsemi 0:098463de4c5d 2054 typedef struct
group-onsemi 0:098463de4c5d 2055 {
group-onsemi 0:098463de4c5d 2056 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
group-onsemi 0:098463de4c5d 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2059 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
group-onsemi 0:098463de4c5d 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
group-onsemi 0:098463de4c5d 2063 float32_t onebyfftLen; /**< value of 1/fftLen. */
group-onsemi 0:098463de4c5d 2064 } arm_cfft_radix2_instance_f32;
group-onsemi 0:098463de4c5d 2065
group-onsemi 0:098463de4c5d 2066 /* Deprecated */
group-onsemi 0:098463de4c5d 2067 arm_status arm_cfft_radix2_init_f32(
group-onsemi 0:098463de4c5d 2068 arm_cfft_radix2_instance_f32 * S,
group-onsemi 0:098463de4c5d 2069 uint16_t fftLen,
group-onsemi 0:098463de4c5d 2070 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2071 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2072
group-onsemi 0:098463de4c5d 2073 /* Deprecated */
group-onsemi 0:098463de4c5d 2074 void arm_cfft_radix2_f32(
group-onsemi 0:098463de4c5d 2075 const arm_cfft_radix2_instance_f32 * S,
group-onsemi 0:098463de4c5d 2076 float32_t * pSrc);
group-onsemi 0:098463de4c5d 2077
group-onsemi 0:098463de4c5d 2078 /**
group-onsemi 0:098463de4c5d 2079 * @brief Instance structure for the floating-point CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2080 */
group-onsemi 0:098463de4c5d 2081 typedef struct
group-onsemi 0:098463de4c5d 2082 {
group-onsemi 0:098463de4c5d 2083 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2084 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
group-onsemi 0:098463de4c5d 2085 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2086 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
group-onsemi 0:098463de4c5d 2087 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2088 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2089 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
group-onsemi 0:098463de4c5d 2090 float32_t onebyfftLen; /**< value of 1/fftLen. */
group-onsemi 0:098463de4c5d 2091 } arm_cfft_radix4_instance_f32;
group-onsemi 0:098463de4c5d 2092
group-onsemi 0:098463de4c5d 2093 /* Deprecated */
group-onsemi 0:098463de4c5d 2094 arm_status arm_cfft_radix4_init_f32(
group-onsemi 0:098463de4c5d 2095 arm_cfft_radix4_instance_f32 * S,
group-onsemi 0:098463de4c5d 2096 uint16_t fftLen,
group-onsemi 0:098463de4c5d 2097 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2098 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2099
group-onsemi 0:098463de4c5d 2100 /* Deprecated */
group-onsemi 0:098463de4c5d 2101 void arm_cfft_radix4_f32(
group-onsemi 0:098463de4c5d 2102 const arm_cfft_radix4_instance_f32 * S,
group-onsemi 0:098463de4c5d 2103 float32_t * pSrc);
group-onsemi 0:098463de4c5d 2104
group-onsemi 0:098463de4c5d 2105 /**
group-onsemi 0:098463de4c5d 2106 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2107 */
group-onsemi 0:098463de4c5d 2108 typedef struct
group-onsemi 0:098463de4c5d 2109 {
group-onsemi 0:098463de4c5d 2110 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2111 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
group-onsemi 0:098463de4c5d 2112 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2113 uint16_t bitRevLength; /**< bit reversal table length. */
group-onsemi 0:098463de4c5d 2114 } arm_cfft_instance_q15;
group-onsemi 0:098463de4c5d 2115
group-onsemi 0:098463de4c5d 2116 void arm_cfft_q15(
group-onsemi 0:098463de4c5d 2117 const arm_cfft_instance_q15 * S,
group-onsemi 0:098463de4c5d 2118 q15_t * p1,
group-onsemi 0:098463de4c5d 2119 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2120 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2121
group-onsemi 0:098463de4c5d 2122 /**
group-onsemi 0:098463de4c5d 2123 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2124 */
group-onsemi 0:098463de4c5d 2125 typedef struct
group-onsemi 0:098463de4c5d 2126 {
group-onsemi 0:098463de4c5d 2127 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2128 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
group-onsemi 0:098463de4c5d 2129 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2130 uint16_t bitRevLength; /**< bit reversal table length. */
group-onsemi 0:098463de4c5d 2131 } arm_cfft_instance_q31;
group-onsemi 0:098463de4c5d 2132
group-onsemi 0:098463de4c5d 2133 void arm_cfft_q31(
group-onsemi 0:098463de4c5d 2134 const arm_cfft_instance_q31 * S,
group-onsemi 0:098463de4c5d 2135 q31_t * p1,
group-onsemi 0:098463de4c5d 2136 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2137 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2138
group-onsemi 0:098463de4c5d 2139 /**
group-onsemi 0:098463de4c5d 2140 * @brief Instance structure for the floating-point CFFT/CIFFT function.
group-onsemi 0:098463de4c5d 2141 */
group-onsemi 0:098463de4c5d 2142 typedef struct
group-onsemi 0:098463de4c5d 2143 {
group-onsemi 0:098463de4c5d 2144 uint16_t fftLen; /**< length of the FFT. */
group-onsemi 0:098463de4c5d 2145 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
group-onsemi 0:098463de4c5d 2146 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
group-onsemi 0:098463de4c5d 2147 uint16_t bitRevLength; /**< bit reversal table length. */
group-onsemi 0:098463de4c5d 2148 } arm_cfft_instance_f32;
group-onsemi 0:098463de4c5d 2149
group-onsemi 0:098463de4c5d 2150 void arm_cfft_f32(
group-onsemi 0:098463de4c5d 2151 const arm_cfft_instance_f32 * S,
group-onsemi 0:098463de4c5d 2152 float32_t * p1,
group-onsemi 0:098463de4c5d 2153 uint8_t ifftFlag,
group-onsemi 0:098463de4c5d 2154 uint8_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2155
group-onsemi 0:098463de4c5d 2156 /**
group-onsemi 0:098463de4c5d 2157 * @brief Instance structure for the Q15 RFFT/RIFFT function.
group-onsemi 0:098463de4c5d 2158 */
group-onsemi 0:098463de4c5d 2159 typedef struct
group-onsemi 0:098463de4c5d 2160 {
group-onsemi 0:098463de4c5d 2161 uint32_t fftLenReal; /**< length of the real FFT. */
group-onsemi 0:098463de4c5d 2162 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
group-onsemi 0:098463de4c5d 2163 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2164 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2165 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
group-onsemi 0:098463de4c5d 2166 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
group-onsemi 0:098463de4c5d 2167 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
group-onsemi 0:098463de4c5d 2168 } arm_rfft_instance_q15;
group-onsemi 0:098463de4c5d 2169
group-onsemi 0:098463de4c5d 2170 arm_status arm_rfft_init_q15(
group-onsemi 0:098463de4c5d 2171 arm_rfft_instance_q15 * S,
group-onsemi 0:098463de4c5d 2172 uint32_t fftLenReal,
group-onsemi 0:098463de4c5d 2173 uint32_t ifftFlagR,
group-onsemi 0:098463de4c5d 2174 uint32_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2175
group-onsemi 0:098463de4c5d 2176 void arm_rfft_q15(
group-onsemi 0:098463de4c5d 2177 const arm_rfft_instance_q15 * S,
group-onsemi 0:098463de4c5d 2178 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2179 q15_t * pDst);
group-onsemi 0:098463de4c5d 2180
group-onsemi 0:098463de4c5d 2181 /**
group-onsemi 0:098463de4c5d 2182 * @brief Instance structure for the Q31 RFFT/RIFFT function.
group-onsemi 0:098463de4c5d 2183 */
group-onsemi 0:098463de4c5d 2184 typedef struct
group-onsemi 0:098463de4c5d 2185 {
group-onsemi 0:098463de4c5d 2186 uint32_t fftLenReal; /**< length of the real FFT. */
group-onsemi 0:098463de4c5d 2187 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
group-onsemi 0:098463de4c5d 2188 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2189 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2190 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
group-onsemi 0:098463de4c5d 2191 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
group-onsemi 0:098463de4c5d 2192 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
group-onsemi 0:098463de4c5d 2193 } arm_rfft_instance_q31;
group-onsemi 0:098463de4c5d 2194
group-onsemi 0:098463de4c5d 2195 arm_status arm_rfft_init_q31(
group-onsemi 0:098463de4c5d 2196 arm_rfft_instance_q31 * S,
group-onsemi 0:098463de4c5d 2197 uint32_t fftLenReal,
group-onsemi 0:098463de4c5d 2198 uint32_t ifftFlagR,
group-onsemi 0:098463de4c5d 2199 uint32_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2200
group-onsemi 0:098463de4c5d 2201 void arm_rfft_q31(
group-onsemi 0:098463de4c5d 2202 const arm_rfft_instance_q31 * S,
group-onsemi 0:098463de4c5d 2203 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2204 q31_t * pDst);
group-onsemi 0:098463de4c5d 2205
group-onsemi 0:098463de4c5d 2206 /**
group-onsemi 0:098463de4c5d 2207 * @brief Instance structure for the floating-point RFFT/RIFFT function.
group-onsemi 0:098463de4c5d 2208 */
group-onsemi 0:098463de4c5d 2209 typedef struct
group-onsemi 0:098463de4c5d 2210 {
group-onsemi 0:098463de4c5d 2211 uint32_t fftLenReal; /**< length of the real FFT. */
group-onsemi 0:098463de4c5d 2212 uint16_t fftLenBy2; /**< length of the complex FFT. */
group-onsemi 0:098463de4c5d 2213 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
group-onsemi 0:098463de4c5d 2214 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
group-onsemi 0:098463de4c5d 2215 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
group-onsemi 0:098463de4c5d 2216 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
group-onsemi 0:098463de4c5d 2217 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
group-onsemi 0:098463de4c5d 2218 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
group-onsemi 0:098463de4c5d 2219 } arm_rfft_instance_f32;
group-onsemi 0:098463de4c5d 2220
group-onsemi 0:098463de4c5d 2221 arm_status arm_rfft_init_f32(
group-onsemi 0:098463de4c5d 2222 arm_rfft_instance_f32 * S,
group-onsemi 0:098463de4c5d 2223 arm_cfft_radix4_instance_f32 * S_CFFT,
group-onsemi 0:098463de4c5d 2224 uint32_t fftLenReal,
group-onsemi 0:098463de4c5d 2225 uint32_t ifftFlagR,
group-onsemi 0:098463de4c5d 2226 uint32_t bitReverseFlag);
group-onsemi 0:098463de4c5d 2227
group-onsemi 0:098463de4c5d 2228 void arm_rfft_f32(
group-onsemi 0:098463de4c5d 2229 const arm_rfft_instance_f32 * S,
group-onsemi 0:098463de4c5d 2230 float32_t * pSrc,
group-onsemi 0:098463de4c5d 2231 float32_t * pDst);
group-onsemi 0:098463de4c5d 2232
group-onsemi 0:098463de4c5d 2233 /**
group-onsemi 0:098463de4c5d 2234 * @brief Instance structure for the floating-point RFFT/RIFFT function.
group-onsemi 0:098463de4c5d 2235 */
group-onsemi 0:098463de4c5d 2236 typedef struct
group-onsemi 0:098463de4c5d 2237 {
group-onsemi 0:098463de4c5d 2238 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
group-onsemi 0:098463de4c5d 2239 uint16_t fftLenRFFT; /**< length of the real sequence */
group-onsemi 0:098463de4c5d 2240 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
group-onsemi 0:098463de4c5d 2241 } arm_rfft_fast_instance_f32 ;
group-onsemi 0:098463de4c5d 2242
group-onsemi 0:098463de4c5d 2243 arm_status arm_rfft_fast_init_f32 (
group-onsemi 0:098463de4c5d 2244 arm_rfft_fast_instance_f32 * S,
group-onsemi 0:098463de4c5d 2245 uint16_t fftLen);
group-onsemi 0:098463de4c5d 2246
group-onsemi 0:098463de4c5d 2247 void arm_rfft_fast_f32(
group-onsemi 0:098463de4c5d 2248 arm_rfft_fast_instance_f32 * S,
group-onsemi 0:098463de4c5d 2249 float32_t * p, float32_t * pOut,
group-onsemi 0:098463de4c5d 2250 uint8_t ifftFlag);
group-onsemi 0:098463de4c5d 2251
group-onsemi 0:098463de4c5d 2252 /**
group-onsemi 0:098463de4c5d 2253 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
group-onsemi 0:098463de4c5d 2254 */
group-onsemi 0:098463de4c5d 2255 typedef struct
group-onsemi 0:098463de4c5d 2256 {
group-onsemi 0:098463de4c5d 2257 uint16_t N; /**< length of the DCT4. */
group-onsemi 0:098463de4c5d 2258 uint16_t Nby2; /**< half of the length of the DCT4. */
group-onsemi 0:098463de4c5d 2259 float32_t normalize; /**< normalizing factor. */
group-onsemi 0:098463de4c5d 2260 float32_t *pTwiddle; /**< points to the twiddle factor table. */
group-onsemi 0:098463de4c5d 2261 float32_t *pCosFactor; /**< points to the cosFactor table. */
group-onsemi 0:098463de4c5d 2262 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
group-onsemi 0:098463de4c5d 2263 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
group-onsemi 0:098463de4c5d 2264 } arm_dct4_instance_f32;
group-onsemi 0:098463de4c5d 2265
group-onsemi 0:098463de4c5d 2266
group-onsemi 0:098463de4c5d 2267 /**
group-onsemi 0:098463de4c5d 2268 * @brief Initialization function for the floating-point DCT4/IDCT4.
group-onsemi 0:098463de4c5d 2269 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
group-onsemi 0:098463de4c5d 2270 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
group-onsemi 0:098463de4c5d 2271 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
group-onsemi 0:098463de4c5d 2272 * @param[in] N length of the DCT4.
group-onsemi 0:098463de4c5d 2273 * @param[in] Nby2 half of the length of the DCT4.
group-onsemi 0:098463de4c5d 2274 * @param[in] normalize normalizing factor.
group-onsemi 0:098463de4c5d 2275 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
group-onsemi 0:098463de4c5d 2276 */
group-onsemi 0:098463de4c5d 2277 arm_status arm_dct4_init_f32(
group-onsemi 0:098463de4c5d 2278 arm_dct4_instance_f32 * S,
group-onsemi 0:098463de4c5d 2279 arm_rfft_instance_f32 * S_RFFT,
group-onsemi 0:098463de4c5d 2280 arm_cfft_radix4_instance_f32 * S_CFFT,
group-onsemi 0:098463de4c5d 2281 uint16_t N,
group-onsemi 0:098463de4c5d 2282 uint16_t Nby2,
group-onsemi 0:098463de4c5d 2283 float32_t normalize);
group-onsemi 0:098463de4c5d 2284
group-onsemi 0:098463de4c5d 2285
group-onsemi 0:098463de4c5d 2286 /**
group-onsemi 0:098463de4c5d 2287 * @brief Processing function for the floating-point DCT4/IDCT4.
group-onsemi 0:098463de4c5d 2288 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
group-onsemi 0:098463de4c5d 2289 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 2290 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
group-onsemi 0:098463de4c5d 2291 */
group-onsemi 0:098463de4c5d 2292 void arm_dct4_f32(
group-onsemi 0:098463de4c5d 2293 const arm_dct4_instance_f32 * S,
group-onsemi 0:098463de4c5d 2294 float32_t * pState,
group-onsemi 0:098463de4c5d 2295 float32_t * pInlineBuffer);
group-onsemi 0:098463de4c5d 2296
group-onsemi 0:098463de4c5d 2297
group-onsemi 0:098463de4c5d 2298 /**
group-onsemi 0:098463de4c5d 2299 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
group-onsemi 0:098463de4c5d 2300 */
group-onsemi 0:098463de4c5d 2301 typedef struct
group-onsemi 0:098463de4c5d 2302 {
group-onsemi 0:098463de4c5d 2303 uint16_t N; /**< length of the DCT4. */
group-onsemi 0:098463de4c5d 2304 uint16_t Nby2; /**< half of the length of the DCT4. */
group-onsemi 0:098463de4c5d 2305 q31_t normalize; /**< normalizing factor. */
group-onsemi 0:098463de4c5d 2306 q31_t *pTwiddle; /**< points to the twiddle factor table. */
group-onsemi 0:098463de4c5d 2307 q31_t *pCosFactor; /**< points to the cosFactor table. */
group-onsemi 0:098463de4c5d 2308 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
group-onsemi 0:098463de4c5d 2309 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
group-onsemi 0:098463de4c5d 2310 } arm_dct4_instance_q31;
group-onsemi 0:098463de4c5d 2311
group-onsemi 0:098463de4c5d 2312
group-onsemi 0:098463de4c5d 2313 /**
group-onsemi 0:098463de4c5d 2314 * @brief Initialization function for the Q31 DCT4/IDCT4.
group-onsemi 0:098463de4c5d 2315 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
group-onsemi 0:098463de4c5d 2316 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
group-onsemi 0:098463de4c5d 2317 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
group-onsemi 0:098463de4c5d 2318 * @param[in] N length of the DCT4.
group-onsemi 0:098463de4c5d 2319 * @param[in] Nby2 half of the length of the DCT4.
group-onsemi 0:098463de4c5d 2320 * @param[in] normalize normalizing factor.
group-onsemi 0:098463de4c5d 2321 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
group-onsemi 0:098463de4c5d 2322 */
group-onsemi 0:098463de4c5d 2323 arm_status arm_dct4_init_q31(
group-onsemi 0:098463de4c5d 2324 arm_dct4_instance_q31 * S,
group-onsemi 0:098463de4c5d 2325 arm_rfft_instance_q31 * S_RFFT,
group-onsemi 0:098463de4c5d 2326 arm_cfft_radix4_instance_q31 * S_CFFT,
group-onsemi 0:098463de4c5d 2327 uint16_t N,
group-onsemi 0:098463de4c5d 2328 uint16_t Nby2,
group-onsemi 0:098463de4c5d 2329 q31_t normalize);
group-onsemi 0:098463de4c5d 2330
group-onsemi 0:098463de4c5d 2331
group-onsemi 0:098463de4c5d 2332 /**
group-onsemi 0:098463de4c5d 2333 * @brief Processing function for the Q31 DCT4/IDCT4.
group-onsemi 0:098463de4c5d 2334 * @param[in] S points to an instance of the Q31 DCT4 structure.
group-onsemi 0:098463de4c5d 2335 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 2336 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
group-onsemi 0:098463de4c5d 2337 */
group-onsemi 0:098463de4c5d 2338 void arm_dct4_q31(
group-onsemi 0:098463de4c5d 2339 const arm_dct4_instance_q31 * S,
group-onsemi 0:098463de4c5d 2340 q31_t * pState,
group-onsemi 0:098463de4c5d 2341 q31_t * pInlineBuffer);
group-onsemi 0:098463de4c5d 2342
group-onsemi 0:098463de4c5d 2343
group-onsemi 0:098463de4c5d 2344 /**
group-onsemi 0:098463de4c5d 2345 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
group-onsemi 0:098463de4c5d 2346 */
group-onsemi 0:098463de4c5d 2347 typedef struct
group-onsemi 0:098463de4c5d 2348 {
group-onsemi 0:098463de4c5d 2349 uint16_t N; /**< length of the DCT4. */
group-onsemi 0:098463de4c5d 2350 uint16_t Nby2; /**< half of the length of the DCT4. */
group-onsemi 0:098463de4c5d 2351 q15_t normalize; /**< normalizing factor. */
group-onsemi 0:098463de4c5d 2352 q15_t *pTwiddle; /**< points to the twiddle factor table. */
group-onsemi 0:098463de4c5d 2353 q15_t *pCosFactor; /**< points to the cosFactor table. */
group-onsemi 0:098463de4c5d 2354 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
group-onsemi 0:098463de4c5d 2355 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
group-onsemi 0:098463de4c5d 2356 } arm_dct4_instance_q15;
group-onsemi 0:098463de4c5d 2357
group-onsemi 0:098463de4c5d 2358
group-onsemi 0:098463de4c5d 2359 /**
group-onsemi 0:098463de4c5d 2360 * @brief Initialization function for the Q15 DCT4/IDCT4.
group-onsemi 0:098463de4c5d 2361 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
group-onsemi 0:098463de4c5d 2362 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
group-onsemi 0:098463de4c5d 2363 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
group-onsemi 0:098463de4c5d 2364 * @param[in] N length of the DCT4.
group-onsemi 0:098463de4c5d 2365 * @param[in] Nby2 half of the length of the DCT4.
group-onsemi 0:098463de4c5d 2366 * @param[in] normalize normalizing factor.
group-onsemi 0:098463de4c5d 2367 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
group-onsemi 0:098463de4c5d 2368 */
group-onsemi 0:098463de4c5d 2369 arm_status arm_dct4_init_q15(
group-onsemi 0:098463de4c5d 2370 arm_dct4_instance_q15 * S,
group-onsemi 0:098463de4c5d 2371 arm_rfft_instance_q15 * S_RFFT,
group-onsemi 0:098463de4c5d 2372 arm_cfft_radix4_instance_q15 * S_CFFT,
group-onsemi 0:098463de4c5d 2373 uint16_t N,
group-onsemi 0:098463de4c5d 2374 uint16_t Nby2,
group-onsemi 0:098463de4c5d 2375 q15_t normalize);
group-onsemi 0:098463de4c5d 2376
group-onsemi 0:098463de4c5d 2377
group-onsemi 0:098463de4c5d 2378 /**
group-onsemi 0:098463de4c5d 2379 * @brief Processing function for the Q15 DCT4/IDCT4.
group-onsemi 0:098463de4c5d 2380 * @param[in] S points to an instance of the Q15 DCT4 structure.
group-onsemi 0:098463de4c5d 2381 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 2382 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
group-onsemi 0:098463de4c5d 2383 */
group-onsemi 0:098463de4c5d 2384 void arm_dct4_q15(
group-onsemi 0:098463de4c5d 2385 const arm_dct4_instance_q15 * S,
group-onsemi 0:098463de4c5d 2386 q15_t * pState,
group-onsemi 0:098463de4c5d 2387 q15_t * pInlineBuffer);
group-onsemi 0:098463de4c5d 2388
group-onsemi 0:098463de4c5d 2389
group-onsemi 0:098463de4c5d 2390 /**
group-onsemi 0:098463de4c5d 2391 * @brief Floating-point vector addition.
group-onsemi 0:098463de4c5d 2392 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2393 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2394 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2395 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2396 */
group-onsemi 0:098463de4c5d 2397 void arm_add_f32(
group-onsemi 0:098463de4c5d 2398 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 2399 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 2400 float32_t * pDst,
group-onsemi 0:098463de4c5d 2401 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2402
group-onsemi 0:098463de4c5d 2403
group-onsemi 0:098463de4c5d 2404 /**
group-onsemi 0:098463de4c5d 2405 * @brief Q7 vector addition.
group-onsemi 0:098463de4c5d 2406 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2407 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2408 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2409 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2410 */
group-onsemi 0:098463de4c5d 2411 void arm_add_q7(
group-onsemi 0:098463de4c5d 2412 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 2413 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 2414 q7_t * pDst,
group-onsemi 0:098463de4c5d 2415 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2416
group-onsemi 0:098463de4c5d 2417
group-onsemi 0:098463de4c5d 2418 /**
group-onsemi 0:098463de4c5d 2419 * @brief Q15 vector addition.
group-onsemi 0:098463de4c5d 2420 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2421 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2422 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2423 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2424 */
group-onsemi 0:098463de4c5d 2425 void arm_add_q15(
group-onsemi 0:098463de4c5d 2426 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2427 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2428 q15_t * pDst,
group-onsemi 0:098463de4c5d 2429 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2430
group-onsemi 0:098463de4c5d 2431
group-onsemi 0:098463de4c5d 2432 /**
group-onsemi 0:098463de4c5d 2433 * @brief Q31 vector addition.
group-onsemi 0:098463de4c5d 2434 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2435 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2436 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2437 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2438 */
group-onsemi 0:098463de4c5d 2439 void arm_add_q31(
group-onsemi 0:098463de4c5d 2440 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 2441 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 2442 q31_t * pDst,
group-onsemi 0:098463de4c5d 2443 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2444
group-onsemi 0:098463de4c5d 2445
group-onsemi 0:098463de4c5d 2446 /**
group-onsemi 0:098463de4c5d 2447 * @brief Floating-point vector subtraction.
group-onsemi 0:098463de4c5d 2448 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2449 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2450 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2451 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2452 */
group-onsemi 0:098463de4c5d 2453 void arm_sub_f32(
group-onsemi 0:098463de4c5d 2454 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 2455 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 2456 float32_t * pDst,
group-onsemi 0:098463de4c5d 2457 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2458
group-onsemi 0:098463de4c5d 2459
group-onsemi 0:098463de4c5d 2460 /**
group-onsemi 0:098463de4c5d 2461 * @brief Q7 vector subtraction.
group-onsemi 0:098463de4c5d 2462 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2463 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2464 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2465 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2466 */
group-onsemi 0:098463de4c5d 2467 void arm_sub_q7(
group-onsemi 0:098463de4c5d 2468 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 2469 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 2470 q7_t * pDst,
group-onsemi 0:098463de4c5d 2471 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2472
group-onsemi 0:098463de4c5d 2473
group-onsemi 0:098463de4c5d 2474 /**
group-onsemi 0:098463de4c5d 2475 * @brief Q15 vector subtraction.
group-onsemi 0:098463de4c5d 2476 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2477 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2478 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2479 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2480 */
group-onsemi 0:098463de4c5d 2481 void arm_sub_q15(
group-onsemi 0:098463de4c5d 2482 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2483 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2484 q15_t * pDst,
group-onsemi 0:098463de4c5d 2485 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2486
group-onsemi 0:098463de4c5d 2487
group-onsemi 0:098463de4c5d 2488 /**
group-onsemi 0:098463de4c5d 2489 * @brief Q31 vector subtraction.
group-onsemi 0:098463de4c5d 2490 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2491 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2492 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2493 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2494 */
group-onsemi 0:098463de4c5d 2495 void arm_sub_q31(
group-onsemi 0:098463de4c5d 2496 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 2497 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 2498 q31_t * pDst,
group-onsemi 0:098463de4c5d 2499 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2500
group-onsemi 0:098463de4c5d 2501
group-onsemi 0:098463de4c5d 2502 /**
group-onsemi 0:098463de4c5d 2503 * @brief Multiplies a floating-point vector by a scalar.
group-onsemi 0:098463de4c5d 2504 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2505 * @param[in] scale scale factor to be applied
group-onsemi 0:098463de4c5d 2506 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2507 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2508 */
group-onsemi 0:098463de4c5d 2509 void arm_scale_f32(
group-onsemi 0:098463de4c5d 2510 float32_t * pSrc,
group-onsemi 0:098463de4c5d 2511 float32_t scale,
group-onsemi 0:098463de4c5d 2512 float32_t * pDst,
group-onsemi 0:098463de4c5d 2513 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2514
group-onsemi 0:098463de4c5d 2515
group-onsemi 0:098463de4c5d 2516 /**
group-onsemi 0:098463de4c5d 2517 * @brief Multiplies a Q7 vector by a scalar.
group-onsemi 0:098463de4c5d 2518 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2519 * @param[in] scaleFract fractional portion of the scale value
group-onsemi 0:098463de4c5d 2520 * @param[in] shift number of bits to shift the result by
group-onsemi 0:098463de4c5d 2521 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2522 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2523 */
group-onsemi 0:098463de4c5d 2524 void arm_scale_q7(
group-onsemi 0:098463de4c5d 2525 q7_t * pSrc,
group-onsemi 0:098463de4c5d 2526 q7_t scaleFract,
group-onsemi 0:098463de4c5d 2527 int8_t shift,
group-onsemi 0:098463de4c5d 2528 q7_t * pDst,
group-onsemi 0:098463de4c5d 2529 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2530
group-onsemi 0:098463de4c5d 2531
group-onsemi 0:098463de4c5d 2532 /**
group-onsemi 0:098463de4c5d 2533 * @brief Multiplies a Q15 vector by a scalar.
group-onsemi 0:098463de4c5d 2534 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2535 * @param[in] scaleFract fractional portion of the scale value
group-onsemi 0:098463de4c5d 2536 * @param[in] shift number of bits to shift the result by
group-onsemi 0:098463de4c5d 2537 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2538 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2539 */
group-onsemi 0:098463de4c5d 2540 void arm_scale_q15(
group-onsemi 0:098463de4c5d 2541 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2542 q15_t scaleFract,
group-onsemi 0:098463de4c5d 2543 int8_t shift,
group-onsemi 0:098463de4c5d 2544 q15_t * pDst,
group-onsemi 0:098463de4c5d 2545 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2546
group-onsemi 0:098463de4c5d 2547
group-onsemi 0:098463de4c5d 2548 /**
group-onsemi 0:098463de4c5d 2549 * @brief Multiplies a Q31 vector by a scalar.
group-onsemi 0:098463de4c5d 2550 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2551 * @param[in] scaleFract fractional portion of the scale value
group-onsemi 0:098463de4c5d 2552 * @param[in] shift number of bits to shift the result by
group-onsemi 0:098463de4c5d 2553 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2554 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2555 */
group-onsemi 0:098463de4c5d 2556 void arm_scale_q31(
group-onsemi 0:098463de4c5d 2557 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2558 q31_t scaleFract,
group-onsemi 0:098463de4c5d 2559 int8_t shift,
group-onsemi 0:098463de4c5d 2560 q31_t * pDst,
group-onsemi 0:098463de4c5d 2561 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2562
group-onsemi 0:098463de4c5d 2563
group-onsemi 0:098463de4c5d 2564 /**
group-onsemi 0:098463de4c5d 2565 * @brief Q7 vector absolute value.
group-onsemi 0:098463de4c5d 2566 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 2567 * @param[out] pDst points to the output buffer
group-onsemi 0:098463de4c5d 2568 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2569 */
group-onsemi 0:098463de4c5d 2570 void arm_abs_q7(
group-onsemi 0:098463de4c5d 2571 q7_t * pSrc,
group-onsemi 0:098463de4c5d 2572 q7_t * pDst,
group-onsemi 0:098463de4c5d 2573 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2574
group-onsemi 0:098463de4c5d 2575
group-onsemi 0:098463de4c5d 2576 /**
group-onsemi 0:098463de4c5d 2577 * @brief Floating-point vector absolute value.
group-onsemi 0:098463de4c5d 2578 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 2579 * @param[out] pDst points to the output buffer
group-onsemi 0:098463de4c5d 2580 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2581 */
group-onsemi 0:098463de4c5d 2582 void arm_abs_f32(
group-onsemi 0:098463de4c5d 2583 float32_t * pSrc,
group-onsemi 0:098463de4c5d 2584 float32_t * pDst,
group-onsemi 0:098463de4c5d 2585 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2586
group-onsemi 0:098463de4c5d 2587
group-onsemi 0:098463de4c5d 2588 /**
group-onsemi 0:098463de4c5d 2589 * @brief Q15 vector absolute value.
group-onsemi 0:098463de4c5d 2590 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 2591 * @param[out] pDst points to the output buffer
group-onsemi 0:098463de4c5d 2592 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2593 */
group-onsemi 0:098463de4c5d 2594 void arm_abs_q15(
group-onsemi 0:098463de4c5d 2595 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2596 q15_t * pDst,
group-onsemi 0:098463de4c5d 2597 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2598
group-onsemi 0:098463de4c5d 2599
group-onsemi 0:098463de4c5d 2600 /**
group-onsemi 0:098463de4c5d 2601 * @brief Q31 vector absolute value.
group-onsemi 0:098463de4c5d 2602 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 2603 * @param[out] pDst points to the output buffer
group-onsemi 0:098463de4c5d 2604 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2605 */
group-onsemi 0:098463de4c5d 2606 void arm_abs_q31(
group-onsemi 0:098463de4c5d 2607 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2608 q31_t * pDst,
group-onsemi 0:098463de4c5d 2609 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2610
group-onsemi 0:098463de4c5d 2611
group-onsemi 0:098463de4c5d 2612 /**
group-onsemi 0:098463de4c5d 2613 * @brief Dot product of floating-point vectors.
group-onsemi 0:098463de4c5d 2614 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2615 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2616 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2617 * @param[out] result output result returned here
group-onsemi 0:098463de4c5d 2618 */
group-onsemi 0:098463de4c5d 2619 void arm_dot_prod_f32(
group-onsemi 0:098463de4c5d 2620 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 2621 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 2622 uint32_t blockSize,
group-onsemi 0:098463de4c5d 2623 float32_t * result);
group-onsemi 0:098463de4c5d 2624
group-onsemi 0:098463de4c5d 2625
group-onsemi 0:098463de4c5d 2626 /**
group-onsemi 0:098463de4c5d 2627 * @brief Dot product of Q7 vectors.
group-onsemi 0:098463de4c5d 2628 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2629 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2630 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2631 * @param[out] result output result returned here
group-onsemi 0:098463de4c5d 2632 */
group-onsemi 0:098463de4c5d 2633 void arm_dot_prod_q7(
group-onsemi 0:098463de4c5d 2634 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 2635 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 2636 uint32_t blockSize,
group-onsemi 0:098463de4c5d 2637 q31_t * result);
group-onsemi 0:098463de4c5d 2638
group-onsemi 0:098463de4c5d 2639
group-onsemi 0:098463de4c5d 2640 /**
group-onsemi 0:098463de4c5d 2641 * @brief Dot product of Q15 vectors.
group-onsemi 0:098463de4c5d 2642 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2643 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2644 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2645 * @param[out] result output result returned here
group-onsemi 0:098463de4c5d 2646 */
group-onsemi 0:098463de4c5d 2647 void arm_dot_prod_q15(
group-onsemi 0:098463de4c5d 2648 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2649 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2650 uint32_t blockSize,
group-onsemi 0:098463de4c5d 2651 q63_t * result);
group-onsemi 0:098463de4c5d 2652
group-onsemi 0:098463de4c5d 2653
group-onsemi 0:098463de4c5d 2654 /**
group-onsemi 0:098463de4c5d 2655 * @brief Dot product of Q31 vectors.
group-onsemi 0:098463de4c5d 2656 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 2657 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 2658 * @param[in] blockSize number of samples in each vector
group-onsemi 0:098463de4c5d 2659 * @param[out] result output result returned here
group-onsemi 0:098463de4c5d 2660 */
group-onsemi 0:098463de4c5d 2661 void arm_dot_prod_q31(
group-onsemi 0:098463de4c5d 2662 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 2663 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 2664 uint32_t blockSize,
group-onsemi 0:098463de4c5d 2665 q63_t * result);
group-onsemi 0:098463de4c5d 2666
group-onsemi 0:098463de4c5d 2667
group-onsemi 0:098463de4c5d 2668 /**
group-onsemi 0:098463de4c5d 2669 * @brief Shifts the elements of a Q7 vector a specified number of bits.
group-onsemi 0:098463de4c5d 2670 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2671 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
group-onsemi 0:098463de4c5d 2672 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2673 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2674 */
group-onsemi 0:098463de4c5d 2675 void arm_shift_q7(
group-onsemi 0:098463de4c5d 2676 q7_t * pSrc,
group-onsemi 0:098463de4c5d 2677 int8_t shiftBits,
group-onsemi 0:098463de4c5d 2678 q7_t * pDst,
group-onsemi 0:098463de4c5d 2679 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2680
group-onsemi 0:098463de4c5d 2681
group-onsemi 0:098463de4c5d 2682 /**
group-onsemi 0:098463de4c5d 2683 * @brief Shifts the elements of a Q15 vector a specified number of bits.
group-onsemi 0:098463de4c5d 2684 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2685 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
group-onsemi 0:098463de4c5d 2686 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2687 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2688 */
group-onsemi 0:098463de4c5d 2689 void arm_shift_q15(
group-onsemi 0:098463de4c5d 2690 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2691 int8_t shiftBits,
group-onsemi 0:098463de4c5d 2692 q15_t * pDst,
group-onsemi 0:098463de4c5d 2693 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2694
group-onsemi 0:098463de4c5d 2695
group-onsemi 0:098463de4c5d 2696 /**
group-onsemi 0:098463de4c5d 2697 * @brief Shifts the elements of a Q31 vector a specified number of bits.
group-onsemi 0:098463de4c5d 2698 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2699 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
group-onsemi 0:098463de4c5d 2700 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2701 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2702 */
group-onsemi 0:098463de4c5d 2703 void arm_shift_q31(
group-onsemi 0:098463de4c5d 2704 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2705 int8_t shiftBits,
group-onsemi 0:098463de4c5d 2706 q31_t * pDst,
group-onsemi 0:098463de4c5d 2707 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2708
group-onsemi 0:098463de4c5d 2709
group-onsemi 0:098463de4c5d 2710 /**
group-onsemi 0:098463de4c5d 2711 * @brief Adds a constant offset to a floating-point vector.
group-onsemi 0:098463de4c5d 2712 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2713 * @param[in] offset is the offset to be added
group-onsemi 0:098463de4c5d 2714 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2715 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2716 */
group-onsemi 0:098463de4c5d 2717 void arm_offset_f32(
group-onsemi 0:098463de4c5d 2718 float32_t * pSrc,
group-onsemi 0:098463de4c5d 2719 float32_t offset,
group-onsemi 0:098463de4c5d 2720 float32_t * pDst,
group-onsemi 0:098463de4c5d 2721 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2722
group-onsemi 0:098463de4c5d 2723
group-onsemi 0:098463de4c5d 2724 /**
group-onsemi 0:098463de4c5d 2725 * @brief Adds a constant offset to a Q7 vector.
group-onsemi 0:098463de4c5d 2726 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2727 * @param[in] offset is the offset to be added
group-onsemi 0:098463de4c5d 2728 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2729 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2730 */
group-onsemi 0:098463de4c5d 2731 void arm_offset_q7(
group-onsemi 0:098463de4c5d 2732 q7_t * pSrc,
group-onsemi 0:098463de4c5d 2733 q7_t offset,
group-onsemi 0:098463de4c5d 2734 q7_t * pDst,
group-onsemi 0:098463de4c5d 2735 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2736
group-onsemi 0:098463de4c5d 2737
group-onsemi 0:098463de4c5d 2738 /**
group-onsemi 0:098463de4c5d 2739 * @brief Adds a constant offset to a Q15 vector.
group-onsemi 0:098463de4c5d 2740 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2741 * @param[in] offset is the offset to be added
group-onsemi 0:098463de4c5d 2742 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2743 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2744 */
group-onsemi 0:098463de4c5d 2745 void arm_offset_q15(
group-onsemi 0:098463de4c5d 2746 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2747 q15_t offset,
group-onsemi 0:098463de4c5d 2748 q15_t * pDst,
group-onsemi 0:098463de4c5d 2749 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2750
group-onsemi 0:098463de4c5d 2751
group-onsemi 0:098463de4c5d 2752 /**
group-onsemi 0:098463de4c5d 2753 * @brief Adds a constant offset to a Q31 vector.
group-onsemi 0:098463de4c5d 2754 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2755 * @param[in] offset is the offset to be added
group-onsemi 0:098463de4c5d 2756 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2757 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2758 */
group-onsemi 0:098463de4c5d 2759 void arm_offset_q31(
group-onsemi 0:098463de4c5d 2760 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2761 q31_t offset,
group-onsemi 0:098463de4c5d 2762 q31_t * pDst,
group-onsemi 0:098463de4c5d 2763 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2764
group-onsemi 0:098463de4c5d 2765
group-onsemi 0:098463de4c5d 2766 /**
group-onsemi 0:098463de4c5d 2767 * @brief Negates the elements of a floating-point vector.
group-onsemi 0:098463de4c5d 2768 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2769 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2770 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2771 */
group-onsemi 0:098463de4c5d 2772 void arm_negate_f32(
group-onsemi 0:098463de4c5d 2773 float32_t * pSrc,
group-onsemi 0:098463de4c5d 2774 float32_t * pDst,
group-onsemi 0:098463de4c5d 2775 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2776
group-onsemi 0:098463de4c5d 2777
group-onsemi 0:098463de4c5d 2778 /**
group-onsemi 0:098463de4c5d 2779 * @brief Negates the elements of a Q7 vector.
group-onsemi 0:098463de4c5d 2780 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2781 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2782 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2783 */
group-onsemi 0:098463de4c5d 2784 void arm_negate_q7(
group-onsemi 0:098463de4c5d 2785 q7_t * pSrc,
group-onsemi 0:098463de4c5d 2786 q7_t * pDst,
group-onsemi 0:098463de4c5d 2787 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2788
group-onsemi 0:098463de4c5d 2789
group-onsemi 0:098463de4c5d 2790 /**
group-onsemi 0:098463de4c5d 2791 * @brief Negates the elements of a Q15 vector.
group-onsemi 0:098463de4c5d 2792 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2793 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2794 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2795 */
group-onsemi 0:098463de4c5d 2796 void arm_negate_q15(
group-onsemi 0:098463de4c5d 2797 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2798 q15_t * pDst,
group-onsemi 0:098463de4c5d 2799 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2800
group-onsemi 0:098463de4c5d 2801
group-onsemi 0:098463de4c5d 2802 /**
group-onsemi 0:098463de4c5d 2803 * @brief Negates the elements of a Q31 vector.
group-onsemi 0:098463de4c5d 2804 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 2805 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 2806 * @param[in] blockSize number of samples in the vector
group-onsemi 0:098463de4c5d 2807 */
group-onsemi 0:098463de4c5d 2808 void arm_negate_q31(
group-onsemi 0:098463de4c5d 2809 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2810 q31_t * pDst,
group-onsemi 0:098463de4c5d 2811 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2812
group-onsemi 0:098463de4c5d 2813
group-onsemi 0:098463de4c5d 2814 /**
group-onsemi 0:098463de4c5d 2815 * @brief Copies the elements of a floating-point vector.
group-onsemi 0:098463de4c5d 2816 * @param[in] pSrc input pointer
group-onsemi 0:098463de4c5d 2817 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2818 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2819 */
group-onsemi 0:098463de4c5d 2820 void arm_copy_f32(
group-onsemi 0:098463de4c5d 2821 float32_t * pSrc,
group-onsemi 0:098463de4c5d 2822 float32_t * pDst,
group-onsemi 0:098463de4c5d 2823 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2824
group-onsemi 0:098463de4c5d 2825
group-onsemi 0:098463de4c5d 2826 /**
group-onsemi 0:098463de4c5d 2827 * @brief Copies the elements of a Q7 vector.
group-onsemi 0:098463de4c5d 2828 * @param[in] pSrc input pointer
group-onsemi 0:098463de4c5d 2829 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2830 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2831 */
group-onsemi 0:098463de4c5d 2832 void arm_copy_q7(
group-onsemi 0:098463de4c5d 2833 q7_t * pSrc,
group-onsemi 0:098463de4c5d 2834 q7_t * pDst,
group-onsemi 0:098463de4c5d 2835 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2836
group-onsemi 0:098463de4c5d 2837
group-onsemi 0:098463de4c5d 2838 /**
group-onsemi 0:098463de4c5d 2839 * @brief Copies the elements of a Q15 vector.
group-onsemi 0:098463de4c5d 2840 * @param[in] pSrc input pointer
group-onsemi 0:098463de4c5d 2841 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2842 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2843 */
group-onsemi 0:098463de4c5d 2844 void arm_copy_q15(
group-onsemi 0:098463de4c5d 2845 q15_t * pSrc,
group-onsemi 0:098463de4c5d 2846 q15_t * pDst,
group-onsemi 0:098463de4c5d 2847 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2848
group-onsemi 0:098463de4c5d 2849
group-onsemi 0:098463de4c5d 2850 /**
group-onsemi 0:098463de4c5d 2851 * @brief Copies the elements of a Q31 vector.
group-onsemi 0:098463de4c5d 2852 * @param[in] pSrc input pointer
group-onsemi 0:098463de4c5d 2853 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2854 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2855 */
group-onsemi 0:098463de4c5d 2856 void arm_copy_q31(
group-onsemi 0:098463de4c5d 2857 q31_t * pSrc,
group-onsemi 0:098463de4c5d 2858 q31_t * pDst,
group-onsemi 0:098463de4c5d 2859 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2860
group-onsemi 0:098463de4c5d 2861
group-onsemi 0:098463de4c5d 2862 /**
group-onsemi 0:098463de4c5d 2863 * @brief Fills a constant value into a floating-point vector.
group-onsemi 0:098463de4c5d 2864 * @param[in] value input value to be filled
group-onsemi 0:098463de4c5d 2865 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2866 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2867 */
group-onsemi 0:098463de4c5d 2868 void arm_fill_f32(
group-onsemi 0:098463de4c5d 2869 float32_t value,
group-onsemi 0:098463de4c5d 2870 float32_t * pDst,
group-onsemi 0:098463de4c5d 2871 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2872
group-onsemi 0:098463de4c5d 2873
group-onsemi 0:098463de4c5d 2874 /**
group-onsemi 0:098463de4c5d 2875 * @brief Fills a constant value into a Q7 vector.
group-onsemi 0:098463de4c5d 2876 * @param[in] value input value to be filled
group-onsemi 0:098463de4c5d 2877 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2878 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2879 */
group-onsemi 0:098463de4c5d 2880 void arm_fill_q7(
group-onsemi 0:098463de4c5d 2881 q7_t value,
group-onsemi 0:098463de4c5d 2882 q7_t * pDst,
group-onsemi 0:098463de4c5d 2883 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2884
group-onsemi 0:098463de4c5d 2885
group-onsemi 0:098463de4c5d 2886 /**
group-onsemi 0:098463de4c5d 2887 * @brief Fills a constant value into a Q15 vector.
group-onsemi 0:098463de4c5d 2888 * @param[in] value input value to be filled
group-onsemi 0:098463de4c5d 2889 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2890 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2891 */
group-onsemi 0:098463de4c5d 2892 void arm_fill_q15(
group-onsemi 0:098463de4c5d 2893 q15_t value,
group-onsemi 0:098463de4c5d 2894 q15_t * pDst,
group-onsemi 0:098463de4c5d 2895 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2896
group-onsemi 0:098463de4c5d 2897
group-onsemi 0:098463de4c5d 2898 /**
group-onsemi 0:098463de4c5d 2899 * @brief Fills a constant value into a Q31 vector.
group-onsemi 0:098463de4c5d 2900 * @param[in] value input value to be filled
group-onsemi 0:098463de4c5d 2901 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 2902 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 2903 */
group-onsemi 0:098463de4c5d 2904 void arm_fill_q31(
group-onsemi 0:098463de4c5d 2905 q31_t value,
group-onsemi 0:098463de4c5d 2906 q31_t * pDst,
group-onsemi 0:098463de4c5d 2907 uint32_t blockSize);
group-onsemi 0:098463de4c5d 2908
group-onsemi 0:098463de4c5d 2909
group-onsemi 0:098463de4c5d 2910 /**
group-onsemi 0:098463de4c5d 2911 * @brief Convolution of floating-point sequences.
group-onsemi 0:098463de4c5d 2912 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 2913 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 2914 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 2915 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 2916 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 2917 */
group-onsemi 0:098463de4c5d 2918 void arm_conv_f32(
group-onsemi 0:098463de4c5d 2919 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 2920 uint32_t srcALen,
group-onsemi 0:098463de4c5d 2921 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 2922 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 2923 float32_t * pDst);
group-onsemi 0:098463de4c5d 2924
group-onsemi 0:098463de4c5d 2925
group-onsemi 0:098463de4c5d 2926 /**
group-onsemi 0:098463de4c5d 2927 * @brief Convolution of Q15 sequences.
group-onsemi 0:098463de4c5d 2928 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 2929 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 2930 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 2931 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 2932 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 2933 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 2934 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 2935 */
group-onsemi 0:098463de4c5d 2936 void arm_conv_opt_q15(
group-onsemi 0:098463de4c5d 2937 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2938 uint32_t srcALen,
group-onsemi 0:098463de4c5d 2939 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2940 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 2941 q15_t * pDst,
group-onsemi 0:098463de4c5d 2942 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 2943 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 2944
group-onsemi 0:098463de4c5d 2945
group-onsemi 0:098463de4c5d 2946 /**
group-onsemi 0:098463de4c5d 2947 * @brief Convolution of Q15 sequences.
group-onsemi 0:098463de4c5d 2948 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 2949 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 2950 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 2951 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 2952 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 2953 */
group-onsemi 0:098463de4c5d 2954 void arm_conv_q15(
group-onsemi 0:098463de4c5d 2955 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2956 uint32_t srcALen,
group-onsemi 0:098463de4c5d 2957 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2958 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 2959 q15_t * pDst);
group-onsemi 0:098463de4c5d 2960
group-onsemi 0:098463de4c5d 2961
group-onsemi 0:098463de4c5d 2962 /**
group-onsemi 0:098463de4c5d 2963 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 2964 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 2965 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 2966 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 2967 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 2968 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 2969 */
group-onsemi 0:098463de4c5d 2970 void arm_conv_fast_q15(
group-onsemi 0:098463de4c5d 2971 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2972 uint32_t srcALen,
group-onsemi 0:098463de4c5d 2973 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2974 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 2975 q15_t * pDst);
group-onsemi 0:098463de4c5d 2976
group-onsemi 0:098463de4c5d 2977
group-onsemi 0:098463de4c5d 2978 /**
group-onsemi 0:098463de4c5d 2979 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 2980 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 2981 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 2982 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 2983 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 2984 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 2985 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 2986 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 2987 */
group-onsemi 0:098463de4c5d 2988 void arm_conv_fast_opt_q15(
group-onsemi 0:098463de4c5d 2989 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 2990 uint32_t srcALen,
group-onsemi 0:098463de4c5d 2991 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 2992 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 2993 q15_t * pDst,
group-onsemi 0:098463de4c5d 2994 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 2995 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 2996
group-onsemi 0:098463de4c5d 2997
group-onsemi 0:098463de4c5d 2998 /**
group-onsemi 0:098463de4c5d 2999 * @brief Convolution of Q31 sequences.
group-onsemi 0:098463de4c5d 3000 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3001 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3002 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3003 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3004 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 3005 */
group-onsemi 0:098463de4c5d 3006 void arm_conv_q31(
group-onsemi 0:098463de4c5d 3007 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 3008 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3009 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 3010 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3011 q31_t * pDst);
group-onsemi 0:098463de4c5d 3012
group-onsemi 0:098463de4c5d 3013
group-onsemi 0:098463de4c5d 3014 /**
group-onsemi 0:098463de4c5d 3015 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 3016 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3017 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3018 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3019 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3020 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 3021 */
group-onsemi 0:098463de4c5d 3022 void arm_conv_fast_q31(
group-onsemi 0:098463de4c5d 3023 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 3024 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3025 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 3026 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3027 q31_t * pDst);
group-onsemi 0:098463de4c5d 3028
group-onsemi 0:098463de4c5d 3029
group-onsemi 0:098463de4c5d 3030 /**
group-onsemi 0:098463de4c5d 3031 * @brief Convolution of Q7 sequences.
group-onsemi 0:098463de4c5d 3032 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3033 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3034 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3035 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3036 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 3037 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 3038 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 3039 */
group-onsemi 0:098463de4c5d 3040 void arm_conv_opt_q7(
group-onsemi 0:098463de4c5d 3041 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 3042 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3043 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 3044 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3045 q7_t * pDst,
group-onsemi 0:098463de4c5d 3046 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 3047 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 3048
group-onsemi 0:098463de4c5d 3049
group-onsemi 0:098463de4c5d 3050 /**
group-onsemi 0:098463de4c5d 3051 * @brief Convolution of Q7 sequences.
group-onsemi 0:098463de4c5d 3052 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3053 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3054 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3055 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3056 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
group-onsemi 0:098463de4c5d 3057 */
group-onsemi 0:098463de4c5d 3058 void arm_conv_q7(
group-onsemi 0:098463de4c5d 3059 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 3060 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3061 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 3062 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3063 q7_t * pDst);
group-onsemi 0:098463de4c5d 3064
group-onsemi 0:098463de4c5d 3065
group-onsemi 0:098463de4c5d 3066 /**
group-onsemi 0:098463de4c5d 3067 * @brief Partial convolution of floating-point sequences.
group-onsemi 0:098463de4c5d 3068 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3069 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3070 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3071 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3072 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3073 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3074 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3075 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3076 */
group-onsemi 0:098463de4c5d 3077 arm_status arm_conv_partial_f32(
group-onsemi 0:098463de4c5d 3078 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 3079 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3080 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 3081 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3082 float32_t * pDst,
group-onsemi 0:098463de4c5d 3083 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3084 uint32_t numPoints);
group-onsemi 0:098463de4c5d 3085
group-onsemi 0:098463de4c5d 3086
group-onsemi 0:098463de4c5d 3087 /**
group-onsemi 0:098463de4c5d 3088 * @brief Partial convolution of Q15 sequences.
group-onsemi 0:098463de4c5d 3089 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3090 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3091 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3092 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3093 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3094 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3095 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3096 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 3097 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 3098 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3099 */
group-onsemi 0:098463de4c5d 3100 arm_status arm_conv_partial_opt_q15(
group-onsemi 0:098463de4c5d 3101 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 3102 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3103 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 3104 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3105 q15_t * pDst,
group-onsemi 0:098463de4c5d 3106 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3107 uint32_t numPoints,
group-onsemi 0:098463de4c5d 3108 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 3109 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 3110
group-onsemi 0:098463de4c5d 3111
group-onsemi 0:098463de4c5d 3112 /**
group-onsemi 0:098463de4c5d 3113 * @brief Partial convolution of Q15 sequences.
group-onsemi 0:098463de4c5d 3114 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3115 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3116 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3117 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3118 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3119 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3120 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3121 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3122 */
group-onsemi 0:098463de4c5d 3123 arm_status arm_conv_partial_q15(
group-onsemi 0:098463de4c5d 3124 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 3125 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3126 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 3127 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3128 q15_t * pDst,
group-onsemi 0:098463de4c5d 3129 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3130 uint32_t numPoints);
group-onsemi 0:098463de4c5d 3131
group-onsemi 0:098463de4c5d 3132
group-onsemi 0:098463de4c5d 3133 /**
group-onsemi 0:098463de4c5d 3134 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 3135 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3136 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3137 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3138 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3139 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3140 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3141 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3142 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3143 */
group-onsemi 0:098463de4c5d 3144 arm_status arm_conv_partial_fast_q15(
group-onsemi 0:098463de4c5d 3145 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 3146 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3147 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 3148 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3149 q15_t * pDst,
group-onsemi 0:098463de4c5d 3150 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3151 uint32_t numPoints);
group-onsemi 0:098463de4c5d 3152
group-onsemi 0:098463de4c5d 3153
group-onsemi 0:098463de4c5d 3154 /**
group-onsemi 0:098463de4c5d 3155 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 3156 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3157 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3158 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3159 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3160 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3161 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3162 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3163 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 3164 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 3165 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3166 */
group-onsemi 0:098463de4c5d 3167 arm_status arm_conv_partial_fast_opt_q15(
group-onsemi 0:098463de4c5d 3168 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 3169 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3170 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 3171 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3172 q15_t * pDst,
group-onsemi 0:098463de4c5d 3173 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3174 uint32_t numPoints,
group-onsemi 0:098463de4c5d 3175 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 3176 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 3177
group-onsemi 0:098463de4c5d 3178
group-onsemi 0:098463de4c5d 3179 /**
group-onsemi 0:098463de4c5d 3180 * @brief Partial convolution of Q31 sequences.
group-onsemi 0:098463de4c5d 3181 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3182 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3183 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3184 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3185 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3186 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3187 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3188 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3189 */
group-onsemi 0:098463de4c5d 3190 arm_status arm_conv_partial_q31(
group-onsemi 0:098463de4c5d 3191 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 3192 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3193 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 3194 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3195 q31_t * pDst,
group-onsemi 0:098463de4c5d 3196 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3197 uint32_t numPoints);
group-onsemi 0:098463de4c5d 3198
group-onsemi 0:098463de4c5d 3199
group-onsemi 0:098463de4c5d 3200 /**
group-onsemi 0:098463de4c5d 3201 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 3202 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3203 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3204 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3205 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3206 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3207 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3208 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3209 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3210 */
group-onsemi 0:098463de4c5d 3211 arm_status arm_conv_partial_fast_q31(
group-onsemi 0:098463de4c5d 3212 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 3213 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3214 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 3215 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3216 q31_t * pDst,
group-onsemi 0:098463de4c5d 3217 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3218 uint32_t numPoints);
group-onsemi 0:098463de4c5d 3219
group-onsemi 0:098463de4c5d 3220
group-onsemi 0:098463de4c5d 3221 /**
group-onsemi 0:098463de4c5d 3222 * @brief Partial convolution of Q7 sequences
group-onsemi 0:098463de4c5d 3223 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3224 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3225 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3226 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3227 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3228 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3229 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3230 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 3231 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 3232 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3233 */
group-onsemi 0:098463de4c5d 3234 arm_status arm_conv_partial_opt_q7(
group-onsemi 0:098463de4c5d 3235 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 3236 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3237 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 3238 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3239 q7_t * pDst,
group-onsemi 0:098463de4c5d 3240 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3241 uint32_t numPoints,
group-onsemi 0:098463de4c5d 3242 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 3243 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 3244
group-onsemi 0:098463de4c5d 3245
group-onsemi 0:098463de4c5d 3246 /**
group-onsemi 0:098463de4c5d 3247 * @brief Partial convolution of Q7 sequences.
group-onsemi 0:098463de4c5d 3248 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 3249 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 3250 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 3251 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 3252 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3253 * @param[in] firstIndex is the first output sample to start with.
group-onsemi 0:098463de4c5d 3254 * @param[in] numPoints is the number of output points to be computed.
group-onsemi 0:098463de4c5d 3255 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
group-onsemi 0:098463de4c5d 3256 */
group-onsemi 0:098463de4c5d 3257 arm_status arm_conv_partial_q7(
group-onsemi 0:098463de4c5d 3258 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 3259 uint32_t srcALen,
group-onsemi 0:098463de4c5d 3260 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 3261 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 3262 q7_t * pDst,
group-onsemi 0:098463de4c5d 3263 uint32_t firstIndex,
group-onsemi 0:098463de4c5d 3264 uint32_t numPoints);
group-onsemi 0:098463de4c5d 3265
group-onsemi 0:098463de4c5d 3266
group-onsemi 0:098463de4c5d 3267 /**
group-onsemi 0:098463de4c5d 3268 * @brief Instance structure for the Q15 FIR decimator.
group-onsemi 0:098463de4c5d 3269 */
group-onsemi 0:098463de4c5d 3270 typedef struct
group-onsemi 0:098463de4c5d 3271 {
group-onsemi 0:098463de4c5d 3272 uint8_t M; /**< decimation factor. */
group-onsemi 0:098463de4c5d 3273 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 3274 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 3275 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 3276 } arm_fir_decimate_instance_q15;
group-onsemi 0:098463de4c5d 3277
group-onsemi 0:098463de4c5d 3278 /**
group-onsemi 0:098463de4c5d 3279 * @brief Instance structure for the Q31 FIR decimator.
group-onsemi 0:098463de4c5d 3280 */
group-onsemi 0:098463de4c5d 3281 typedef struct
group-onsemi 0:098463de4c5d 3282 {
group-onsemi 0:098463de4c5d 3283 uint8_t M; /**< decimation factor. */
group-onsemi 0:098463de4c5d 3284 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 3285 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 3286 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 3287 } arm_fir_decimate_instance_q31;
group-onsemi 0:098463de4c5d 3288
group-onsemi 0:098463de4c5d 3289 /**
group-onsemi 0:098463de4c5d 3290 * @brief Instance structure for the floating-point FIR decimator.
group-onsemi 0:098463de4c5d 3291 */
group-onsemi 0:098463de4c5d 3292 typedef struct
group-onsemi 0:098463de4c5d 3293 {
group-onsemi 0:098463de4c5d 3294 uint8_t M; /**< decimation factor. */
group-onsemi 0:098463de4c5d 3295 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 3296 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 3297 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 3298 } arm_fir_decimate_instance_f32;
group-onsemi 0:098463de4c5d 3299
group-onsemi 0:098463de4c5d 3300
group-onsemi 0:098463de4c5d 3301 /**
group-onsemi 0:098463de4c5d 3302 * @brief Processing function for the floating-point FIR decimator.
group-onsemi 0:098463de4c5d 3303 * @param[in] S points to an instance of the floating-point FIR decimator structure.
group-onsemi 0:098463de4c5d 3304 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3305 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3306 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3307 */
group-onsemi 0:098463de4c5d 3308 void arm_fir_decimate_f32(
group-onsemi 0:098463de4c5d 3309 const arm_fir_decimate_instance_f32 * S,
group-onsemi 0:098463de4c5d 3310 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3311 float32_t * pDst,
group-onsemi 0:098463de4c5d 3312 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3313
group-onsemi 0:098463de4c5d 3314
group-onsemi 0:098463de4c5d 3315 /**
group-onsemi 0:098463de4c5d 3316 * @brief Initialization function for the floating-point FIR decimator.
group-onsemi 0:098463de4c5d 3317 * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
group-onsemi 0:098463de4c5d 3318 * @param[in] numTaps number of coefficients in the filter.
group-onsemi 0:098463de4c5d 3319 * @param[in] M decimation factor.
group-onsemi 0:098463de4c5d 3320 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3321 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3322 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3323 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
group-onsemi 0:098463de4c5d 3324 * <code>blockSize</code> is not a multiple of <code>M</code>.
group-onsemi 0:098463de4c5d 3325 */
group-onsemi 0:098463de4c5d 3326 arm_status arm_fir_decimate_init_f32(
group-onsemi 0:098463de4c5d 3327 arm_fir_decimate_instance_f32 * S,
group-onsemi 0:098463de4c5d 3328 uint16_t numTaps,
group-onsemi 0:098463de4c5d 3329 uint8_t M,
group-onsemi 0:098463de4c5d 3330 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 3331 float32_t * pState,
group-onsemi 0:098463de4c5d 3332 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3333
group-onsemi 0:098463de4c5d 3334
group-onsemi 0:098463de4c5d 3335 /**
group-onsemi 0:098463de4c5d 3336 * @brief Processing function for the Q15 FIR decimator.
group-onsemi 0:098463de4c5d 3337 * @param[in] S points to an instance of the Q15 FIR decimator structure.
group-onsemi 0:098463de4c5d 3338 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3339 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3340 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3341 */
group-onsemi 0:098463de4c5d 3342 void arm_fir_decimate_q15(
group-onsemi 0:098463de4c5d 3343 const arm_fir_decimate_instance_q15 * S,
group-onsemi 0:098463de4c5d 3344 q15_t * pSrc,
group-onsemi 0:098463de4c5d 3345 q15_t * pDst,
group-onsemi 0:098463de4c5d 3346 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3347
group-onsemi 0:098463de4c5d 3348
group-onsemi 0:098463de4c5d 3349 /**
group-onsemi 0:098463de4c5d 3350 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 3351 * @param[in] S points to an instance of the Q15 FIR decimator structure.
group-onsemi 0:098463de4c5d 3352 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3353 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3354 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3355 */
group-onsemi 0:098463de4c5d 3356 void arm_fir_decimate_fast_q15(
group-onsemi 0:098463de4c5d 3357 const arm_fir_decimate_instance_q15 * S,
group-onsemi 0:098463de4c5d 3358 q15_t * pSrc,
group-onsemi 0:098463de4c5d 3359 q15_t * pDst,
group-onsemi 0:098463de4c5d 3360 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3361
group-onsemi 0:098463de4c5d 3362
group-onsemi 0:098463de4c5d 3363 /**
group-onsemi 0:098463de4c5d 3364 * @brief Initialization function for the Q15 FIR decimator.
group-onsemi 0:098463de4c5d 3365 * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
group-onsemi 0:098463de4c5d 3366 * @param[in] numTaps number of coefficients in the filter.
group-onsemi 0:098463de4c5d 3367 * @param[in] M decimation factor.
group-onsemi 0:098463de4c5d 3368 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3369 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3370 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3371 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
group-onsemi 0:098463de4c5d 3372 * <code>blockSize</code> is not a multiple of <code>M</code>.
group-onsemi 0:098463de4c5d 3373 */
group-onsemi 0:098463de4c5d 3374 arm_status arm_fir_decimate_init_q15(
group-onsemi 0:098463de4c5d 3375 arm_fir_decimate_instance_q15 * S,
group-onsemi 0:098463de4c5d 3376 uint16_t numTaps,
group-onsemi 0:098463de4c5d 3377 uint8_t M,
group-onsemi 0:098463de4c5d 3378 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 3379 q15_t * pState,
group-onsemi 0:098463de4c5d 3380 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3381
group-onsemi 0:098463de4c5d 3382
group-onsemi 0:098463de4c5d 3383 /**
group-onsemi 0:098463de4c5d 3384 * @brief Processing function for the Q31 FIR decimator.
group-onsemi 0:098463de4c5d 3385 * @param[in] S points to an instance of the Q31 FIR decimator structure.
group-onsemi 0:098463de4c5d 3386 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3387 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3388 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3389 */
group-onsemi 0:098463de4c5d 3390 void arm_fir_decimate_q31(
group-onsemi 0:098463de4c5d 3391 const arm_fir_decimate_instance_q31 * S,
group-onsemi 0:098463de4c5d 3392 q31_t * pSrc,
group-onsemi 0:098463de4c5d 3393 q31_t * pDst,
group-onsemi 0:098463de4c5d 3394 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3395
group-onsemi 0:098463de4c5d 3396 /**
group-onsemi 0:098463de4c5d 3397 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 3398 * @param[in] S points to an instance of the Q31 FIR decimator structure.
group-onsemi 0:098463de4c5d 3399 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3400 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3401 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3402 */
group-onsemi 0:098463de4c5d 3403 void arm_fir_decimate_fast_q31(
group-onsemi 0:098463de4c5d 3404 arm_fir_decimate_instance_q31 * S,
group-onsemi 0:098463de4c5d 3405 q31_t * pSrc,
group-onsemi 0:098463de4c5d 3406 q31_t * pDst,
group-onsemi 0:098463de4c5d 3407 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3408
group-onsemi 0:098463de4c5d 3409
group-onsemi 0:098463de4c5d 3410 /**
group-onsemi 0:098463de4c5d 3411 * @brief Initialization function for the Q31 FIR decimator.
group-onsemi 0:098463de4c5d 3412 * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
group-onsemi 0:098463de4c5d 3413 * @param[in] numTaps number of coefficients in the filter.
group-onsemi 0:098463de4c5d 3414 * @param[in] M decimation factor.
group-onsemi 0:098463de4c5d 3415 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3416 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3417 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3418 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
group-onsemi 0:098463de4c5d 3419 * <code>blockSize</code> is not a multiple of <code>M</code>.
group-onsemi 0:098463de4c5d 3420 */
group-onsemi 0:098463de4c5d 3421 arm_status arm_fir_decimate_init_q31(
group-onsemi 0:098463de4c5d 3422 arm_fir_decimate_instance_q31 * S,
group-onsemi 0:098463de4c5d 3423 uint16_t numTaps,
group-onsemi 0:098463de4c5d 3424 uint8_t M,
group-onsemi 0:098463de4c5d 3425 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 3426 q31_t * pState,
group-onsemi 0:098463de4c5d 3427 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3428
group-onsemi 0:098463de4c5d 3429
group-onsemi 0:098463de4c5d 3430 /**
group-onsemi 0:098463de4c5d 3431 * @brief Instance structure for the Q15 FIR interpolator.
group-onsemi 0:098463de4c5d 3432 */
group-onsemi 0:098463de4c5d 3433 typedef struct
group-onsemi 0:098463de4c5d 3434 {
group-onsemi 0:098463de4c5d 3435 uint8_t L; /**< upsample factor. */
group-onsemi 0:098463de4c5d 3436 uint16_t phaseLength; /**< length of each polyphase filter component. */
group-onsemi 0:098463de4c5d 3437 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
group-onsemi 0:098463de4c5d 3438 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
group-onsemi 0:098463de4c5d 3439 } arm_fir_interpolate_instance_q15;
group-onsemi 0:098463de4c5d 3440
group-onsemi 0:098463de4c5d 3441 /**
group-onsemi 0:098463de4c5d 3442 * @brief Instance structure for the Q31 FIR interpolator.
group-onsemi 0:098463de4c5d 3443 */
group-onsemi 0:098463de4c5d 3444 typedef struct
group-onsemi 0:098463de4c5d 3445 {
group-onsemi 0:098463de4c5d 3446 uint8_t L; /**< upsample factor. */
group-onsemi 0:098463de4c5d 3447 uint16_t phaseLength; /**< length of each polyphase filter component. */
group-onsemi 0:098463de4c5d 3448 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
group-onsemi 0:098463de4c5d 3449 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
group-onsemi 0:098463de4c5d 3450 } arm_fir_interpolate_instance_q31;
group-onsemi 0:098463de4c5d 3451
group-onsemi 0:098463de4c5d 3452 /**
group-onsemi 0:098463de4c5d 3453 * @brief Instance structure for the floating-point FIR interpolator.
group-onsemi 0:098463de4c5d 3454 */
group-onsemi 0:098463de4c5d 3455 typedef struct
group-onsemi 0:098463de4c5d 3456 {
group-onsemi 0:098463de4c5d 3457 uint8_t L; /**< upsample factor. */
group-onsemi 0:098463de4c5d 3458 uint16_t phaseLength; /**< length of each polyphase filter component. */
group-onsemi 0:098463de4c5d 3459 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
group-onsemi 0:098463de4c5d 3460 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
group-onsemi 0:098463de4c5d 3461 } arm_fir_interpolate_instance_f32;
group-onsemi 0:098463de4c5d 3462
group-onsemi 0:098463de4c5d 3463
group-onsemi 0:098463de4c5d 3464 /**
group-onsemi 0:098463de4c5d 3465 * @brief Processing function for the Q15 FIR interpolator.
group-onsemi 0:098463de4c5d 3466 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
group-onsemi 0:098463de4c5d 3467 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3468 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3469 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3470 */
group-onsemi 0:098463de4c5d 3471 void arm_fir_interpolate_q15(
group-onsemi 0:098463de4c5d 3472 const arm_fir_interpolate_instance_q15 * S,
group-onsemi 0:098463de4c5d 3473 q15_t * pSrc,
group-onsemi 0:098463de4c5d 3474 q15_t * pDst,
group-onsemi 0:098463de4c5d 3475 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3476
group-onsemi 0:098463de4c5d 3477
group-onsemi 0:098463de4c5d 3478 /**
group-onsemi 0:098463de4c5d 3479 * @brief Initialization function for the Q15 FIR interpolator.
group-onsemi 0:098463de4c5d 3480 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
group-onsemi 0:098463de4c5d 3481 * @param[in] L upsample factor.
group-onsemi 0:098463de4c5d 3482 * @param[in] numTaps number of filter coefficients in the filter.
group-onsemi 0:098463de4c5d 3483 * @param[in] pCoeffs points to the filter coefficient buffer.
group-onsemi 0:098463de4c5d 3484 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3485 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3486 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
group-onsemi 0:098463de4c5d 3487 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
group-onsemi 0:098463de4c5d 3488 */
group-onsemi 0:098463de4c5d 3489 arm_status arm_fir_interpolate_init_q15(
group-onsemi 0:098463de4c5d 3490 arm_fir_interpolate_instance_q15 * S,
group-onsemi 0:098463de4c5d 3491 uint8_t L,
group-onsemi 0:098463de4c5d 3492 uint16_t numTaps,
group-onsemi 0:098463de4c5d 3493 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 3494 q15_t * pState,
group-onsemi 0:098463de4c5d 3495 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3496
group-onsemi 0:098463de4c5d 3497
group-onsemi 0:098463de4c5d 3498 /**
group-onsemi 0:098463de4c5d 3499 * @brief Processing function for the Q31 FIR interpolator.
group-onsemi 0:098463de4c5d 3500 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
group-onsemi 0:098463de4c5d 3501 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3502 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3503 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3504 */
group-onsemi 0:098463de4c5d 3505 void arm_fir_interpolate_q31(
group-onsemi 0:098463de4c5d 3506 const arm_fir_interpolate_instance_q31 * S,
group-onsemi 0:098463de4c5d 3507 q31_t * pSrc,
group-onsemi 0:098463de4c5d 3508 q31_t * pDst,
group-onsemi 0:098463de4c5d 3509 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3510
group-onsemi 0:098463de4c5d 3511
group-onsemi 0:098463de4c5d 3512 /**
group-onsemi 0:098463de4c5d 3513 * @brief Initialization function for the Q31 FIR interpolator.
group-onsemi 0:098463de4c5d 3514 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
group-onsemi 0:098463de4c5d 3515 * @param[in] L upsample factor.
group-onsemi 0:098463de4c5d 3516 * @param[in] numTaps number of filter coefficients in the filter.
group-onsemi 0:098463de4c5d 3517 * @param[in] pCoeffs points to the filter coefficient buffer.
group-onsemi 0:098463de4c5d 3518 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3519 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3520 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
group-onsemi 0:098463de4c5d 3521 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
group-onsemi 0:098463de4c5d 3522 */
group-onsemi 0:098463de4c5d 3523 arm_status arm_fir_interpolate_init_q31(
group-onsemi 0:098463de4c5d 3524 arm_fir_interpolate_instance_q31 * S,
group-onsemi 0:098463de4c5d 3525 uint8_t L,
group-onsemi 0:098463de4c5d 3526 uint16_t numTaps,
group-onsemi 0:098463de4c5d 3527 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 3528 q31_t * pState,
group-onsemi 0:098463de4c5d 3529 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3530
group-onsemi 0:098463de4c5d 3531
group-onsemi 0:098463de4c5d 3532 /**
group-onsemi 0:098463de4c5d 3533 * @brief Processing function for the floating-point FIR interpolator.
group-onsemi 0:098463de4c5d 3534 * @param[in] S points to an instance of the floating-point FIR interpolator structure.
group-onsemi 0:098463de4c5d 3535 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3536 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3537 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3538 */
group-onsemi 0:098463de4c5d 3539 void arm_fir_interpolate_f32(
group-onsemi 0:098463de4c5d 3540 const arm_fir_interpolate_instance_f32 * S,
group-onsemi 0:098463de4c5d 3541 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3542 float32_t * pDst,
group-onsemi 0:098463de4c5d 3543 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3544
group-onsemi 0:098463de4c5d 3545
group-onsemi 0:098463de4c5d 3546 /**
group-onsemi 0:098463de4c5d 3547 * @brief Initialization function for the floating-point FIR interpolator.
group-onsemi 0:098463de4c5d 3548 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
group-onsemi 0:098463de4c5d 3549 * @param[in] L upsample factor.
group-onsemi 0:098463de4c5d 3550 * @param[in] numTaps number of filter coefficients in the filter.
group-onsemi 0:098463de4c5d 3551 * @param[in] pCoeffs points to the filter coefficient buffer.
group-onsemi 0:098463de4c5d 3552 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3553 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 3554 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
group-onsemi 0:098463de4c5d 3555 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
group-onsemi 0:098463de4c5d 3556 */
group-onsemi 0:098463de4c5d 3557 arm_status arm_fir_interpolate_init_f32(
group-onsemi 0:098463de4c5d 3558 arm_fir_interpolate_instance_f32 * S,
group-onsemi 0:098463de4c5d 3559 uint8_t L,
group-onsemi 0:098463de4c5d 3560 uint16_t numTaps,
group-onsemi 0:098463de4c5d 3561 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 3562 float32_t * pState,
group-onsemi 0:098463de4c5d 3563 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3564
group-onsemi 0:098463de4c5d 3565
group-onsemi 0:098463de4c5d 3566 /**
group-onsemi 0:098463de4c5d 3567 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
group-onsemi 0:098463de4c5d 3568 */
group-onsemi 0:098463de4c5d 3569 typedef struct
group-onsemi 0:098463de4c5d 3570 {
group-onsemi 0:098463de4c5d 3571 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 3572 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
group-onsemi 0:098463de4c5d 3573 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 3574 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
group-onsemi 0:098463de4c5d 3575 } arm_biquad_cas_df1_32x64_ins_q31;
group-onsemi 0:098463de4c5d 3576
group-onsemi 0:098463de4c5d 3577
group-onsemi 0:098463de4c5d 3578 /**
group-onsemi 0:098463de4c5d 3579 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
group-onsemi 0:098463de4c5d 3580 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3581 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3582 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3583 */
group-onsemi 0:098463de4c5d 3584 void arm_biquad_cas_df1_32x64_q31(
group-onsemi 0:098463de4c5d 3585 const arm_biquad_cas_df1_32x64_ins_q31 * S,
group-onsemi 0:098463de4c5d 3586 q31_t * pSrc,
group-onsemi 0:098463de4c5d 3587 q31_t * pDst,
group-onsemi 0:098463de4c5d 3588 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3589
group-onsemi 0:098463de4c5d 3590
group-onsemi 0:098463de4c5d 3591 /**
group-onsemi 0:098463de4c5d 3592 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
group-onsemi 0:098463de4c5d 3593 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 3594 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3595 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3596 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
group-onsemi 0:098463de4c5d 3597 */
group-onsemi 0:098463de4c5d 3598 void arm_biquad_cas_df1_32x64_init_q31(
group-onsemi 0:098463de4c5d 3599 arm_biquad_cas_df1_32x64_ins_q31 * S,
group-onsemi 0:098463de4c5d 3600 uint8_t numStages,
group-onsemi 0:098463de4c5d 3601 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 3602 q63_t * pState,
group-onsemi 0:098463de4c5d 3603 uint8_t postShift);
group-onsemi 0:098463de4c5d 3604
group-onsemi 0:098463de4c5d 3605
group-onsemi 0:098463de4c5d 3606 /**
group-onsemi 0:098463de4c5d 3607 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3608 */
group-onsemi 0:098463de4c5d 3609 typedef struct
group-onsemi 0:098463de4c5d 3610 {
group-onsemi 0:098463de4c5d 3611 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 3612 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
group-onsemi 0:098463de4c5d 3613 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 3614 } arm_biquad_cascade_df2T_instance_f32;
group-onsemi 0:098463de4c5d 3615
group-onsemi 0:098463de4c5d 3616 /**
group-onsemi 0:098463de4c5d 3617 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3618 */
group-onsemi 0:098463de4c5d 3619 typedef struct
group-onsemi 0:098463de4c5d 3620 {
group-onsemi 0:098463de4c5d 3621 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 3622 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
group-onsemi 0:098463de4c5d 3623 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 3624 } arm_biquad_cascade_stereo_df2T_instance_f32;
group-onsemi 0:098463de4c5d 3625
group-onsemi 0:098463de4c5d 3626 /**
group-onsemi 0:098463de4c5d 3627 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3628 */
group-onsemi 0:098463de4c5d 3629 typedef struct
group-onsemi 0:098463de4c5d 3630 {
group-onsemi 0:098463de4c5d 3631 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
group-onsemi 0:098463de4c5d 3632 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
group-onsemi 0:098463de4c5d 3633 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
group-onsemi 0:098463de4c5d 3634 } arm_biquad_cascade_df2T_instance_f64;
group-onsemi 0:098463de4c5d 3635
group-onsemi 0:098463de4c5d 3636
group-onsemi 0:098463de4c5d 3637 /**
group-onsemi 0:098463de4c5d 3638 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3639 * @param[in] S points to an instance of the filter data structure.
group-onsemi 0:098463de4c5d 3640 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3641 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3642 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3643 */
group-onsemi 0:098463de4c5d 3644 void arm_biquad_cascade_df2T_f32(
group-onsemi 0:098463de4c5d 3645 const arm_biquad_cascade_df2T_instance_f32 * S,
group-onsemi 0:098463de4c5d 3646 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3647 float32_t * pDst,
group-onsemi 0:098463de4c5d 3648 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3649
group-onsemi 0:098463de4c5d 3650
group-onsemi 0:098463de4c5d 3651 /**
group-onsemi 0:098463de4c5d 3652 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
group-onsemi 0:098463de4c5d 3653 * @param[in] S points to an instance of the filter data structure.
group-onsemi 0:098463de4c5d 3654 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3655 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3656 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3657 */
group-onsemi 0:098463de4c5d 3658 void arm_biquad_cascade_stereo_df2T_f32(
group-onsemi 0:098463de4c5d 3659 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
group-onsemi 0:098463de4c5d 3660 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3661 float32_t * pDst,
group-onsemi 0:098463de4c5d 3662 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3663
group-onsemi 0:098463de4c5d 3664
group-onsemi 0:098463de4c5d 3665 /**
group-onsemi 0:098463de4c5d 3666 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3667 * @param[in] S points to an instance of the filter data structure.
group-onsemi 0:098463de4c5d 3668 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3669 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3670 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3671 */
group-onsemi 0:098463de4c5d 3672 void arm_biquad_cascade_df2T_f64(
group-onsemi 0:098463de4c5d 3673 const arm_biquad_cascade_df2T_instance_f64 * S,
group-onsemi 0:098463de4c5d 3674 float64_t * pSrc,
group-onsemi 0:098463de4c5d 3675 float64_t * pDst,
group-onsemi 0:098463de4c5d 3676 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3677
group-onsemi 0:098463de4c5d 3678
group-onsemi 0:098463de4c5d 3679 /**
group-onsemi 0:098463de4c5d 3680 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3681 * @param[in,out] S points to an instance of the filter data structure.
group-onsemi 0:098463de4c5d 3682 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 3683 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3684 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3685 */
group-onsemi 0:098463de4c5d 3686 void arm_biquad_cascade_df2T_init_f32(
group-onsemi 0:098463de4c5d 3687 arm_biquad_cascade_df2T_instance_f32 * S,
group-onsemi 0:098463de4c5d 3688 uint8_t numStages,
group-onsemi 0:098463de4c5d 3689 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 3690 float32_t * pState);
group-onsemi 0:098463de4c5d 3691
group-onsemi 0:098463de4c5d 3692
group-onsemi 0:098463de4c5d 3693 /**
group-onsemi 0:098463de4c5d 3694 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3695 * @param[in,out] S points to an instance of the filter data structure.
group-onsemi 0:098463de4c5d 3696 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 3697 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3698 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3699 */
group-onsemi 0:098463de4c5d 3700 void arm_biquad_cascade_stereo_df2T_init_f32(
group-onsemi 0:098463de4c5d 3701 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
group-onsemi 0:098463de4c5d 3702 uint8_t numStages,
group-onsemi 0:098463de4c5d 3703 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 3704 float32_t * pState);
group-onsemi 0:098463de4c5d 3705
group-onsemi 0:098463de4c5d 3706
group-onsemi 0:098463de4c5d 3707 /**
group-onsemi 0:098463de4c5d 3708 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
group-onsemi 0:098463de4c5d 3709 * @param[in,out] S points to an instance of the filter data structure.
group-onsemi 0:098463de4c5d 3710 * @param[in] numStages number of 2nd order stages in the filter.
group-onsemi 0:098463de4c5d 3711 * @param[in] pCoeffs points to the filter coefficients.
group-onsemi 0:098463de4c5d 3712 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 3713 */
group-onsemi 0:098463de4c5d 3714 void arm_biquad_cascade_df2T_init_f64(
group-onsemi 0:098463de4c5d 3715 arm_biquad_cascade_df2T_instance_f64 * S,
group-onsemi 0:098463de4c5d 3716 uint8_t numStages,
group-onsemi 0:098463de4c5d 3717 float64_t * pCoeffs,
group-onsemi 0:098463de4c5d 3718 float64_t * pState);
group-onsemi 0:098463de4c5d 3719
group-onsemi 0:098463de4c5d 3720
group-onsemi 0:098463de4c5d 3721 /**
group-onsemi 0:098463de4c5d 3722 * @brief Instance structure for the Q15 FIR lattice filter.
group-onsemi 0:098463de4c5d 3723 */
group-onsemi 0:098463de4c5d 3724 typedef struct
group-onsemi 0:098463de4c5d 3725 {
group-onsemi 0:098463de4c5d 3726 uint16_t numStages; /**< number of filter stages. */
group-onsemi 0:098463de4c5d 3727 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3728 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3729 } arm_fir_lattice_instance_q15;
group-onsemi 0:098463de4c5d 3730
group-onsemi 0:098463de4c5d 3731 /**
group-onsemi 0:098463de4c5d 3732 * @brief Instance structure for the Q31 FIR lattice filter.
group-onsemi 0:098463de4c5d 3733 */
group-onsemi 0:098463de4c5d 3734 typedef struct
group-onsemi 0:098463de4c5d 3735 {
group-onsemi 0:098463de4c5d 3736 uint16_t numStages; /**< number of filter stages. */
group-onsemi 0:098463de4c5d 3737 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3738 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3739 } arm_fir_lattice_instance_q31;
group-onsemi 0:098463de4c5d 3740
group-onsemi 0:098463de4c5d 3741 /**
group-onsemi 0:098463de4c5d 3742 * @brief Instance structure for the floating-point FIR lattice filter.
group-onsemi 0:098463de4c5d 3743 */
group-onsemi 0:098463de4c5d 3744 typedef struct
group-onsemi 0:098463de4c5d 3745 {
group-onsemi 0:098463de4c5d 3746 uint16_t numStages; /**< number of filter stages. */
group-onsemi 0:098463de4c5d 3747 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3748 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3749 } arm_fir_lattice_instance_f32;
group-onsemi 0:098463de4c5d 3750
group-onsemi 0:098463de4c5d 3751
group-onsemi 0:098463de4c5d 3752 /**
group-onsemi 0:098463de4c5d 3753 * @brief Initialization function for the Q15 FIR lattice filter.
group-onsemi 0:098463de4c5d 3754 * @param[in] S points to an instance of the Q15 FIR lattice structure.
group-onsemi 0:098463de4c5d 3755 * @param[in] numStages number of filter stages.
group-onsemi 0:098463de4c5d 3756 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3757 * @param[in] pState points to the state buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3758 */
group-onsemi 0:098463de4c5d 3759 void arm_fir_lattice_init_q15(
group-onsemi 0:098463de4c5d 3760 arm_fir_lattice_instance_q15 * S,
group-onsemi 0:098463de4c5d 3761 uint16_t numStages,
group-onsemi 0:098463de4c5d 3762 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 3763 q15_t * pState);
group-onsemi 0:098463de4c5d 3764
group-onsemi 0:098463de4c5d 3765
group-onsemi 0:098463de4c5d 3766 /**
group-onsemi 0:098463de4c5d 3767 * @brief Processing function for the Q15 FIR lattice filter.
group-onsemi 0:098463de4c5d 3768 * @param[in] S points to an instance of the Q15 FIR lattice structure.
group-onsemi 0:098463de4c5d 3769 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3770 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3771 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3772 */
group-onsemi 0:098463de4c5d 3773 void arm_fir_lattice_q15(
group-onsemi 0:098463de4c5d 3774 const arm_fir_lattice_instance_q15 * S,
group-onsemi 0:098463de4c5d 3775 q15_t * pSrc,
group-onsemi 0:098463de4c5d 3776 q15_t * pDst,
group-onsemi 0:098463de4c5d 3777 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3778
group-onsemi 0:098463de4c5d 3779
group-onsemi 0:098463de4c5d 3780 /**
group-onsemi 0:098463de4c5d 3781 * @brief Initialization function for the Q31 FIR lattice filter.
group-onsemi 0:098463de4c5d 3782 * @param[in] S points to an instance of the Q31 FIR lattice structure.
group-onsemi 0:098463de4c5d 3783 * @param[in] numStages number of filter stages.
group-onsemi 0:098463de4c5d 3784 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3785 * @param[in] pState points to the state buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3786 */
group-onsemi 0:098463de4c5d 3787 void arm_fir_lattice_init_q31(
group-onsemi 0:098463de4c5d 3788 arm_fir_lattice_instance_q31 * S,
group-onsemi 0:098463de4c5d 3789 uint16_t numStages,
group-onsemi 0:098463de4c5d 3790 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 3791 q31_t * pState);
group-onsemi 0:098463de4c5d 3792
group-onsemi 0:098463de4c5d 3793
group-onsemi 0:098463de4c5d 3794 /**
group-onsemi 0:098463de4c5d 3795 * @brief Processing function for the Q31 FIR lattice filter.
group-onsemi 0:098463de4c5d 3796 * @param[in] S points to an instance of the Q31 FIR lattice structure.
group-onsemi 0:098463de4c5d 3797 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3798 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3799 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3800 */
group-onsemi 0:098463de4c5d 3801 void arm_fir_lattice_q31(
group-onsemi 0:098463de4c5d 3802 const arm_fir_lattice_instance_q31 * S,
group-onsemi 0:098463de4c5d 3803 q31_t * pSrc,
group-onsemi 0:098463de4c5d 3804 q31_t * pDst,
group-onsemi 0:098463de4c5d 3805 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3806
group-onsemi 0:098463de4c5d 3807
group-onsemi 0:098463de4c5d 3808 /**
group-onsemi 0:098463de4c5d 3809 * @brief Initialization function for the floating-point FIR lattice filter.
group-onsemi 0:098463de4c5d 3810 * @param[in] S points to an instance of the floating-point FIR lattice structure.
group-onsemi 0:098463de4c5d 3811 * @param[in] numStages number of filter stages.
group-onsemi 0:098463de4c5d 3812 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3813 * @param[in] pState points to the state buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3814 */
group-onsemi 0:098463de4c5d 3815 void arm_fir_lattice_init_f32(
group-onsemi 0:098463de4c5d 3816 arm_fir_lattice_instance_f32 * S,
group-onsemi 0:098463de4c5d 3817 uint16_t numStages,
group-onsemi 0:098463de4c5d 3818 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 3819 float32_t * pState);
group-onsemi 0:098463de4c5d 3820
group-onsemi 0:098463de4c5d 3821
group-onsemi 0:098463de4c5d 3822 /**
group-onsemi 0:098463de4c5d 3823 * @brief Processing function for the floating-point FIR lattice filter.
group-onsemi 0:098463de4c5d 3824 * @param[in] S points to an instance of the floating-point FIR lattice structure.
group-onsemi 0:098463de4c5d 3825 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3826 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 3827 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3828 */
group-onsemi 0:098463de4c5d 3829 void arm_fir_lattice_f32(
group-onsemi 0:098463de4c5d 3830 const arm_fir_lattice_instance_f32 * S,
group-onsemi 0:098463de4c5d 3831 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3832 float32_t * pDst,
group-onsemi 0:098463de4c5d 3833 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3834
group-onsemi 0:098463de4c5d 3835
group-onsemi 0:098463de4c5d 3836 /**
group-onsemi 0:098463de4c5d 3837 * @brief Instance structure for the Q15 IIR lattice filter.
group-onsemi 0:098463de4c5d 3838 */
group-onsemi 0:098463de4c5d 3839 typedef struct
group-onsemi 0:098463de4c5d 3840 {
group-onsemi 0:098463de4c5d 3841 uint16_t numStages; /**< number of stages in the filter. */
group-onsemi 0:098463de4c5d 3842 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
group-onsemi 0:098463de4c5d 3843 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3844 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
group-onsemi 0:098463de4c5d 3845 } arm_iir_lattice_instance_q15;
group-onsemi 0:098463de4c5d 3846
group-onsemi 0:098463de4c5d 3847 /**
group-onsemi 0:098463de4c5d 3848 * @brief Instance structure for the Q31 IIR lattice filter.
group-onsemi 0:098463de4c5d 3849 */
group-onsemi 0:098463de4c5d 3850 typedef struct
group-onsemi 0:098463de4c5d 3851 {
group-onsemi 0:098463de4c5d 3852 uint16_t numStages; /**< number of stages in the filter. */
group-onsemi 0:098463de4c5d 3853 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
group-onsemi 0:098463de4c5d 3854 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3855 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
group-onsemi 0:098463de4c5d 3856 } arm_iir_lattice_instance_q31;
group-onsemi 0:098463de4c5d 3857
group-onsemi 0:098463de4c5d 3858 /**
group-onsemi 0:098463de4c5d 3859 * @brief Instance structure for the floating-point IIR lattice filter.
group-onsemi 0:098463de4c5d 3860 */
group-onsemi 0:098463de4c5d 3861 typedef struct
group-onsemi 0:098463de4c5d 3862 {
group-onsemi 0:098463de4c5d 3863 uint16_t numStages; /**< number of stages in the filter. */
group-onsemi 0:098463de4c5d 3864 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
group-onsemi 0:098463de4c5d 3865 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
group-onsemi 0:098463de4c5d 3866 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
group-onsemi 0:098463de4c5d 3867 } arm_iir_lattice_instance_f32;
group-onsemi 0:098463de4c5d 3868
group-onsemi 0:098463de4c5d 3869
group-onsemi 0:098463de4c5d 3870 /**
group-onsemi 0:098463de4c5d 3871 * @brief Processing function for the floating-point IIR lattice filter.
group-onsemi 0:098463de4c5d 3872 * @param[in] S points to an instance of the floating-point IIR lattice structure.
group-onsemi 0:098463de4c5d 3873 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3874 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3875 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3876 */
group-onsemi 0:098463de4c5d 3877 void arm_iir_lattice_f32(
group-onsemi 0:098463de4c5d 3878 const arm_iir_lattice_instance_f32 * S,
group-onsemi 0:098463de4c5d 3879 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3880 float32_t * pDst,
group-onsemi 0:098463de4c5d 3881 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3882
group-onsemi 0:098463de4c5d 3883
group-onsemi 0:098463de4c5d 3884 /**
group-onsemi 0:098463de4c5d 3885 * @brief Initialization function for the floating-point IIR lattice filter.
group-onsemi 0:098463de4c5d 3886 * @param[in] S points to an instance of the floating-point IIR lattice structure.
group-onsemi 0:098463de4c5d 3887 * @param[in] numStages number of stages in the filter.
group-onsemi 0:098463de4c5d 3888 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3889 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
group-onsemi 0:098463de4c5d 3890 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
group-onsemi 0:098463de4c5d 3891 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3892 */
group-onsemi 0:098463de4c5d 3893 void arm_iir_lattice_init_f32(
group-onsemi 0:098463de4c5d 3894 arm_iir_lattice_instance_f32 * S,
group-onsemi 0:098463de4c5d 3895 uint16_t numStages,
group-onsemi 0:098463de4c5d 3896 float32_t * pkCoeffs,
group-onsemi 0:098463de4c5d 3897 float32_t * pvCoeffs,
group-onsemi 0:098463de4c5d 3898 float32_t * pState,
group-onsemi 0:098463de4c5d 3899 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3900
group-onsemi 0:098463de4c5d 3901
group-onsemi 0:098463de4c5d 3902 /**
group-onsemi 0:098463de4c5d 3903 * @brief Processing function for the Q31 IIR lattice filter.
group-onsemi 0:098463de4c5d 3904 * @param[in] S points to an instance of the Q31 IIR lattice structure.
group-onsemi 0:098463de4c5d 3905 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3906 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3907 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3908 */
group-onsemi 0:098463de4c5d 3909 void arm_iir_lattice_q31(
group-onsemi 0:098463de4c5d 3910 const arm_iir_lattice_instance_q31 * S,
group-onsemi 0:098463de4c5d 3911 q31_t * pSrc,
group-onsemi 0:098463de4c5d 3912 q31_t * pDst,
group-onsemi 0:098463de4c5d 3913 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3914
group-onsemi 0:098463de4c5d 3915
group-onsemi 0:098463de4c5d 3916 /**
group-onsemi 0:098463de4c5d 3917 * @brief Initialization function for the Q31 IIR lattice filter.
group-onsemi 0:098463de4c5d 3918 * @param[in] S points to an instance of the Q31 IIR lattice structure.
group-onsemi 0:098463de4c5d 3919 * @param[in] numStages number of stages in the filter.
group-onsemi 0:098463de4c5d 3920 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3921 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
group-onsemi 0:098463de4c5d 3922 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
group-onsemi 0:098463de4c5d 3923 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3924 */
group-onsemi 0:098463de4c5d 3925 void arm_iir_lattice_init_q31(
group-onsemi 0:098463de4c5d 3926 arm_iir_lattice_instance_q31 * S,
group-onsemi 0:098463de4c5d 3927 uint16_t numStages,
group-onsemi 0:098463de4c5d 3928 q31_t * pkCoeffs,
group-onsemi 0:098463de4c5d 3929 q31_t * pvCoeffs,
group-onsemi 0:098463de4c5d 3930 q31_t * pState,
group-onsemi 0:098463de4c5d 3931 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3932
group-onsemi 0:098463de4c5d 3933
group-onsemi 0:098463de4c5d 3934 /**
group-onsemi 0:098463de4c5d 3935 * @brief Processing function for the Q15 IIR lattice filter.
group-onsemi 0:098463de4c5d 3936 * @param[in] S points to an instance of the Q15 IIR lattice structure.
group-onsemi 0:098463de4c5d 3937 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3938 * @param[out] pDst points to the block of output data.
group-onsemi 0:098463de4c5d 3939 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3940 */
group-onsemi 0:098463de4c5d 3941 void arm_iir_lattice_q15(
group-onsemi 0:098463de4c5d 3942 const arm_iir_lattice_instance_q15 * S,
group-onsemi 0:098463de4c5d 3943 q15_t * pSrc,
group-onsemi 0:098463de4c5d 3944 q15_t * pDst,
group-onsemi 0:098463de4c5d 3945 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3946
group-onsemi 0:098463de4c5d 3947
group-onsemi 0:098463de4c5d 3948 /**
group-onsemi 0:098463de4c5d 3949 * @brief Initialization function for the Q15 IIR lattice filter.
group-onsemi 0:098463de4c5d 3950 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
group-onsemi 0:098463de4c5d 3951 * @param[in] numStages number of stages in the filter.
group-onsemi 0:098463de4c5d 3952 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
group-onsemi 0:098463de4c5d 3953 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
group-onsemi 0:098463de4c5d 3954 * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
group-onsemi 0:098463de4c5d 3955 * @param[in] blockSize number of samples to process per call.
group-onsemi 0:098463de4c5d 3956 */
group-onsemi 0:098463de4c5d 3957 void arm_iir_lattice_init_q15(
group-onsemi 0:098463de4c5d 3958 arm_iir_lattice_instance_q15 * S,
group-onsemi 0:098463de4c5d 3959 uint16_t numStages,
group-onsemi 0:098463de4c5d 3960 q15_t * pkCoeffs,
group-onsemi 0:098463de4c5d 3961 q15_t * pvCoeffs,
group-onsemi 0:098463de4c5d 3962 q15_t * pState,
group-onsemi 0:098463de4c5d 3963 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3964
group-onsemi 0:098463de4c5d 3965
group-onsemi 0:098463de4c5d 3966 /**
group-onsemi 0:098463de4c5d 3967 * @brief Instance structure for the floating-point LMS filter.
group-onsemi 0:098463de4c5d 3968 */
group-onsemi 0:098463de4c5d 3969 typedef struct
group-onsemi 0:098463de4c5d 3970 {
group-onsemi 0:098463de4c5d 3971 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 3972 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 3973 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 3974 float32_t mu; /**< step size that controls filter coefficient updates. */
group-onsemi 0:098463de4c5d 3975 } arm_lms_instance_f32;
group-onsemi 0:098463de4c5d 3976
group-onsemi 0:098463de4c5d 3977
group-onsemi 0:098463de4c5d 3978 /**
group-onsemi 0:098463de4c5d 3979 * @brief Processing function for floating-point LMS filter.
group-onsemi 0:098463de4c5d 3980 * @param[in] S points to an instance of the floating-point LMS filter structure.
group-onsemi 0:098463de4c5d 3981 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 3982 * @param[in] pRef points to the block of reference data.
group-onsemi 0:098463de4c5d 3983 * @param[out] pOut points to the block of output data.
group-onsemi 0:098463de4c5d 3984 * @param[out] pErr points to the block of error data.
group-onsemi 0:098463de4c5d 3985 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 3986 */
group-onsemi 0:098463de4c5d 3987 void arm_lms_f32(
group-onsemi 0:098463de4c5d 3988 const arm_lms_instance_f32 * S,
group-onsemi 0:098463de4c5d 3989 float32_t * pSrc,
group-onsemi 0:098463de4c5d 3990 float32_t * pRef,
group-onsemi 0:098463de4c5d 3991 float32_t * pOut,
group-onsemi 0:098463de4c5d 3992 float32_t * pErr,
group-onsemi 0:098463de4c5d 3993 uint32_t blockSize);
group-onsemi 0:098463de4c5d 3994
group-onsemi 0:098463de4c5d 3995
group-onsemi 0:098463de4c5d 3996 /**
group-onsemi 0:098463de4c5d 3997 * @brief Initialization function for floating-point LMS filter.
group-onsemi 0:098463de4c5d 3998 * @param[in] S points to an instance of the floating-point LMS filter structure.
group-onsemi 0:098463de4c5d 3999 * @param[in] numTaps number of filter coefficients.
group-onsemi 0:098463de4c5d 4000 * @param[in] pCoeffs points to the coefficient buffer.
group-onsemi 0:098463de4c5d 4001 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 4002 * @param[in] mu step size that controls filter coefficient updates.
group-onsemi 0:098463de4c5d 4003 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4004 */
group-onsemi 0:098463de4c5d 4005 void arm_lms_init_f32(
group-onsemi 0:098463de4c5d 4006 arm_lms_instance_f32 * S,
group-onsemi 0:098463de4c5d 4007 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4008 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 4009 float32_t * pState,
group-onsemi 0:098463de4c5d 4010 float32_t mu,
group-onsemi 0:098463de4c5d 4011 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4012
group-onsemi 0:098463de4c5d 4013
group-onsemi 0:098463de4c5d 4014 /**
group-onsemi 0:098463de4c5d 4015 * @brief Instance structure for the Q15 LMS filter.
group-onsemi 0:098463de4c5d 4016 */
group-onsemi 0:098463de4c5d 4017 typedef struct
group-onsemi 0:098463de4c5d 4018 {
group-onsemi 0:098463de4c5d 4019 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4020 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 4021 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4022 q15_t mu; /**< step size that controls filter coefficient updates. */
group-onsemi 0:098463de4c5d 4023 uint32_t postShift; /**< bit shift applied to coefficients. */
group-onsemi 0:098463de4c5d 4024 } arm_lms_instance_q15;
group-onsemi 0:098463de4c5d 4025
group-onsemi 0:098463de4c5d 4026
group-onsemi 0:098463de4c5d 4027 /**
group-onsemi 0:098463de4c5d 4028 * @brief Initialization function for the Q15 LMS filter.
group-onsemi 0:098463de4c5d 4029 * @param[in] S points to an instance of the Q15 LMS filter structure.
group-onsemi 0:098463de4c5d 4030 * @param[in] numTaps number of filter coefficients.
group-onsemi 0:098463de4c5d 4031 * @param[in] pCoeffs points to the coefficient buffer.
group-onsemi 0:098463de4c5d 4032 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 4033 * @param[in] mu step size that controls filter coefficient updates.
group-onsemi 0:098463de4c5d 4034 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4035 * @param[in] postShift bit shift applied to coefficients.
group-onsemi 0:098463de4c5d 4036 */
group-onsemi 0:098463de4c5d 4037 void arm_lms_init_q15(
group-onsemi 0:098463de4c5d 4038 arm_lms_instance_q15 * S,
group-onsemi 0:098463de4c5d 4039 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4040 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 4041 q15_t * pState,
group-onsemi 0:098463de4c5d 4042 q15_t mu,
group-onsemi 0:098463de4c5d 4043 uint32_t blockSize,
group-onsemi 0:098463de4c5d 4044 uint32_t postShift);
group-onsemi 0:098463de4c5d 4045
group-onsemi 0:098463de4c5d 4046
group-onsemi 0:098463de4c5d 4047 /**
group-onsemi 0:098463de4c5d 4048 * @brief Processing function for Q15 LMS filter.
group-onsemi 0:098463de4c5d 4049 * @param[in] S points to an instance of the Q15 LMS filter structure.
group-onsemi 0:098463de4c5d 4050 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4051 * @param[in] pRef points to the block of reference data.
group-onsemi 0:098463de4c5d 4052 * @param[out] pOut points to the block of output data.
group-onsemi 0:098463de4c5d 4053 * @param[out] pErr points to the block of error data.
group-onsemi 0:098463de4c5d 4054 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4055 */
group-onsemi 0:098463de4c5d 4056 void arm_lms_q15(
group-onsemi 0:098463de4c5d 4057 const arm_lms_instance_q15 * S,
group-onsemi 0:098463de4c5d 4058 q15_t * pSrc,
group-onsemi 0:098463de4c5d 4059 q15_t * pRef,
group-onsemi 0:098463de4c5d 4060 q15_t * pOut,
group-onsemi 0:098463de4c5d 4061 q15_t * pErr,
group-onsemi 0:098463de4c5d 4062 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4063
group-onsemi 0:098463de4c5d 4064
group-onsemi 0:098463de4c5d 4065 /**
group-onsemi 0:098463de4c5d 4066 * @brief Instance structure for the Q31 LMS filter.
group-onsemi 0:098463de4c5d 4067 */
group-onsemi 0:098463de4c5d 4068 typedef struct
group-onsemi 0:098463de4c5d 4069 {
group-onsemi 0:098463de4c5d 4070 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4071 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 4072 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4073 q31_t mu; /**< step size that controls filter coefficient updates. */
group-onsemi 0:098463de4c5d 4074 uint32_t postShift; /**< bit shift applied to coefficients. */
group-onsemi 0:098463de4c5d 4075 } arm_lms_instance_q31;
group-onsemi 0:098463de4c5d 4076
group-onsemi 0:098463de4c5d 4077
group-onsemi 0:098463de4c5d 4078 /**
group-onsemi 0:098463de4c5d 4079 * @brief Processing function for Q31 LMS filter.
group-onsemi 0:098463de4c5d 4080 * @param[in] S points to an instance of the Q15 LMS filter structure.
group-onsemi 0:098463de4c5d 4081 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4082 * @param[in] pRef points to the block of reference data.
group-onsemi 0:098463de4c5d 4083 * @param[out] pOut points to the block of output data.
group-onsemi 0:098463de4c5d 4084 * @param[out] pErr points to the block of error data.
group-onsemi 0:098463de4c5d 4085 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4086 */
group-onsemi 0:098463de4c5d 4087 void arm_lms_q31(
group-onsemi 0:098463de4c5d 4088 const arm_lms_instance_q31 * S,
group-onsemi 0:098463de4c5d 4089 q31_t * pSrc,
group-onsemi 0:098463de4c5d 4090 q31_t * pRef,
group-onsemi 0:098463de4c5d 4091 q31_t * pOut,
group-onsemi 0:098463de4c5d 4092 q31_t * pErr,
group-onsemi 0:098463de4c5d 4093 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4094
group-onsemi 0:098463de4c5d 4095
group-onsemi 0:098463de4c5d 4096 /**
group-onsemi 0:098463de4c5d 4097 * @brief Initialization function for Q31 LMS filter.
group-onsemi 0:098463de4c5d 4098 * @param[in] S points to an instance of the Q31 LMS filter structure.
group-onsemi 0:098463de4c5d 4099 * @param[in] numTaps number of filter coefficients.
group-onsemi 0:098463de4c5d 4100 * @param[in] pCoeffs points to coefficient buffer.
group-onsemi 0:098463de4c5d 4101 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 4102 * @param[in] mu step size that controls filter coefficient updates.
group-onsemi 0:098463de4c5d 4103 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4104 * @param[in] postShift bit shift applied to coefficients.
group-onsemi 0:098463de4c5d 4105 */
group-onsemi 0:098463de4c5d 4106 void arm_lms_init_q31(
group-onsemi 0:098463de4c5d 4107 arm_lms_instance_q31 * S,
group-onsemi 0:098463de4c5d 4108 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4109 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 4110 q31_t * pState,
group-onsemi 0:098463de4c5d 4111 q31_t mu,
group-onsemi 0:098463de4c5d 4112 uint32_t blockSize,
group-onsemi 0:098463de4c5d 4113 uint32_t postShift);
group-onsemi 0:098463de4c5d 4114
group-onsemi 0:098463de4c5d 4115
group-onsemi 0:098463de4c5d 4116 /**
group-onsemi 0:098463de4c5d 4117 * @brief Instance structure for the floating-point normalized LMS filter.
group-onsemi 0:098463de4c5d 4118 */
group-onsemi 0:098463de4c5d 4119 typedef struct
group-onsemi 0:098463de4c5d 4120 {
group-onsemi 0:098463de4c5d 4121 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4122 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 4123 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4124 float32_t mu; /**< step size that control filter coefficient updates. */
group-onsemi 0:098463de4c5d 4125 float32_t energy; /**< saves previous frame energy. */
group-onsemi 0:098463de4c5d 4126 float32_t x0; /**< saves previous input sample. */
group-onsemi 0:098463de4c5d 4127 } arm_lms_norm_instance_f32;
group-onsemi 0:098463de4c5d 4128
group-onsemi 0:098463de4c5d 4129
group-onsemi 0:098463de4c5d 4130 /**
group-onsemi 0:098463de4c5d 4131 * @brief Processing function for floating-point normalized LMS filter.
group-onsemi 0:098463de4c5d 4132 * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
group-onsemi 0:098463de4c5d 4133 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4134 * @param[in] pRef points to the block of reference data.
group-onsemi 0:098463de4c5d 4135 * @param[out] pOut points to the block of output data.
group-onsemi 0:098463de4c5d 4136 * @param[out] pErr points to the block of error data.
group-onsemi 0:098463de4c5d 4137 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4138 */
group-onsemi 0:098463de4c5d 4139 void arm_lms_norm_f32(
group-onsemi 0:098463de4c5d 4140 arm_lms_norm_instance_f32 * S,
group-onsemi 0:098463de4c5d 4141 float32_t * pSrc,
group-onsemi 0:098463de4c5d 4142 float32_t * pRef,
group-onsemi 0:098463de4c5d 4143 float32_t * pOut,
group-onsemi 0:098463de4c5d 4144 float32_t * pErr,
group-onsemi 0:098463de4c5d 4145 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4146
group-onsemi 0:098463de4c5d 4147
group-onsemi 0:098463de4c5d 4148 /**
group-onsemi 0:098463de4c5d 4149 * @brief Initialization function for floating-point normalized LMS filter.
group-onsemi 0:098463de4c5d 4150 * @param[in] S points to an instance of the floating-point LMS filter structure.
group-onsemi 0:098463de4c5d 4151 * @param[in] numTaps number of filter coefficients.
group-onsemi 0:098463de4c5d 4152 * @param[in] pCoeffs points to coefficient buffer.
group-onsemi 0:098463de4c5d 4153 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 4154 * @param[in] mu step size that controls filter coefficient updates.
group-onsemi 0:098463de4c5d 4155 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4156 */
group-onsemi 0:098463de4c5d 4157 void arm_lms_norm_init_f32(
group-onsemi 0:098463de4c5d 4158 arm_lms_norm_instance_f32 * S,
group-onsemi 0:098463de4c5d 4159 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4160 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 4161 float32_t * pState,
group-onsemi 0:098463de4c5d 4162 float32_t mu,
group-onsemi 0:098463de4c5d 4163 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4164
group-onsemi 0:098463de4c5d 4165
group-onsemi 0:098463de4c5d 4166 /**
group-onsemi 0:098463de4c5d 4167 * @brief Instance structure for the Q31 normalized LMS filter.
group-onsemi 0:098463de4c5d 4168 */
group-onsemi 0:098463de4c5d 4169 typedef struct
group-onsemi 0:098463de4c5d 4170 {
group-onsemi 0:098463de4c5d 4171 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4172 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 4173 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4174 q31_t mu; /**< step size that controls filter coefficient updates. */
group-onsemi 0:098463de4c5d 4175 uint8_t postShift; /**< bit shift applied to coefficients. */
group-onsemi 0:098463de4c5d 4176 q31_t *recipTable; /**< points to the reciprocal initial value table. */
group-onsemi 0:098463de4c5d 4177 q31_t energy; /**< saves previous frame energy. */
group-onsemi 0:098463de4c5d 4178 q31_t x0; /**< saves previous input sample. */
group-onsemi 0:098463de4c5d 4179 } arm_lms_norm_instance_q31;
group-onsemi 0:098463de4c5d 4180
group-onsemi 0:098463de4c5d 4181
group-onsemi 0:098463de4c5d 4182 /**
group-onsemi 0:098463de4c5d 4183 * @brief Processing function for Q31 normalized LMS filter.
group-onsemi 0:098463de4c5d 4184 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
group-onsemi 0:098463de4c5d 4185 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4186 * @param[in] pRef points to the block of reference data.
group-onsemi 0:098463de4c5d 4187 * @param[out] pOut points to the block of output data.
group-onsemi 0:098463de4c5d 4188 * @param[out] pErr points to the block of error data.
group-onsemi 0:098463de4c5d 4189 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4190 */
group-onsemi 0:098463de4c5d 4191 void arm_lms_norm_q31(
group-onsemi 0:098463de4c5d 4192 arm_lms_norm_instance_q31 * S,
group-onsemi 0:098463de4c5d 4193 q31_t * pSrc,
group-onsemi 0:098463de4c5d 4194 q31_t * pRef,
group-onsemi 0:098463de4c5d 4195 q31_t * pOut,
group-onsemi 0:098463de4c5d 4196 q31_t * pErr,
group-onsemi 0:098463de4c5d 4197 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4198
group-onsemi 0:098463de4c5d 4199
group-onsemi 0:098463de4c5d 4200 /**
group-onsemi 0:098463de4c5d 4201 * @brief Initialization function for Q31 normalized LMS filter.
group-onsemi 0:098463de4c5d 4202 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
group-onsemi 0:098463de4c5d 4203 * @param[in] numTaps number of filter coefficients.
group-onsemi 0:098463de4c5d 4204 * @param[in] pCoeffs points to coefficient buffer.
group-onsemi 0:098463de4c5d 4205 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 4206 * @param[in] mu step size that controls filter coefficient updates.
group-onsemi 0:098463de4c5d 4207 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4208 * @param[in] postShift bit shift applied to coefficients.
group-onsemi 0:098463de4c5d 4209 */
group-onsemi 0:098463de4c5d 4210 void arm_lms_norm_init_q31(
group-onsemi 0:098463de4c5d 4211 arm_lms_norm_instance_q31 * S,
group-onsemi 0:098463de4c5d 4212 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4213 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 4214 q31_t * pState,
group-onsemi 0:098463de4c5d 4215 q31_t mu,
group-onsemi 0:098463de4c5d 4216 uint32_t blockSize,
group-onsemi 0:098463de4c5d 4217 uint8_t postShift);
group-onsemi 0:098463de4c5d 4218
group-onsemi 0:098463de4c5d 4219
group-onsemi 0:098463de4c5d 4220 /**
group-onsemi 0:098463de4c5d 4221 * @brief Instance structure for the Q15 normalized LMS filter.
group-onsemi 0:098463de4c5d 4222 */
group-onsemi 0:098463de4c5d 4223 typedef struct
group-onsemi 0:098463de4c5d 4224 {
group-onsemi 0:098463de4c5d 4225 uint16_t numTaps; /**< Number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4226 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
group-onsemi 0:098463de4c5d 4227 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4228 q15_t mu; /**< step size that controls filter coefficient updates. */
group-onsemi 0:098463de4c5d 4229 uint8_t postShift; /**< bit shift applied to coefficients. */
group-onsemi 0:098463de4c5d 4230 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
group-onsemi 0:098463de4c5d 4231 q15_t energy; /**< saves previous frame energy. */
group-onsemi 0:098463de4c5d 4232 q15_t x0; /**< saves previous input sample. */
group-onsemi 0:098463de4c5d 4233 } arm_lms_norm_instance_q15;
group-onsemi 0:098463de4c5d 4234
group-onsemi 0:098463de4c5d 4235
group-onsemi 0:098463de4c5d 4236 /**
group-onsemi 0:098463de4c5d 4237 * @brief Processing function for Q15 normalized LMS filter.
group-onsemi 0:098463de4c5d 4238 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
group-onsemi 0:098463de4c5d 4239 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4240 * @param[in] pRef points to the block of reference data.
group-onsemi 0:098463de4c5d 4241 * @param[out] pOut points to the block of output data.
group-onsemi 0:098463de4c5d 4242 * @param[out] pErr points to the block of error data.
group-onsemi 0:098463de4c5d 4243 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4244 */
group-onsemi 0:098463de4c5d 4245 void arm_lms_norm_q15(
group-onsemi 0:098463de4c5d 4246 arm_lms_norm_instance_q15 * S,
group-onsemi 0:098463de4c5d 4247 q15_t * pSrc,
group-onsemi 0:098463de4c5d 4248 q15_t * pRef,
group-onsemi 0:098463de4c5d 4249 q15_t * pOut,
group-onsemi 0:098463de4c5d 4250 q15_t * pErr,
group-onsemi 0:098463de4c5d 4251 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4252
group-onsemi 0:098463de4c5d 4253
group-onsemi 0:098463de4c5d 4254 /**
group-onsemi 0:098463de4c5d 4255 * @brief Initialization function for Q15 normalized LMS filter.
group-onsemi 0:098463de4c5d 4256 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
group-onsemi 0:098463de4c5d 4257 * @param[in] numTaps number of filter coefficients.
group-onsemi 0:098463de4c5d 4258 * @param[in] pCoeffs points to coefficient buffer.
group-onsemi 0:098463de4c5d 4259 * @param[in] pState points to state buffer.
group-onsemi 0:098463de4c5d 4260 * @param[in] mu step size that controls filter coefficient updates.
group-onsemi 0:098463de4c5d 4261 * @param[in] blockSize number of samples to process.
group-onsemi 0:098463de4c5d 4262 * @param[in] postShift bit shift applied to coefficients.
group-onsemi 0:098463de4c5d 4263 */
group-onsemi 0:098463de4c5d 4264 void arm_lms_norm_init_q15(
group-onsemi 0:098463de4c5d 4265 arm_lms_norm_instance_q15 * S,
group-onsemi 0:098463de4c5d 4266 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4267 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 4268 q15_t * pState,
group-onsemi 0:098463de4c5d 4269 q15_t mu,
group-onsemi 0:098463de4c5d 4270 uint32_t blockSize,
group-onsemi 0:098463de4c5d 4271 uint8_t postShift);
group-onsemi 0:098463de4c5d 4272
group-onsemi 0:098463de4c5d 4273
group-onsemi 0:098463de4c5d 4274 /**
group-onsemi 0:098463de4c5d 4275 * @brief Correlation of floating-point sequences.
group-onsemi 0:098463de4c5d 4276 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4277 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4278 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4279 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4280 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4281 */
group-onsemi 0:098463de4c5d 4282 void arm_correlate_f32(
group-onsemi 0:098463de4c5d 4283 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 4284 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4285 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 4286 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4287 float32_t * pDst);
group-onsemi 0:098463de4c5d 4288
group-onsemi 0:098463de4c5d 4289
group-onsemi 0:098463de4c5d 4290 /**
group-onsemi 0:098463de4c5d 4291 * @brief Correlation of Q15 sequences
group-onsemi 0:098463de4c5d 4292 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4293 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4294 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4295 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4296 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4297 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 4298 */
group-onsemi 0:098463de4c5d 4299 void arm_correlate_opt_q15(
group-onsemi 0:098463de4c5d 4300 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 4301 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4302 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 4303 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4304 q15_t * pDst,
group-onsemi 0:098463de4c5d 4305 q15_t * pScratch);
group-onsemi 0:098463de4c5d 4306
group-onsemi 0:098463de4c5d 4307
group-onsemi 0:098463de4c5d 4308 /**
group-onsemi 0:098463de4c5d 4309 * @brief Correlation of Q15 sequences.
group-onsemi 0:098463de4c5d 4310 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4311 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4312 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4313 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4314 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4315 */
group-onsemi 0:098463de4c5d 4316
group-onsemi 0:098463de4c5d 4317 void arm_correlate_q15(
group-onsemi 0:098463de4c5d 4318 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 4319 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4320 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 4321 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4322 q15_t * pDst);
group-onsemi 0:098463de4c5d 4323
group-onsemi 0:098463de4c5d 4324
group-onsemi 0:098463de4c5d 4325 /**
group-onsemi 0:098463de4c5d 4326 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 4327 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4328 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4329 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4330 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4331 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4332 */
group-onsemi 0:098463de4c5d 4333
group-onsemi 0:098463de4c5d 4334 void arm_correlate_fast_q15(
group-onsemi 0:098463de4c5d 4335 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 4336 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4337 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 4338 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4339 q15_t * pDst);
group-onsemi 0:098463de4c5d 4340
group-onsemi 0:098463de4c5d 4341
group-onsemi 0:098463de4c5d 4342 /**
group-onsemi 0:098463de4c5d 4343 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
group-onsemi 0:098463de4c5d 4344 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4345 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4346 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4347 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4348 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4349 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 4350 */
group-onsemi 0:098463de4c5d 4351 void arm_correlate_fast_opt_q15(
group-onsemi 0:098463de4c5d 4352 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 4353 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4354 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 4355 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4356 q15_t * pDst,
group-onsemi 0:098463de4c5d 4357 q15_t * pScratch);
group-onsemi 0:098463de4c5d 4358
group-onsemi 0:098463de4c5d 4359
group-onsemi 0:098463de4c5d 4360 /**
group-onsemi 0:098463de4c5d 4361 * @brief Correlation of Q31 sequences.
group-onsemi 0:098463de4c5d 4362 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4363 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4364 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4365 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4366 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4367 */
group-onsemi 0:098463de4c5d 4368 void arm_correlate_q31(
group-onsemi 0:098463de4c5d 4369 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 4370 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4371 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 4372 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4373 q31_t * pDst);
group-onsemi 0:098463de4c5d 4374
group-onsemi 0:098463de4c5d 4375
group-onsemi 0:098463de4c5d 4376 /**
group-onsemi 0:098463de4c5d 4377 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
group-onsemi 0:098463de4c5d 4378 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4379 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4380 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4381 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4382 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4383 */
group-onsemi 0:098463de4c5d 4384 void arm_correlate_fast_q31(
group-onsemi 0:098463de4c5d 4385 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 4386 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4387 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 4388 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4389 q31_t * pDst);
group-onsemi 0:098463de4c5d 4390
group-onsemi 0:098463de4c5d 4391
group-onsemi 0:098463de4c5d 4392 /**
group-onsemi 0:098463de4c5d 4393 * @brief Correlation of Q7 sequences.
group-onsemi 0:098463de4c5d 4394 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4395 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4396 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4397 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4398 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4399 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
group-onsemi 0:098463de4c5d 4400 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
group-onsemi 0:098463de4c5d 4401 */
group-onsemi 0:098463de4c5d 4402 void arm_correlate_opt_q7(
group-onsemi 0:098463de4c5d 4403 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 4404 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4405 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 4406 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4407 q7_t * pDst,
group-onsemi 0:098463de4c5d 4408 q15_t * pScratch1,
group-onsemi 0:098463de4c5d 4409 q15_t * pScratch2);
group-onsemi 0:098463de4c5d 4410
group-onsemi 0:098463de4c5d 4411
group-onsemi 0:098463de4c5d 4412 /**
group-onsemi 0:098463de4c5d 4413 * @brief Correlation of Q7 sequences.
group-onsemi 0:098463de4c5d 4414 * @param[in] pSrcA points to the first input sequence.
group-onsemi 0:098463de4c5d 4415 * @param[in] srcALen length of the first input sequence.
group-onsemi 0:098463de4c5d 4416 * @param[in] pSrcB points to the second input sequence.
group-onsemi 0:098463de4c5d 4417 * @param[in] srcBLen length of the second input sequence.
group-onsemi 0:098463de4c5d 4418 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
group-onsemi 0:098463de4c5d 4419 */
group-onsemi 0:098463de4c5d 4420 void arm_correlate_q7(
group-onsemi 0:098463de4c5d 4421 q7_t * pSrcA,
group-onsemi 0:098463de4c5d 4422 uint32_t srcALen,
group-onsemi 0:098463de4c5d 4423 q7_t * pSrcB,
group-onsemi 0:098463de4c5d 4424 uint32_t srcBLen,
group-onsemi 0:098463de4c5d 4425 q7_t * pDst);
group-onsemi 0:098463de4c5d 4426
group-onsemi 0:098463de4c5d 4427
group-onsemi 0:098463de4c5d 4428 /**
group-onsemi 0:098463de4c5d 4429 * @brief Instance structure for the floating-point sparse FIR filter.
group-onsemi 0:098463de4c5d 4430 */
group-onsemi 0:098463de4c5d 4431 typedef struct
group-onsemi 0:098463de4c5d 4432 {
group-onsemi 0:098463de4c5d 4433 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4434 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
group-onsemi 0:098463de4c5d 4435 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
group-onsemi 0:098463de4c5d 4436 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 4437 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
group-onsemi 0:098463de4c5d 4438 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4439 } arm_fir_sparse_instance_f32;
group-onsemi 0:098463de4c5d 4440
group-onsemi 0:098463de4c5d 4441 /**
group-onsemi 0:098463de4c5d 4442 * @brief Instance structure for the Q31 sparse FIR filter.
group-onsemi 0:098463de4c5d 4443 */
group-onsemi 0:098463de4c5d 4444 typedef struct
group-onsemi 0:098463de4c5d 4445 {
group-onsemi 0:098463de4c5d 4446 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4447 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
group-onsemi 0:098463de4c5d 4448 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
group-onsemi 0:098463de4c5d 4449 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 4450 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
group-onsemi 0:098463de4c5d 4451 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4452 } arm_fir_sparse_instance_q31;
group-onsemi 0:098463de4c5d 4453
group-onsemi 0:098463de4c5d 4454 /**
group-onsemi 0:098463de4c5d 4455 * @brief Instance structure for the Q15 sparse FIR filter.
group-onsemi 0:098463de4c5d 4456 */
group-onsemi 0:098463de4c5d 4457 typedef struct
group-onsemi 0:098463de4c5d 4458 {
group-onsemi 0:098463de4c5d 4459 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4460 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
group-onsemi 0:098463de4c5d 4461 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
group-onsemi 0:098463de4c5d 4462 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 4463 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
group-onsemi 0:098463de4c5d 4464 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4465 } arm_fir_sparse_instance_q15;
group-onsemi 0:098463de4c5d 4466
group-onsemi 0:098463de4c5d 4467 /**
group-onsemi 0:098463de4c5d 4468 * @brief Instance structure for the Q7 sparse FIR filter.
group-onsemi 0:098463de4c5d 4469 */
group-onsemi 0:098463de4c5d 4470 typedef struct
group-onsemi 0:098463de4c5d 4471 {
group-onsemi 0:098463de4c5d 4472 uint16_t numTaps; /**< number of coefficients in the filter. */
group-onsemi 0:098463de4c5d 4473 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
group-onsemi 0:098463de4c5d 4474 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
group-onsemi 0:098463de4c5d 4475 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
group-onsemi 0:098463de4c5d 4476 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
group-onsemi 0:098463de4c5d 4477 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
group-onsemi 0:098463de4c5d 4478 } arm_fir_sparse_instance_q7;
group-onsemi 0:098463de4c5d 4479
group-onsemi 0:098463de4c5d 4480
group-onsemi 0:098463de4c5d 4481 /**
group-onsemi 0:098463de4c5d 4482 * @brief Processing function for the floating-point sparse FIR filter.
group-onsemi 0:098463de4c5d 4483 * @param[in] S points to an instance of the floating-point sparse FIR structure.
group-onsemi 0:098463de4c5d 4484 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4485 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 4486 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
group-onsemi 0:098463de4c5d 4487 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 4488 */
group-onsemi 0:098463de4c5d 4489 void arm_fir_sparse_f32(
group-onsemi 0:098463de4c5d 4490 arm_fir_sparse_instance_f32 * S,
group-onsemi 0:098463de4c5d 4491 float32_t * pSrc,
group-onsemi 0:098463de4c5d 4492 float32_t * pDst,
group-onsemi 0:098463de4c5d 4493 float32_t * pScratchIn,
group-onsemi 0:098463de4c5d 4494 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4495
group-onsemi 0:098463de4c5d 4496
group-onsemi 0:098463de4c5d 4497 /**
group-onsemi 0:098463de4c5d 4498 * @brief Initialization function for the floating-point sparse FIR filter.
group-onsemi 0:098463de4c5d 4499 * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
group-onsemi 0:098463de4c5d 4500 * @param[in] numTaps number of nonzero coefficients in the filter.
group-onsemi 0:098463de4c5d 4501 * @param[in] pCoeffs points to the array of filter coefficients.
group-onsemi 0:098463de4c5d 4502 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 4503 * @param[in] pTapDelay points to the array of offset times.
group-onsemi 0:098463de4c5d 4504 * @param[in] maxDelay maximum offset time supported.
group-onsemi 0:098463de4c5d 4505 * @param[in] blockSize number of samples that will be processed per block.
group-onsemi 0:098463de4c5d 4506 */
group-onsemi 0:098463de4c5d 4507 void arm_fir_sparse_init_f32(
group-onsemi 0:098463de4c5d 4508 arm_fir_sparse_instance_f32 * S,
group-onsemi 0:098463de4c5d 4509 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4510 float32_t * pCoeffs,
group-onsemi 0:098463de4c5d 4511 float32_t * pState,
group-onsemi 0:098463de4c5d 4512 int32_t * pTapDelay,
group-onsemi 0:098463de4c5d 4513 uint16_t maxDelay,
group-onsemi 0:098463de4c5d 4514 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4515
group-onsemi 0:098463de4c5d 4516
group-onsemi 0:098463de4c5d 4517 /**
group-onsemi 0:098463de4c5d 4518 * @brief Processing function for the Q31 sparse FIR filter.
group-onsemi 0:098463de4c5d 4519 * @param[in] S points to an instance of the Q31 sparse FIR structure.
group-onsemi 0:098463de4c5d 4520 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4521 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 4522 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
group-onsemi 0:098463de4c5d 4523 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 4524 */
group-onsemi 0:098463de4c5d 4525 void arm_fir_sparse_q31(
group-onsemi 0:098463de4c5d 4526 arm_fir_sparse_instance_q31 * S,
group-onsemi 0:098463de4c5d 4527 q31_t * pSrc,
group-onsemi 0:098463de4c5d 4528 q31_t * pDst,
group-onsemi 0:098463de4c5d 4529 q31_t * pScratchIn,
group-onsemi 0:098463de4c5d 4530 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4531
group-onsemi 0:098463de4c5d 4532
group-onsemi 0:098463de4c5d 4533 /**
group-onsemi 0:098463de4c5d 4534 * @brief Initialization function for the Q31 sparse FIR filter.
group-onsemi 0:098463de4c5d 4535 * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
group-onsemi 0:098463de4c5d 4536 * @param[in] numTaps number of nonzero coefficients in the filter.
group-onsemi 0:098463de4c5d 4537 * @param[in] pCoeffs points to the array of filter coefficients.
group-onsemi 0:098463de4c5d 4538 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 4539 * @param[in] pTapDelay points to the array of offset times.
group-onsemi 0:098463de4c5d 4540 * @param[in] maxDelay maximum offset time supported.
group-onsemi 0:098463de4c5d 4541 * @param[in] blockSize number of samples that will be processed per block.
group-onsemi 0:098463de4c5d 4542 */
group-onsemi 0:098463de4c5d 4543 void arm_fir_sparse_init_q31(
group-onsemi 0:098463de4c5d 4544 arm_fir_sparse_instance_q31 * S,
group-onsemi 0:098463de4c5d 4545 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4546 q31_t * pCoeffs,
group-onsemi 0:098463de4c5d 4547 q31_t * pState,
group-onsemi 0:098463de4c5d 4548 int32_t * pTapDelay,
group-onsemi 0:098463de4c5d 4549 uint16_t maxDelay,
group-onsemi 0:098463de4c5d 4550 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4551
group-onsemi 0:098463de4c5d 4552
group-onsemi 0:098463de4c5d 4553 /**
group-onsemi 0:098463de4c5d 4554 * @brief Processing function for the Q15 sparse FIR filter.
group-onsemi 0:098463de4c5d 4555 * @param[in] S points to an instance of the Q15 sparse FIR structure.
group-onsemi 0:098463de4c5d 4556 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4557 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 4558 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
group-onsemi 0:098463de4c5d 4559 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
group-onsemi 0:098463de4c5d 4560 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 4561 */
group-onsemi 0:098463de4c5d 4562 void arm_fir_sparse_q15(
group-onsemi 0:098463de4c5d 4563 arm_fir_sparse_instance_q15 * S,
group-onsemi 0:098463de4c5d 4564 q15_t * pSrc,
group-onsemi 0:098463de4c5d 4565 q15_t * pDst,
group-onsemi 0:098463de4c5d 4566 q15_t * pScratchIn,
group-onsemi 0:098463de4c5d 4567 q31_t * pScratchOut,
group-onsemi 0:098463de4c5d 4568 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4569
group-onsemi 0:098463de4c5d 4570
group-onsemi 0:098463de4c5d 4571 /**
group-onsemi 0:098463de4c5d 4572 * @brief Initialization function for the Q15 sparse FIR filter.
group-onsemi 0:098463de4c5d 4573 * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
group-onsemi 0:098463de4c5d 4574 * @param[in] numTaps number of nonzero coefficients in the filter.
group-onsemi 0:098463de4c5d 4575 * @param[in] pCoeffs points to the array of filter coefficients.
group-onsemi 0:098463de4c5d 4576 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 4577 * @param[in] pTapDelay points to the array of offset times.
group-onsemi 0:098463de4c5d 4578 * @param[in] maxDelay maximum offset time supported.
group-onsemi 0:098463de4c5d 4579 * @param[in] blockSize number of samples that will be processed per block.
group-onsemi 0:098463de4c5d 4580 */
group-onsemi 0:098463de4c5d 4581 void arm_fir_sparse_init_q15(
group-onsemi 0:098463de4c5d 4582 arm_fir_sparse_instance_q15 * S,
group-onsemi 0:098463de4c5d 4583 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4584 q15_t * pCoeffs,
group-onsemi 0:098463de4c5d 4585 q15_t * pState,
group-onsemi 0:098463de4c5d 4586 int32_t * pTapDelay,
group-onsemi 0:098463de4c5d 4587 uint16_t maxDelay,
group-onsemi 0:098463de4c5d 4588 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4589
group-onsemi 0:098463de4c5d 4590
group-onsemi 0:098463de4c5d 4591 /**
group-onsemi 0:098463de4c5d 4592 * @brief Processing function for the Q7 sparse FIR filter.
group-onsemi 0:098463de4c5d 4593 * @param[in] S points to an instance of the Q7 sparse FIR structure.
group-onsemi 0:098463de4c5d 4594 * @param[in] pSrc points to the block of input data.
group-onsemi 0:098463de4c5d 4595 * @param[out] pDst points to the block of output data
group-onsemi 0:098463de4c5d 4596 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
group-onsemi 0:098463de4c5d 4597 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
group-onsemi 0:098463de4c5d 4598 * @param[in] blockSize number of input samples to process per call.
group-onsemi 0:098463de4c5d 4599 */
group-onsemi 0:098463de4c5d 4600 void arm_fir_sparse_q7(
group-onsemi 0:098463de4c5d 4601 arm_fir_sparse_instance_q7 * S,
group-onsemi 0:098463de4c5d 4602 q7_t * pSrc,
group-onsemi 0:098463de4c5d 4603 q7_t * pDst,
group-onsemi 0:098463de4c5d 4604 q7_t * pScratchIn,
group-onsemi 0:098463de4c5d 4605 q31_t * pScratchOut,
group-onsemi 0:098463de4c5d 4606 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4607
group-onsemi 0:098463de4c5d 4608
group-onsemi 0:098463de4c5d 4609 /**
group-onsemi 0:098463de4c5d 4610 * @brief Initialization function for the Q7 sparse FIR filter.
group-onsemi 0:098463de4c5d 4611 * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
group-onsemi 0:098463de4c5d 4612 * @param[in] numTaps number of nonzero coefficients in the filter.
group-onsemi 0:098463de4c5d 4613 * @param[in] pCoeffs points to the array of filter coefficients.
group-onsemi 0:098463de4c5d 4614 * @param[in] pState points to the state buffer.
group-onsemi 0:098463de4c5d 4615 * @param[in] pTapDelay points to the array of offset times.
group-onsemi 0:098463de4c5d 4616 * @param[in] maxDelay maximum offset time supported.
group-onsemi 0:098463de4c5d 4617 * @param[in] blockSize number of samples that will be processed per block.
group-onsemi 0:098463de4c5d 4618 */
group-onsemi 0:098463de4c5d 4619 void arm_fir_sparse_init_q7(
group-onsemi 0:098463de4c5d 4620 arm_fir_sparse_instance_q7 * S,
group-onsemi 0:098463de4c5d 4621 uint16_t numTaps,
group-onsemi 0:098463de4c5d 4622 q7_t * pCoeffs,
group-onsemi 0:098463de4c5d 4623 q7_t * pState,
group-onsemi 0:098463de4c5d 4624 int32_t * pTapDelay,
group-onsemi 0:098463de4c5d 4625 uint16_t maxDelay,
group-onsemi 0:098463de4c5d 4626 uint32_t blockSize);
group-onsemi 0:098463de4c5d 4627
group-onsemi 0:098463de4c5d 4628
group-onsemi 0:098463de4c5d 4629 /**
group-onsemi 0:098463de4c5d 4630 * @brief Floating-point sin_cos function.
group-onsemi 0:098463de4c5d 4631 * @param[in] theta input value in degrees
group-onsemi 0:098463de4c5d 4632 * @param[out] pSinVal points to the processed sine output.
group-onsemi 0:098463de4c5d 4633 * @param[out] pCosVal points to the processed cos output.
group-onsemi 0:098463de4c5d 4634 */
group-onsemi 0:098463de4c5d 4635 void arm_sin_cos_f32(
group-onsemi 0:098463de4c5d 4636 float32_t theta,
group-onsemi 0:098463de4c5d 4637 float32_t * pSinVal,
group-onsemi 0:098463de4c5d 4638 float32_t * pCosVal);
group-onsemi 0:098463de4c5d 4639
group-onsemi 0:098463de4c5d 4640
group-onsemi 0:098463de4c5d 4641 /**
group-onsemi 0:098463de4c5d 4642 * @brief Q31 sin_cos function.
group-onsemi 0:098463de4c5d 4643 * @param[in] theta scaled input value in degrees
group-onsemi 0:098463de4c5d 4644 * @param[out] pSinVal points to the processed sine output.
group-onsemi 0:098463de4c5d 4645 * @param[out] pCosVal points to the processed cosine output.
group-onsemi 0:098463de4c5d 4646 */
group-onsemi 0:098463de4c5d 4647 void arm_sin_cos_q31(
group-onsemi 0:098463de4c5d 4648 q31_t theta,
group-onsemi 0:098463de4c5d 4649 q31_t * pSinVal,
group-onsemi 0:098463de4c5d 4650 q31_t * pCosVal);
group-onsemi 0:098463de4c5d 4651
group-onsemi 0:098463de4c5d 4652
group-onsemi 0:098463de4c5d 4653 /**
group-onsemi 0:098463de4c5d 4654 * @brief Floating-point complex conjugate.
group-onsemi 0:098463de4c5d 4655 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 4656 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 4657 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 4658 */
group-onsemi 0:098463de4c5d 4659 void arm_cmplx_conj_f32(
group-onsemi 0:098463de4c5d 4660 float32_t * pSrc,
group-onsemi 0:098463de4c5d 4661 float32_t * pDst,
group-onsemi 0:098463de4c5d 4662 uint32_t numSamples);
group-onsemi 0:098463de4c5d 4663
group-onsemi 0:098463de4c5d 4664 /**
group-onsemi 0:098463de4c5d 4665 * @brief Q31 complex conjugate.
group-onsemi 0:098463de4c5d 4666 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 4667 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 4668 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 4669 */
group-onsemi 0:098463de4c5d 4670 void arm_cmplx_conj_q31(
group-onsemi 0:098463de4c5d 4671 q31_t * pSrc,
group-onsemi 0:098463de4c5d 4672 q31_t * pDst,
group-onsemi 0:098463de4c5d 4673 uint32_t numSamples);
group-onsemi 0:098463de4c5d 4674
group-onsemi 0:098463de4c5d 4675
group-onsemi 0:098463de4c5d 4676 /**
group-onsemi 0:098463de4c5d 4677 * @brief Q15 complex conjugate.
group-onsemi 0:098463de4c5d 4678 * @param[in] pSrc points to the input vector
group-onsemi 0:098463de4c5d 4679 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 4680 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 4681 */
group-onsemi 0:098463de4c5d 4682 void arm_cmplx_conj_q15(
group-onsemi 0:098463de4c5d 4683 q15_t * pSrc,
group-onsemi 0:098463de4c5d 4684 q15_t * pDst,
group-onsemi 0:098463de4c5d 4685 uint32_t numSamples);
group-onsemi 0:098463de4c5d 4686
group-onsemi 0:098463de4c5d 4687
group-onsemi 0:098463de4c5d 4688 /**
group-onsemi 0:098463de4c5d 4689 * @brief Floating-point complex magnitude squared
group-onsemi 0:098463de4c5d 4690 * @param[in] pSrc points to the complex input vector
group-onsemi 0:098463de4c5d 4691 * @param[out] pDst points to the real output vector
group-onsemi 0:098463de4c5d 4692 * @param[in] numSamples number of complex samples in the input vector
group-onsemi 0:098463de4c5d 4693 */
group-onsemi 0:098463de4c5d 4694 void arm_cmplx_mag_squared_f32(
group-onsemi 0:098463de4c5d 4695 float32_t * pSrc,
group-onsemi 0:098463de4c5d 4696 float32_t * pDst,
group-onsemi 0:098463de4c5d 4697 uint32_t numSamples);
group-onsemi 0:098463de4c5d 4698
group-onsemi 0:098463de4c5d 4699
group-onsemi 0:098463de4c5d 4700 /**
group-onsemi 0:098463de4c5d 4701 * @brief Q31 complex magnitude squared
group-onsemi 0:098463de4c5d 4702 * @param[in] pSrc points to the complex input vector
group-onsemi 0:098463de4c5d 4703 * @param[out] pDst points to the real output vector
group-onsemi 0:098463de4c5d 4704 * @param[in] numSamples number of complex samples in the input vector
group-onsemi 0:098463de4c5d 4705 */
group-onsemi 0:098463de4c5d 4706 void arm_cmplx_mag_squared_q31(
group-onsemi 0:098463de4c5d 4707 q31_t * pSrc,
group-onsemi 0:098463de4c5d 4708 q31_t * pDst,
group-onsemi 0:098463de4c5d 4709 uint32_t numSamples);
group-onsemi 0:098463de4c5d 4710
group-onsemi 0:098463de4c5d 4711
group-onsemi 0:098463de4c5d 4712 /**
group-onsemi 0:098463de4c5d 4713 * @brief Q15 complex magnitude squared
group-onsemi 0:098463de4c5d 4714 * @param[in] pSrc points to the complex input vector
group-onsemi 0:098463de4c5d 4715 * @param[out] pDst points to the real output vector
group-onsemi 0:098463de4c5d 4716 * @param[in] numSamples number of complex samples in the input vector
group-onsemi 0:098463de4c5d 4717 */
group-onsemi 0:098463de4c5d 4718 void arm_cmplx_mag_squared_q15(
group-onsemi 0:098463de4c5d 4719 q15_t * pSrc,
group-onsemi 0:098463de4c5d 4720 q15_t * pDst,
group-onsemi 0:098463de4c5d 4721 uint32_t numSamples);
group-onsemi 0:098463de4c5d 4722
group-onsemi 0:098463de4c5d 4723
group-onsemi 0:098463de4c5d 4724 /**
group-onsemi 0:098463de4c5d 4725 * @ingroup groupController
group-onsemi 0:098463de4c5d 4726 */
group-onsemi 0:098463de4c5d 4727
group-onsemi 0:098463de4c5d 4728 /**
group-onsemi 0:098463de4c5d 4729 * @defgroup PID PID Motor Control
group-onsemi 0:098463de4c5d 4730 *
group-onsemi 0:098463de4c5d 4731 * A Proportional Integral Derivative (PID) controller is a generic feedback control
group-onsemi 0:098463de4c5d 4732 * loop mechanism widely used in industrial control systems.
group-onsemi 0:098463de4c5d 4733 * A PID controller is the most commonly used type of feedback controller.
group-onsemi 0:098463de4c5d 4734 *
group-onsemi 0:098463de4c5d 4735 * This set of functions implements (PID) controllers
group-onsemi 0:098463de4c5d 4736 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
group-onsemi 0:098463de4c5d 4737 * of data and each call to the function returns a single processed value.
group-onsemi 0:098463de4c5d 4738 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
group-onsemi 0:098463de4c5d 4739 * is the input sample value. The functions return the output value.
group-onsemi 0:098463de4c5d 4740 *
group-onsemi 0:098463de4c5d 4741 * \par Algorithm:
group-onsemi 0:098463de4c5d 4742 * <pre>
group-onsemi 0:098463de4c5d 4743 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
group-onsemi 0:098463de4c5d 4744 * A0 = Kp + Ki + Kd
group-onsemi 0:098463de4c5d 4745 * A1 = (-Kp ) - (2 * Kd )
group-onsemi 0:098463de4c5d 4746 * A2 = Kd </pre>
group-onsemi 0:098463de4c5d 4747 *
group-onsemi 0:098463de4c5d 4748 * \par
group-onsemi 0:098463de4c5d 4749 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
group-onsemi 0:098463de4c5d 4750 *
group-onsemi 0:098463de4c5d 4751 * \par
group-onsemi 0:098463de4c5d 4752 * \image html PID.gif "Proportional Integral Derivative Controller"
group-onsemi 0:098463de4c5d 4753 *
group-onsemi 0:098463de4c5d 4754 * \par
group-onsemi 0:098463de4c5d 4755 * The PID controller calculates an "error" value as the difference between
group-onsemi 0:098463de4c5d 4756 * the measured output and the reference input.
group-onsemi 0:098463de4c5d 4757 * The controller attempts to minimize the error by adjusting the process control inputs.
group-onsemi 0:098463de4c5d 4758 * The proportional value determines the reaction to the current error,
group-onsemi 0:098463de4c5d 4759 * the integral value determines the reaction based on the sum of recent errors,
group-onsemi 0:098463de4c5d 4760 * and the derivative value determines the reaction based on the rate at which the error has been changing.
group-onsemi 0:098463de4c5d 4761 *
group-onsemi 0:098463de4c5d 4762 * \par Instance Structure
group-onsemi 0:098463de4c5d 4763 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
group-onsemi 0:098463de4c5d 4764 * A separate instance structure must be defined for each PID Controller.
group-onsemi 0:098463de4c5d 4765 * There are separate instance structure declarations for each of the 3 supported data types.
group-onsemi 0:098463de4c5d 4766 *
group-onsemi 0:098463de4c5d 4767 * \par Reset Functions
group-onsemi 0:098463de4c5d 4768 * There is also an associated reset function for each data type which clears the state array.
group-onsemi 0:098463de4c5d 4769 *
group-onsemi 0:098463de4c5d 4770 * \par Initialization Functions
group-onsemi 0:098463de4c5d 4771 * There is also an associated initialization function for each data type.
group-onsemi 0:098463de4c5d 4772 * The initialization function performs the following operations:
group-onsemi 0:098463de4c5d 4773 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
group-onsemi 0:098463de4c5d 4774 * - Zeros out the values in the state buffer.
group-onsemi 0:098463de4c5d 4775 *
group-onsemi 0:098463de4c5d 4776 * \par
group-onsemi 0:098463de4c5d 4777 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
group-onsemi 0:098463de4c5d 4778 *
group-onsemi 0:098463de4c5d 4779 * \par Fixed-Point Behavior
group-onsemi 0:098463de4c5d 4780 * Care must be taken when using the fixed-point versions of the PID Controller functions.
group-onsemi 0:098463de4c5d 4781 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
group-onsemi 0:098463de4c5d 4782 * Refer to the function specific documentation below for usage guidelines.
group-onsemi 0:098463de4c5d 4783 */
group-onsemi 0:098463de4c5d 4784
group-onsemi 0:098463de4c5d 4785 /**
group-onsemi 0:098463de4c5d 4786 * @addtogroup PID
group-onsemi 0:098463de4c5d 4787 * @{
group-onsemi 0:098463de4c5d 4788 */
group-onsemi 0:098463de4c5d 4789
group-onsemi 0:098463de4c5d 4790 /**
group-onsemi 0:098463de4c5d 4791 * @brief Process function for the floating-point PID Control.
group-onsemi 0:098463de4c5d 4792 * @param[in,out] S is an instance of the floating-point PID Control structure
group-onsemi 0:098463de4c5d 4793 * @param[in] in input sample to process
group-onsemi 0:098463de4c5d 4794 * @return out processed output sample.
group-onsemi 0:098463de4c5d 4795 */
group-onsemi 0:098463de4c5d 4796 static __INLINE float32_t arm_pid_f32(
group-onsemi 0:098463de4c5d 4797 arm_pid_instance_f32 * S,
group-onsemi 0:098463de4c5d 4798 float32_t in)
group-onsemi 0:098463de4c5d 4799 {
group-onsemi 0:098463de4c5d 4800 float32_t out;
group-onsemi 0:098463de4c5d 4801
group-onsemi 0:098463de4c5d 4802 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
group-onsemi 0:098463de4c5d 4803 out = (S->A0 * in) +
group-onsemi 0:098463de4c5d 4804 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
group-onsemi 0:098463de4c5d 4805
group-onsemi 0:098463de4c5d 4806 /* Update state */
group-onsemi 0:098463de4c5d 4807 S->state[1] = S->state[0];
group-onsemi 0:098463de4c5d 4808 S->state[0] = in;
group-onsemi 0:098463de4c5d 4809 S->state[2] = out;
group-onsemi 0:098463de4c5d 4810
group-onsemi 0:098463de4c5d 4811 /* return to application */
group-onsemi 0:098463de4c5d 4812 return (out);
group-onsemi 0:098463de4c5d 4813
group-onsemi 0:098463de4c5d 4814 }
group-onsemi 0:098463de4c5d 4815
group-onsemi 0:098463de4c5d 4816 /**
group-onsemi 0:098463de4c5d 4817 * @brief Process function for the Q31 PID Control.
group-onsemi 0:098463de4c5d 4818 * @param[in,out] S points to an instance of the Q31 PID Control structure
group-onsemi 0:098463de4c5d 4819 * @param[in] in input sample to process
group-onsemi 0:098463de4c5d 4820 * @return out processed output sample.
group-onsemi 0:098463de4c5d 4821 *
group-onsemi 0:098463de4c5d 4822 * <b>Scaling and Overflow Behavior:</b>
group-onsemi 0:098463de4c5d 4823 * \par
group-onsemi 0:098463de4c5d 4824 * The function is implemented using an internal 64-bit accumulator.
group-onsemi 0:098463de4c5d 4825 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
group-onsemi 0:098463de4c5d 4826 * Thus, if the accumulator result overflows it wraps around rather than clip.
group-onsemi 0:098463de4c5d 4827 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
group-onsemi 0:098463de4c5d 4828 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
group-onsemi 0:098463de4c5d 4829 */
group-onsemi 0:098463de4c5d 4830 static __INLINE q31_t arm_pid_q31(
group-onsemi 0:098463de4c5d 4831 arm_pid_instance_q31 * S,
group-onsemi 0:098463de4c5d 4832 q31_t in)
group-onsemi 0:098463de4c5d 4833 {
group-onsemi 0:098463de4c5d 4834 q63_t acc;
group-onsemi 0:098463de4c5d 4835 q31_t out;
group-onsemi 0:098463de4c5d 4836
group-onsemi 0:098463de4c5d 4837 /* acc = A0 * x[n] */
group-onsemi 0:098463de4c5d 4838 acc = (q63_t) S->A0 * in;
group-onsemi 0:098463de4c5d 4839
group-onsemi 0:098463de4c5d 4840 /* acc += A1 * x[n-1] */
group-onsemi 0:098463de4c5d 4841 acc += (q63_t) S->A1 * S->state[0];
group-onsemi 0:098463de4c5d 4842
group-onsemi 0:098463de4c5d 4843 /* acc += A2 * x[n-2] */
group-onsemi 0:098463de4c5d 4844 acc += (q63_t) S->A2 * S->state[1];
group-onsemi 0:098463de4c5d 4845
group-onsemi 0:098463de4c5d 4846 /* convert output to 1.31 format to add y[n-1] */
group-onsemi 0:098463de4c5d 4847 out = (q31_t) (acc >> 31u);
group-onsemi 0:098463de4c5d 4848
group-onsemi 0:098463de4c5d 4849 /* out += y[n-1] */
group-onsemi 0:098463de4c5d 4850 out += S->state[2];
group-onsemi 0:098463de4c5d 4851
group-onsemi 0:098463de4c5d 4852 /* Update state */
group-onsemi 0:098463de4c5d 4853 S->state[1] = S->state[0];
group-onsemi 0:098463de4c5d 4854 S->state[0] = in;
group-onsemi 0:098463de4c5d 4855 S->state[2] = out;
group-onsemi 0:098463de4c5d 4856
group-onsemi 0:098463de4c5d 4857 /* return to application */
group-onsemi 0:098463de4c5d 4858 return (out);
group-onsemi 0:098463de4c5d 4859 }
group-onsemi 0:098463de4c5d 4860
group-onsemi 0:098463de4c5d 4861
group-onsemi 0:098463de4c5d 4862 /**
group-onsemi 0:098463de4c5d 4863 * @brief Process function for the Q15 PID Control.
group-onsemi 0:098463de4c5d 4864 * @param[in,out] S points to an instance of the Q15 PID Control structure
group-onsemi 0:098463de4c5d 4865 * @param[in] in input sample to process
group-onsemi 0:098463de4c5d 4866 * @return out processed output sample.
group-onsemi 0:098463de4c5d 4867 *
group-onsemi 0:098463de4c5d 4868 * <b>Scaling and Overflow Behavior:</b>
group-onsemi 0:098463de4c5d 4869 * \par
group-onsemi 0:098463de4c5d 4870 * The function is implemented using a 64-bit internal accumulator.
group-onsemi 0:098463de4c5d 4871 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
group-onsemi 0:098463de4c5d 4872 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
group-onsemi 0:098463de4c5d 4873 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
group-onsemi 0:098463de4c5d 4874 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
group-onsemi 0:098463de4c5d 4875 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
group-onsemi 0:098463de4c5d 4876 */
group-onsemi 0:098463de4c5d 4877 static __INLINE q15_t arm_pid_q15(
group-onsemi 0:098463de4c5d 4878 arm_pid_instance_q15 * S,
group-onsemi 0:098463de4c5d 4879 q15_t in)
group-onsemi 0:098463de4c5d 4880 {
group-onsemi 0:098463de4c5d 4881 q63_t acc;
group-onsemi 0:098463de4c5d 4882 q15_t out;
group-onsemi 0:098463de4c5d 4883
group-onsemi 0:098463de4c5d 4884 #ifndef ARM_MATH_CM0_FAMILY
group-onsemi 0:098463de4c5d 4885 __SIMD32_TYPE *vstate;
group-onsemi 0:098463de4c5d 4886
group-onsemi 0:098463de4c5d 4887 /* Implementation of PID controller */
group-onsemi 0:098463de4c5d 4888
group-onsemi 0:098463de4c5d 4889 /* acc = A0 * x[n] */
group-onsemi 0:098463de4c5d 4890 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
group-onsemi 0:098463de4c5d 4891
group-onsemi 0:098463de4c5d 4892 /* acc += A1 * x[n-1] + A2 * x[n-2] */
group-onsemi 0:098463de4c5d 4893 vstate = __SIMD32_CONST(S->state);
group-onsemi 0:098463de4c5d 4894 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
group-onsemi 0:098463de4c5d 4895 #else
group-onsemi 0:098463de4c5d 4896 /* acc = A0 * x[n] */
group-onsemi 0:098463de4c5d 4897 acc = ((q31_t) S->A0) * in;
group-onsemi 0:098463de4c5d 4898
group-onsemi 0:098463de4c5d 4899 /* acc += A1 * x[n-1] + A2 * x[n-2] */
group-onsemi 0:098463de4c5d 4900 acc += (q31_t) S->A1 * S->state[0];
group-onsemi 0:098463de4c5d 4901 acc += (q31_t) S->A2 * S->state[1];
group-onsemi 0:098463de4c5d 4902 #endif
group-onsemi 0:098463de4c5d 4903
group-onsemi 0:098463de4c5d 4904 /* acc += y[n-1] */
group-onsemi 0:098463de4c5d 4905 acc += (q31_t) S->state[2] << 15;
group-onsemi 0:098463de4c5d 4906
group-onsemi 0:098463de4c5d 4907 /* saturate the output */
group-onsemi 0:098463de4c5d 4908 out = (q15_t) (__SSAT((acc >> 15), 16));
group-onsemi 0:098463de4c5d 4909
group-onsemi 0:098463de4c5d 4910 /* Update state */
group-onsemi 0:098463de4c5d 4911 S->state[1] = S->state[0];
group-onsemi 0:098463de4c5d 4912 S->state[0] = in;
group-onsemi 0:098463de4c5d 4913 S->state[2] = out;
group-onsemi 0:098463de4c5d 4914
group-onsemi 0:098463de4c5d 4915 /* return to application */
group-onsemi 0:098463de4c5d 4916 return (out);
group-onsemi 0:098463de4c5d 4917 }
group-onsemi 0:098463de4c5d 4918
group-onsemi 0:098463de4c5d 4919 /**
group-onsemi 0:098463de4c5d 4920 * @} end of PID group
group-onsemi 0:098463de4c5d 4921 */
group-onsemi 0:098463de4c5d 4922
group-onsemi 0:098463de4c5d 4923
group-onsemi 0:098463de4c5d 4924 /**
group-onsemi 0:098463de4c5d 4925 * @brief Floating-point matrix inverse.
group-onsemi 0:098463de4c5d 4926 * @param[in] src points to the instance of the input floating-point matrix structure.
group-onsemi 0:098463de4c5d 4927 * @param[out] dst points to the instance of the output floating-point matrix structure.
group-onsemi 0:098463de4c5d 4928 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
group-onsemi 0:098463de4c5d 4929 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
group-onsemi 0:098463de4c5d 4930 */
group-onsemi 0:098463de4c5d 4931 arm_status arm_mat_inverse_f32(
group-onsemi 0:098463de4c5d 4932 const arm_matrix_instance_f32 * src,
group-onsemi 0:098463de4c5d 4933 arm_matrix_instance_f32 * dst);
group-onsemi 0:098463de4c5d 4934
group-onsemi 0:098463de4c5d 4935
group-onsemi 0:098463de4c5d 4936 /**
group-onsemi 0:098463de4c5d 4937 * @brief Floating-point matrix inverse.
group-onsemi 0:098463de4c5d 4938 * @param[in] src points to the instance of the input floating-point matrix structure.
group-onsemi 0:098463de4c5d 4939 * @param[out] dst points to the instance of the output floating-point matrix structure.
group-onsemi 0:098463de4c5d 4940 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
group-onsemi 0:098463de4c5d 4941 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
group-onsemi 0:098463de4c5d 4942 */
group-onsemi 0:098463de4c5d 4943 arm_status arm_mat_inverse_f64(
group-onsemi 0:098463de4c5d 4944 const arm_matrix_instance_f64 * src,
group-onsemi 0:098463de4c5d 4945 arm_matrix_instance_f64 * dst);
group-onsemi 0:098463de4c5d 4946
group-onsemi 0:098463de4c5d 4947
group-onsemi 0:098463de4c5d 4948
group-onsemi 0:098463de4c5d 4949 /**
group-onsemi 0:098463de4c5d 4950 * @ingroup groupController
group-onsemi 0:098463de4c5d 4951 */
group-onsemi 0:098463de4c5d 4952
group-onsemi 0:098463de4c5d 4953 /**
group-onsemi 0:098463de4c5d 4954 * @defgroup clarke Vector Clarke Transform
group-onsemi 0:098463de4c5d 4955 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
group-onsemi 0:098463de4c5d 4956 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
group-onsemi 0:098463de4c5d 4957 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
group-onsemi 0:098463de4c5d 4958 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
group-onsemi 0:098463de4c5d 4959 * \image html clarke.gif Stator current space vector and its components in (a,b).
group-onsemi 0:098463de4c5d 4960 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
group-onsemi 0:098463de4c5d 4961 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
group-onsemi 0:098463de4c5d 4962 *
group-onsemi 0:098463de4c5d 4963 * The function operates on a single sample of data and each call to the function returns the processed output.
group-onsemi 0:098463de4c5d 4964 * The library provides separate functions for Q31 and floating-point data types.
group-onsemi 0:098463de4c5d 4965 * \par Algorithm
group-onsemi 0:098463de4c5d 4966 * \image html clarkeFormula.gif
group-onsemi 0:098463de4c5d 4967 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
group-onsemi 0:098463de4c5d 4968 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
group-onsemi 0:098463de4c5d 4969 * \par Fixed-Point Behavior
group-onsemi 0:098463de4c5d 4970 * Care must be taken when using the Q31 version of the Clarke transform.
group-onsemi 0:098463de4c5d 4971 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
group-onsemi 0:098463de4c5d 4972 * Refer to the function specific documentation below for usage guidelines.
group-onsemi 0:098463de4c5d 4973 */
group-onsemi 0:098463de4c5d 4974
group-onsemi 0:098463de4c5d 4975 /**
group-onsemi 0:098463de4c5d 4976 * @addtogroup clarke
group-onsemi 0:098463de4c5d 4977 * @{
group-onsemi 0:098463de4c5d 4978 */
group-onsemi 0:098463de4c5d 4979
group-onsemi 0:098463de4c5d 4980 /**
group-onsemi 0:098463de4c5d 4981 *
group-onsemi 0:098463de4c5d 4982 * @brief Floating-point Clarke transform
group-onsemi 0:098463de4c5d 4983 * @param[in] Ia input three-phase coordinate <code>a</code>
group-onsemi 0:098463de4c5d 4984 * @param[in] Ib input three-phase coordinate <code>b</code>
group-onsemi 0:098463de4c5d 4985 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
group-onsemi 0:098463de4c5d 4986 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
group-onsemi 0:098463de4c5d 4987 */
group-onsemi 0:098463de4c5d 4988 static __INLINE void arm_clarke_f32(
group-onsemi 0:098463de4c5d 4989 float32_t Ia,
group-onsemi 0:098463de4c5d 4990 float32_t Ib,
group-onsemi 0:098463de4c5d 4991 float32_t * pIalpha,
group-onsemi 0:098463de4c5d 4992 float32_t * pIbeta)
group-onsemi 0:098463de4c5d 4993 {
group-onsemi 0:098463de4c5d 4994 /* Calculate pIalpha using the equation, pIalpha = Ia */
group-onsemi 0:098463de4c5d 4995 *pIalpha = Ia;
group-onsemi 0:098463de4c5d 4996
group-onsemi 0:098463de4c5d 4997 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
group-onsemi 0:098463de4c5d 4998 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
group-onsemi 0:098463de4c5d 4999 }
group-onsemi 0:098463de4c5d 5000
group-onsemi 0:098463de4c5d 5001
group-onsemi 0:098463de4c5d 5002 /**
group-onsemi 0:098463de4c5d 5003 * @brief Clarke transform for Q31 version
group-onsemi 0:098463de4c5d 5004 * @param[in] Ia input three-phase coordinate <code>a</code>
group-onsemi 0:098463de4c5d 5005 * @param[in] Ib input three-phase coordinate <code>b</code>
group-onsemi 0:098463de4c5d 5006 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
group-onsemi 0:098463de4c5d 5007 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
group-onsemi 0:098463de4c5d 5008 *
group-onsemi 0:098463de4c5d 5009 * <b>Scaling and Overflow Behavior:</b>
group-onsemi 0:098463de4c5d 5010 * \par
group-onsemi 0:098463de4c5d 5011 * The function is implemented using an internal 32-bit accumulator.
group-onsemi 0:098463de4c5d 5012 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
group-onsemi 0:098463de4c5d 5013 * There is saturation on the addition, hence there is no risk of overflow.
group-onsemi 0:098463de4c5d 5014 */
group-onsemi 0:098463de4c5d 5015 static __INLINE void arm_clarke_q31(
group-onsemi 0:098463de4c5d 5016 q31_t Ia,
group-onsemi 0:098463de4c5d 5017 q31_t Ib,
group-onsemi 0:098463de4c5d 5018 q31_t * pIalpha,
group-onsemi 0:098463de4c5d 5019 q31_t * pIbeta)
group-onsemi 0:098463de4c5d 5020 {
group-onsemi 0:098463de4c5d 5021 q31_t product1, product2; /* Temporary variables used to store intermediate results */
group-onsemi 0:098463de4c5d 5022
group-onsemi 0:098463de4c5d 5023 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
group-onsemi 0:098463de4c5d 5024 *pIalpha = Ia;
group-onsemi 0:098463de4c5d 5025
group-onsemi 0:098463de4c5d 5026 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
group-onsemi 0:098463de4c5d 5027 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
group-onsemi 0:098463de4c5d 5028
group-onsemi 0:098463de4c5d 5029 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
group-onsemi 0:098463de4c5d 5030 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
group-onsemi 0:098463de4c5d 5031
group-onsemi 0:098463de4c5d 5032 /* pIbeta is calculated by adding the intermediate products */
group-onsemi 0:098463de4c5d 5033 *pIbeta = __QADD(product1, product2);
group-onsemi 0:098463de4c5d 5034 }
group-onsemi 0:098463de4c5d 5035
group-onsemi 0:098463de4c5d 5036 /**
group-onsemi 0:098463de4c5d 5037 * @} end of clarke group
group-onsemi 0:098463de4c5d 5038 */
group-onsemi 0:098463de4c5d 5039
group-onsemi 0:098463de4c5d 5040 /**
group-onsemi 0:098463de4c5d 5041 * @brief Converts the elements of the Q7 vector to Q31 vector.
group-onsemi 0:098463de4c5d 5042 * @param[in] pSrc input pointer
group-onsemi 0:098463de4c5d 5043 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 5044 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 5045 */
group-onsemi 0:098463de4c5d 5046 void arm_q7_to_q31(
group-onsemi 0:098463de4c5d 5047 q7_t * pSrc,
group-onsemi 0:098463de4c5d 5048 q31_t * pDst,
group-onsemi 0:098463de4c5d 5049 uint32_t blockSize);
group-onsemi 0:098463de4c5d 5050
group-onsemi 0:098463de4c5d 5051
group-onsemi 0:098463de4c5d 5052
group-onsemi 0:098463de4c5d 5053 /**
group-onsemi 0:098463de4c5d 5054 * @ingroup groupController
group-onsemi 0:098463de4c5d 5055 */
group-onsemi 0:098463de4c5d 5056
group-onsemi 0:098463de4c5d 5057 /**
group-onsemi 0:098463de4c5d 5058 * @defgroup inv_clarke Vector Inverse Clarke Transform
group-onsemi 0:098463de4c5d 5059 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
group-onsemi 0:098463de4c5d 5060 *
group-onsemi 0:098463de4c5d 5061 * The function operates on a single sample of data and each call to the function returns the processed output.
group-onsemi 0:098463de4c5d 5062 * The library provides separate functions for Q31 and floating-point data types.
group-onsemi 0:098463de4c5d 5063 * \par Algorithm
group-onsemi 0:098463de4c5d 5064 * \image html clarkeInvFormula.gif
group-onsemi 0:098463de4c5d 5065 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
group-onsemi 0:098463de4c5d 5066 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
group-onsemi 0:098463de4c5d 5067 * \par Fixed-Point Behavior
group-onsemi 0:098463de4c5d 5068 * Care must be taken when using the Q31 version of the Clarke transform.
group-onsemi 0:098463de4c5d 5069 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
group-onsemi 0:098463de4c5d 5070 * Refer to the function specific documentation below for usage guidelines.
group-onsemi 0:098463de4c5d 5071 */
group-onsemi 0:098463de4c5d 5072
group-onsemi 0:098463de4c5d 5073 /**
group-onsemi 0:098463de4c5d 5074 * @addtogroup inv_clarke
group-onsemi 0:098463de4c5d 5075 * @{
group-onsemi 0:098463de4c5d 5076 */
group-onsemi 0:098463de4c5d 5077
group-onsemi 0:098463de4c5d 5078 /**
group-onsemi 0:098463de4c5d 5079 * @brief Floating-point Inverse Clarke transform
group-onsemi 0:098463de4c5d 5080 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
group-onsemi 0:098463de4c5d 5081 * @param[in] Ibeta input two-phase orthogonal vector axis beta
group-onsemi 0:098463de4c5d 5082 * @param[out] pIa points to output three-phase coordinate <code>a</code>
group-onsemi 0:098463de4c5d 5083 * @param[out] pIb points to output three-phase coordinate <code>b</code>
group-onsemi 0:098463de4c5d 5084 */
group-onsemi 0:098463de4c5d 5085 static __INLINE void arm_inv_clarke_f32(
group-onsemi 0:098463de4c5d 5086 float32_t Ialpha,
group-onsemi 0:098463de4c5d 5087 float32_t Ibeta,
group-onsemi 0:098463de4c5d 5088 float32_t * pIa,
group-onsemi 0:098463de4c5d 5089 float32_t * pIb)
group-onsemi 0:098463de4c5d 5090 {
group-onsemi 0:098463de4c5d 5091 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
group-onsemi 0:098463de4c5d 5092 *pIa = Ialpha;
group-onsemi 0:098463de4c5d 5093
group-onsemi 0:098463de4c5d 5094 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
group-onsemi 0:098463de4c5d 5095 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
group-onsemi 0:098463de4c5d 5096 }
group-onsemi 0:098463de4c5d 5097
group-onsemi 0:098463de4c5d 5098
group-onsemi 0:098463de4c5d 5099 /**
group-onsemi 0:098463de4c5d 5100 * @brief Inverse Clarke transform for Q31 version
group-onsemi 0:098463de4c5d 5101 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
group-onsemi 0:098463de4c5d 5102 * @param[in] Ibeta input two-phase orthogonal vector axis beta
group-onsemi 0:098463de4c5d 5103 * @param[out] pIa points to output three-phase coordinate <code>a</code>
group-onsemi 0:098463de4c5d 5104 * @param[out] pIb points to output three-phase coordinate <code>b</code>
group-onsemi 0:098463de4c5d 5105 *
group-onsemi 0:098463de4c5d 5106 * <b>Scaling and Overflow Behavior:</b>
group-onsemi 0:098463de4c5d 5107 * \par
group-onsemi 0:098463de4c5d 5108 * The function is implemented using an internal 32-bit accumulator.
group-onsemi 0:098463de4c5d 5109 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
group-onsemi 0:098463de4c5d 5110 * There is saturation on the subtraction, hence there is no risk of overflow.
group-onsemi 0:098463de4c5d 5111 */
group-onsemi 0:098463de4c5d 5112 static __INLINE void arm_inv_clarke_q31(
group-onsemi 0:098463de4c5d 5113 q31_t Ialpha,
group-onsemi 0:098463de4c5d 5114 q31_t Ibeta,
group-onsemi 0:098463de4c5d 5115 q31_t * pIa,
group-onsemi 0:098463de4c5d 5116 q31_t * pIb)
group-onsemi 0:098463de4c5d 5117 {
group-onsemi 0:098463de4c5d 5118 q31_t product1, product2; /* Temporary variables used to store intermediate results */
group-onsemi 0:098463de4c5d 5119
group-onsemi 0:098463de4c5d 5120 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
group-onsemi 0:098463de4c5d 5121 *pIa = Ialpha;
group-onsemi 0:098463de4c5d 5122
group-onsemi 0:098463de4c5d 5123 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
group-onsemi 0:098463de4c5d 5124 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
group-onsemi 0:098463de4c5d 5125
group-onsemi 0:098463de4c5d 5126 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
group-onsemi 0:098463de4c5d 5127 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
group-onsemi 0:098463de4c5d 5128
group-onsemi 0:098463de4c5d 5129 /* pIb is calculated by subtracting the products */
group-onsemi 0:098463de4c5d 5130 *pIb = __QSUB(product2, product1);
group-onsemi 0:098463de4c5d 5131 }
group-onsemi 0:098463de4c5d 5132
group-onsemi 0:098463de4c5d 5133 /**
group-onsemi 0:098463de4c5d 5134 * @} end of inv_clarke group
group-onsemi 0:098463de4c5d 5135 */
group-onsemi 0:098463de4c5d 5136
group-onsemi 0:098463de4c5d 5137 /**
group-onsemi 0:098463de4c5d 5138 * @brief Converts the elements of the Q7 vector to Q15 vector.
group-onsemi 0:098463de4c5d 5139 * @param[in] pSrc input pointer
group-onsemi 0:098463de4c5d 5140 * @param[out] pDst output pointer
group-onsemi 0:098463de4c5d 5141 * @param[in] blockSize number of samples to process
group-onsemi 0:098463de4c5d 5142 */
group-onsemi 0:098463de4c5d 5143 void arm_q7_to_q15(
group-onsemi 0:098463de4c5d 5144 q7_t * pSrc,
group-onsemi 0:098463de4c5d 5145 q15_t * pDst,
group-onsemi 0:098463de4c5d 5146 uint32_t blockSize);
group-onsemi 0:098463de4c5d 5147
group-onsemi 0:098463de4c5d 5148
group-onsemi 0:098463de4c5d 5149
group-onsemi 0:098463de4c5d 5150 /**
group-onsemi 0:098463de4c5d 5151 * @ingroup groupController
group-onsemi 0:098463de4c5d 5152 */
group-onsemi 0:098463de4c5d 5153
group-onsemi 0:098463de4c5d 5154 /**
group-onsemi 0:098463de4c5d 5155 * @defgroup park Vector Park Transform
group-onsemi 0:098463de4c5d 5156 *
group-onsemi 0:098463de4c5d 5157 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
group-onsemi 0:098463de4c5d 5158 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
group-onsemi 0:098463de4c5d 5159 * from the stationary to the moving reference frame and control the spatial relationship between
group-onsemi 0:098463de4c5d 5160 * the stator vector current and rotor flux vector.
group-onsemi 0:098463de4c5d 5161 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
group-onsemi 0:098463de4c5d 5162 * current vector and the relationship from the two reference frames:
group-onsemi 0:098463de4c5d 5163 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
group-onsemi 0:098463de4c5d 5164 *
group-onsemi 0:098463de4c5d 5165 * The function operates on a single sample of data and each call to the function returns the processed output.
group-onsemi 0:098463de4c5d 5166 * The library provides separate functions for Q31 and floating-point data types.
group-onsemi 0:098463de4c5d 5167 * \par Algorithm
group-onsemi 0:098463de4c5d 5168 * \image html parkFormula.gif
group-onsemi 0:098463de4c5d 5169 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
group-onsemi 0:098463de4c5d 5170 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
group-onsemi 0:098463de4c5d 5171 * cosine and sine values of theta (rotor flux position).
group-onsemi 0:098463de4c5d 5172 * \par Fixed-Point Behavior
group-onsemi 0:098463de4c5d 5173 * Care must be taken when using the Q31 version of the Park transform.
group-onsemi 0:098463de4c5d 5174 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
group-onsemi 0:098463de4c5d 5175 * Refer to the function specific documentation below for usage guidelines.
group-onsemi 0:098463de4c5d 5176 */
group-onsemi 0:098463de4c5d 5177
group-onsemi 0:098463de4c5d 5178 /**
group-onsemi 0:098463de4c5d 5179 * @addtogroup park
group-onsemi 0:098463de4c5d 5180 * @{
group-onsemi 0:098463de4c5d 5181 */
group-onsemi 0:098463de4c5d 5182
group-onsemi 0:098463de4c5d 5183 /**
group-onsemi 0:098463de4c5d 5184 * @brief Floating-point Park transform
group-onsemi 0:098463de4c5d 5185 * @param[in] Ialpha input two-phase vector coordinate alpha
group-onsemi 0:098463de4c5d 5186 * @param[in] Ibeta input two-phase vector coordinate beta
group-onsemi 0:098463de4c5d 5187 * @param[out] pId points to output rotor reference frame d
group-onsemi 0:098463de4c5d 5188 * @param[out] pIq points to output rotor reference frame q
group-onsemi 0:098463de4c5d 5189 * @param[in] sinVal sine value of rotation angle theta
group-onsemi 0:098463de4c5d 5190 * @param[in] cosVal cosine value of rotation angle theta
group-onsemi 0:098463de4c5d 5191 *
group-onsemi 0:098463de4c5d 5192 * The function implements the forward Park transform.
group-onsemi 0:098463de4c5d 5193 *
group-onsemi 0:098463de4c5d 5194 */
group-onsemi 0:098463de4c5d 5195 static __INLINE void arm_park_f32(
group-onsemi 0:098463de4c5d 5196 float32_t Ialpha,
group-onsemi 0:098463de4c5d 5197 float32_t Ibeta,
group-onsemi 0:098463de4c5d 5198 float32_t * pId,
group-onsemi 0:098463de4c5d 5199 float32_t * pIq,
group-onsemi 0:098463de4c5d 5200 float32_t sinVal,
group-onsemi 0:098463de4c5d 5201 float32_t cosVal)
group-onsemi 0:098463de4c5d 5202 {
group-onsemi 0:098463de4c5d 5203 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
group-onsemi 0:098463de4c5d 5204 *pId = Ialpha * cosVal + Ibeta * sinVal;
group-onsemi 0:098463de4c5d 5205
group-onsemi 0:098463de4c5d 5206 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
group-onsemi 0:098463de4c5d 5207 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
group-onsemi 0:098463de4c5d 5208 }
group-onsemi 0:098463de4c5d 5209
group-onsemi 0:098463de4c5d 5210
group-onsemi 0:098463de4c5d 5211 /**
group-onsemi 0:098463de4c5d 5212 * @brief Park transform for Q31 version
group-onsemi 0:098463de4c5d 5213 * @param[in] Ialpha input two-phase vector coordinate alpha
group-onsemi 0:098463de4c5d 5214 * @param[in] Ibeta input two-phase vector coordinate beta
group-onsemi 0:098463de4c5d 5215 * @param[out] pId points to output rotor reference frame d
group-onsemi 0:098463de4c5d 5216 * @param[out] pIq points to output rotor reference frame q
group-onsemi 0:098463de4c5d 5217 * @param[in] sinVal sine value of rotation angle theta
group-onsemi 0:098463de4c5d 5218 * @param[in] cosVal cosine value of rotation angle theta
group-onsemi 0:098463de4c5d 5219 *
group-onsemi 0:098463de4c5d 5220 * <b>Scaling and Overflow Behavior:</b>
group-onsemi 0:098463de4c5d 5221 * \par
group-onsemi 0:098463de4c5d 5222 * The function is implemented using an internal 32-bit accumulator.
group-onsemi 0:098463de4c5d 5223 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
group-onsemi 0:098463de4c5d 5224 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
group-onsemi 0:098463de4c5d 5225 */
group-onsemi 0:098463de4c5d 5226 static __INLINE void arm_park_q31(
group-onsemi 0:098463de4c5d 5227 q31_t Ialpha,
group-onsemi 0:098463de4c5d 5228 q31_t Ibeta,
group-onsemi 0:098463de4c5d 5229 q31_t * pId,
group-onsemi 0:098463de4c5d 5230 q31_t * pIq,
group-onsemi 0:098463de4c5d 5231 q31_t sinVal,
group-onsemi 0:098463de4c5d 5232 q31_t cosVal)
group-onsemi 0:098463de4c5d 5233 {
group-onsemi 0:098463de4c5d 5234 q31_t product1, product2; /* Temporary variables used to store intermediate results */
group-onsemi 0:098463de4c5d 5235 q31_t product3, product4; /* Temporary variables used to store intermediate results */
group-onsemi 0:098463de4c5d 5236
group-onsemi 0:098463de4c5d 5237 /* Intermediate product is calculated by (Ialpha * cosVal) */
group-onsemi 0:098463de4c5d 5238 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
group-onsemi 0:098463de4c5d 5239
group-onsemi 0:098463de4c5d 5240 /* Intermediate product is calculated by (Ibeta * sinVal) */
group-onsemi 0:098463de4c5d 5241 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
group-onsemi 0:098463de4c5d 5242
group-onsemi 0:098463de4c5d 5243
group-onsemi 0:098463de4c5d 5244 /* Intermediate product is calculated by (Ialpha * sinVal) */
group-onsemi 0:098463de4c5d 5245 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
group-onsemi 0:098463de4c5d 5246
group-onsemi 0:098463de4c5d 5247 /* Intermediate product is calculated by (Ibeta * cosVal) */
group-onsemi 0:098463de4c5d 5248 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
group-onsemi 0:098463de4c5d 5249
group-onsemi 0:098463de4c5d 5250 /* Calculate pId by adding the two intermediate products 1 and 2 */
group-onsemi 0:098463de4c5d 5251 *pId = __QADD(product1, product2);
group-onsemi 0:098463de4c5d 5252
group-onsemi 0:098463de4c5d 5253 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
group-onsemi 0:098463de4c5d 5254 *pIq = __QSUB(product4, product3);
group-onsemi 0:098463de4c5d 5255 }
group-onsemi 0:098463de4c5d 5256
group-onsemi 0:098463de4c5d 5257 /**
group-onsemi 0:098463de4c5d 5258 * @} end of park group
group-onsemi 0:098463de4c5d 5259 */
group-onsemi 0:098463de4c5d 5260
group-onsemi 0:098463de4c5d 5261 /**
group-onsemi 0:098463de4c5d 5262 * @brief Converts the elements of the Q7 vector to floating-point vector.
group-onsemi 0:098463de4c5d 5263 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 5264 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 5265 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 5266 */
group-onsemi 0:098463de4c5d 5267 void arm_q7_to_float(
group-onsemi 0:098463de4c5d 5268 q7_t * pSrc,
group-onsemi 0:098463de4c5d 5269 float32_t * pDst,
group-onsemi 0:098463de4c5d 5270 uint32_t blockSize);
group-onsemi 0:098463de4c5d 5271
group-onsemi 0:098463de4c5d 5272
group-onsemi 0:098463de4c5d 5273 /**
group-onsemi 0:098463de4c5d 5274 * @ingroup groupController
group-onsemi 0:098463de4c5d 5275 */
group-onsemi 0:098463de4c5d 5276
group-onsemi 0:098463de4c5d 5277 /**
group-onsemi 0:098463de4c5d 5278 * @defgroup inv_park Vector Inverse Park transform
group-onsemi 0:098463de4c5d 5279 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
group-onsemi 0:098463de4c5d 5280 *
group-onsemi 0:098463de4c5d 5281 * The function operates on a single sample of data and each call to the function returns the processed output.
group-onsemi 0:098463de4c5d 5282 * The library provides separate functions for Q31 and floating-point data types.
group-onsemi 0:098463de4c5d 5283 * \par Algorithm
group-onsemi 0:098463de4c5d 5284 * \image html parkInvFormula.gif
group-onsemi 0:098463de4c5d 5285 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
group-onsemi 0:098463de4c5d 5286 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
group-onsemi 0:098463de4c5d 5287 * cosine and sine values of theta (rotor flux position).
group-onsemi 0:098463de4c5d 5288 * \par Fixed-Point Behavior
group-onsemi 0:098463de4c5d 5289 * Care must be taken when using the Q31 version of the Park transform.
group-onsemi 0:098463de4c5d 5290 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
group-onsemi 0:098463de4c5d 5291 * Refer to the function specific documentation below for usage guidelines.
group-onsemi 0:098463de4c5d 5292 */
group-onsemi 0:098463de4c5d 5293
group-onsemi 0:098463de4c5d 5294 /**
group-onsemi 0:098463de4c5d 5295 * @addtogroup inv_park
group-onsemi 0:098463de4c5d 5296 * @{
group-onsemi 0:098463de4c5d 5297 */
group-onsemi 0:098463de4c5d 5298
group-onsemi 0:098463de4c5d 5299 /**
group-onsemi 0:098463de4c5d 5300 * @brief Floating-point Inverse Park transform
group-onsemi 0:098463de4c5d 5301 * @param[in] Id input coordinate of rotor reference frame d
group-onsemi 0:098463de4c5d 5302 * @param[in] Iq input coordinate of rotor reference frame q
group-onsemi 0:098463de4c5d 5303 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
group-onsemi 0:098463de4c5d 5304 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
group-onsemi 0:098463de4c5d 5305 * @param[in] sinVal sine value of rotation angle theta
group-onsemi 0:098463de4c5d 5306 * @param[in] cosVal cosine value of rotation angle theta
group-onsemi 0:098463de4c5d 5307 */
group-onsemi 0:098463de4c5d 5308 static __INLINE void arm_inv_park_f32(
group-onsemi 0:098463de4c5d 5309 float32_t Id,
group-onsemi 0:098463de4c5d 5310 float32_t Iq,
group-onsemi 0:098463de4c5d 5311 float32_t * pIalpha,
group-onsemi 0:098463de4c5d 5312 float32_t * pIbeta,
group-onsemi 0:098463de4c5d 5313 float32_t sinVal,
group-onsemi 0:098463de4c5d 5314 float32_t cosVal)
group-onsemi 0:098463de4c5d 5315 {
group-onsemi 0:098463de4c5d 5316 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
group-onsemi 0:098463de4c5d 5317 *pIalpha = Id * cosVal - Iq * sinVal;
group-onsemi 0:098463de4c5d 5318
group-onsemi 0:098463de4c5d 5319 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
group-onsemi 0:098463de4c5d 5320 *pIbeta = Id * sinVal + Iq * cosVal;
group-onsemi 0:098463de4c5d 5321 }
group-onsemi 0:098463de4c5d 5322
group-onsemi 0:098463de4c5d 5323
group-onsemi 0:098463de4c5d 5324 /**
group-onsemi 0:098463de4c5d 5325 * @brief Inverse Park transform for Q31 version
group-onsemi 0:098463de4c5d 5326 * @param[in] Id input coordinate of rotor reference frame d
group-onsemi 0:098463de4c5d 5327 * @param[in] Iq input coordinate of rotor reference frame q
group-onsemi 0:098463de4c5d 5328 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
group-onsemi 0:098463de4c5d 5329 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
group-onsemi 0:098463de4c5d 5330 * @param[in] sinVal sine value of rotation angle theta
group-onsemi 0:098463de4c5d 5331 * @param[in] cosVal cosine value of rotation angle theta
group-onsemi 0:098463de4c5d 5332 *
group-onsemi 0:098463de4c5d 5333 * <b>Scaling and Overflow Behavior:</b>
group-onsemi 0:098463de4c5d 5334 * \par
group-onsemi 0:098463de4c5d 5335 * The function is implemented using an internal 32-bit accumulator.
group-onsemi 0:098463de4c5d 5336 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
group-onsemi 0:098463de4c5d 5337 * There is saturation on the addition, hence there is no risk of overflow.
group-onsemi 0:098463de4c5d 5338 */
group-onsemi 0:098463de4c5d 5339 static __INLINE void arm_inv_park_q31(
group-onsemi 0:098463de4c5d 5340 q31_t Id,
group-onsemi 0:098463de4c5d 5341 q31_t Iq,
group-onsemi 0:098463de4c5d 5342 q31_t * pIalpha,
group-onsemi 0:098463de4c5d 5343 q31_t * pIbeta,
group-onsemi 0:098463de4c5d 5344 q31_t sinVal,
group-onsemi 0:098463de4c5d 5345 q31_t cosVal)
group-onsemi 0:098463de4c5d 5346 {
group-onsemi 0:098463de4c5d 5347 q31_t product1, product2; /* Temporary variables used to store intermediate results */
group-onsemi 0:098463de4c5d 5348 q31_t product3, product4; /* Temporary variables used to store intermediate results */
group-onsemi 0:098463de4c5d 5349
group-onsemi 0:098463de4c5d 5350 /* Intermediate product is calculated by (Id * cosVal) */
group-onsemi 0:098463de4c5d 5351 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
group-onsemi 0:098463de4c5d 5352
group-onsemi 0:098463de4c5d 5353 /* Intermediate product is calculated by (Iq * sinVal) */
group-onsemi 0:098463de4c5d 5354 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
group-onsemi 0:098463de4c5d 5355
group-onsemi 0:098463de4c5d 5356
group-onsemi 0:098463de4c5d 5357 /* Intermediate product is calculated by (Id * sinVal) */
group-onsemi 0:098463de4c5d 5358 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
group-onsemi 0:098463de4c5d 5359
group-onsemi 0:098463de4c5d 5360 /* Intermediate product is calculated by (Iq * cosVal) */
group-onsemi 0:098463de4c5d 5361 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
group-onsemi 0:098463de4c5d 5362
group-onsemi 0:098463de4c5d 5363 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
group-onsemi 0:098463de4c5d 5364 *pIalpha = __QSUB(product1, product2);
group-onsemi 0:098463de4c5d 5365
group-onsemi 0:098463de4c5d 5366 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
group-onsemi 0:098463de4c5d 5367 *pIbeta = __QADD(product4, product3);
group-onsemi 0:098463de4c5d 5368 }
group-onsemi 0:098463de4c5d 5369
group-onsemi 0:098463de4c5d 5370 /**
group-onsemi 0:098463de4c5d 5371 * @} end of Inverse park group
group-onsemi 0:098463de4c5d 5372 */
group-onsemi 0:098463de4c5d 5373
group-onsemi 0:098463de4c5d 5374
group-onsemi 0:098463de4c5d 5375 /**
group-onsemi 0:098463de4c5d 5376 * @brief Converts the elements of the Q31 vector to floating-point vector.
group-onsemi 0:098463de4c5d 5377 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 5378 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 5379 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 5380 */
group-onsemi 0:098463de4c5d 5381 void arm_q31_to_float(
group-onsemi 0:098463de4c5d 5382 q31_t * pSrc,
group-onsemi 0:098463de4c5d 5383 float32_t * pDst,
group-onsemi 0:098463de4c5d 5384 uint32_t blockSize);
group-onsemi 0:098463de4c5d 5385
group-onsemi 0:098463de4c5d 5386 /**
group-onsemi 0:098463de4c5d 5387 * @ingroup groupInterpolation
group-onsemi 0:098463de4c5d 5388 */
group-onsemi 0:098463de4c5d 5389
group-onsemi 0:098463de4c5d 5390 /**
group-onsemi 0:098463de4c5d 5391 * @defgroup LinearInterpolate Linear Interpolation
group-onsemi 0:098463de4c5d 5392 *
group-onsemi 0:098463de4c5d 5393 * Linear interpolation is a method of curve fitting using linear polynomials.
group-onsemi 0:098463de4c5d 5394 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
group-onsemi 0:098463de4c5d 5395 *
group-onsemi 0:098463de4c5d 5396 * \par
group-onsemi 0:098463de4c5d 5397 * \image html LinearInterp.gif "Linear interpolation"
group-onsemi 0:098463de4c5d 5398 *
group-onsemi 0:098463de4c5d 5399 * \par
group-onsemi 0:098463de4c5d 5400 * A Linear Interpolate function calculates an output value(y), for the input(x)
group-onsemi 0:098463de4c5d 5401 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
group-onsemi 0:098463de4c5d 5402 *
group-onsemi 0:098463de4c5d 5403 * \par Algorithm:
group-onsemi 0:098463de4c5d 5404 * <pre>
group-onsemi 0:098463de4c5d 5405 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
group-onsemi 0:098463de4c5d 5406 * where x0, x1 are nearest values of input x
group-onsemi 0:098463de4c5d 5407 * y0, y1 are nearest values to output y
group-onsemi 0:098463de4c5d 5408 * </pre>
group-onsemi 0:098463de4c5d 5409 *
group-onsemi 0:098463de4c5d 5410 * \par
group-onsemi 0:098463de4c5d 5411 * This set of functions implements Linear interpolation process
group-onsemi 0:098463de4c5d 5412 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
group-onsemi 0:098463de4c5d 5413 * sample of data and each call to the function returns a single processed value.
group-onsemi 0:098463de4c5d 5414 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
group-onsemi 0:098463de4c5d 5415 * <code>x</code> is the input sample value. The functions returns the output value.
group-onsemi 0:098463de4c5d 5416 *
group-onsemi 0:098463de4c5d 5417 * \par
group-onsemi 0:098463de4c5d 5418 * if x is outside of the table boundary, Linear interpolation returns first value of the table
group-onsemi 0:098463de4c5d 5419 * if x is below input range and returns last value of table if x is above range.
group-onsemi 0:098463de4c5d 5420 */
group-onsemi 0:098463de4c5d 5421
group-onsemi 0:098463de4c5d 5422 /**
group-onsemi 0:098463de4c5d 5423 * @addtogroup LinearInterpolate
group-onsemi 0:098463de4c5d 5424 * @{
group-onsemi 0:098463de4c5d 5425 */
group-onsemi 0:098463de4c5d 5426
group-onsemi 0:098463de4c5d 5427 /**
group-onsemi 0:098463de4c5d 5428 * @brief Process function for the floating-point Linear Interpolation Function.
group-onsemi 0:098463de4c5d 5429 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
group-onsemi 0:098463de4c5d 5430 * @param[in] x input sample to process
group-onsemi 0:098463de4c5d 5431 * @return y processed output sample.
group-onsemi 0:098463de4c5d 5432 *
group-onsemi 0:098463de4c5d 5433 */
group-onsemi 0:098463de4c5d 5434 static __INLINE float32_t arm_linear_interp_f32(
group-onsemi 0:098463de4c5d 5435 arm_linear_interp_instance_f32 * S,
group-onsemi 0:098463de4c5d 5436 float32_t x)
group-onsemi 0:098463de4c5d 5437 {
group-onsemi 0:098463de4c5d 5438 float32_t y;
group-onsemi 0:098463de4c5d 5439 float32_t x0, x1; /* Nearest input values */
group-onsemi 0:098463de4c5d 5440 float32_t y0, y1; /* Nearest output values */
group-onsemi 0:098463de4c5d 5441 float32_t xSpacing = S->xSpacing; /* spacing between input values */
group-onsemi 0:098463de4c5d 5442 int32_t i; /* Index variable */
group-onsemi 0:098463de4c5d 5443 float32_t *pYData = S->pYData; /* pointer to output table */
group-onsemi 0:098463de4c5d 5444
group-onsemi 0:098463de4c5d 5445 /* Calculation of index */
group-onsemi 0:098463de4c5d 5446 i = (int32_t) ((x - S->x1) / xSpacing);
group-onsemi 0:098463de4c5d 5447
group-onsemi 0:098463de4c5d 5448 if(i < 0)
group-onsemi 0:098463de4c5d 5449 {
group-onsemi 0:098463de4c5d 5450 /* Iniatilize output for below specified range as least output value of table */
group-onsemi 0:098463de4c5d 5451 y = pYData[0];
group-onsemi 0:098463de4c5d 5452 }
group-onsemi 0:098463de4c5d 5453 else if((uint32_t)i >= S->nValues)
group-onsemi 0:098463de4c5d 5454 {
group-onsemi 0:098463de4c5d 5455 /* Iniatilize output for above specified range as last output value of table */
group-onsemi 0:098463de4c5d 5456 y = pYData[S->nValues - 1];
group-onsemi 0:098463de4c5d 5457 }
group-onsemi 0:098463de4c5d 5458 else
group-onsemi 0:098463de4c5d 5459 {
group-onsemi 0:098463de4c5d 5460 /* Calculation of nearest input values */
group-onsemi 0:098463de4c5d 5461 x0 = S->x1 + i * xSpacing;
group-onsemi 0:098463de4c5d 5462 x1 = S->x1 + (i + 1) * xSpacing;
group-onsemi 0:098463de4c5d 5463
group-onsemi 0:098463de4c5d 5464 /* Read of nearest output values */
group-onsemi 0:098463de4c5d 5465 y0 = pYData[i];
group-onsemi 0:098463de4c5d 5466 y1 = pYData[i + 1];
group-onsemi 0:098463de4c5d 5467
group-onsemi 0:098463de4c5d 5468 /* Calculation of output */
group-onsemi 0:098463de4c5d 5469 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
group-onsemi 0:098463de4c5d 5470
group-onsemi 0:098463de4c5d 5471 }
group-onsemi 0:098463de4c5d 5472
group-onsemi 0:098463de4c5d 5473 /* returns output value */
group-onsemi 0:098463de4c5d 5474 return (y);
group-onsemi 0:098463de4c5d 5475 }
group-onsemi 0:098463de4c5d 5476
group-onsemi 0:098463de4c5d 5477
group-onsemi 0:098463de4c5d 5478 /**
group-onsemi 0:098463de4c5d 5479 *
group-onsemi 0:098463de4c5d 5480 * @brief Process function for the Q31 Linear Interpolation Function.
group-onsemi 0:098463de4c5d 5481 * @param[in] pYData pointer to Q31 Linear Interpolation table
group-onsemi 0:098463de4c5d 5482 * @param[in] x input sample to process
group-onsemi 0:098463de4c5d 5483 * @param[in] nValues number of table values
group-onsemi 0:098463de4c5d 5484 * @return y processed output sample.
group-onsemi 0:098463de4c5d 5485 *
group-onsemi 0:098463de4c5d 5486 * \par
group-onsemi 0:098463de4c5d 5487 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
group-onsemi 0:098463de4c5d 5488 * This function can support maximum of table size 2^12.
group-onsemi 0:098463de4c5d 5489 *
group-onsemi 0:098463de4c5d 5490 */
group-onsemi 0:098463de4c5d 5491 static __INLINE q31_t arm_linear_interp_q31(
group-onsemi 0:098463de4c5d 5492 q31_t * pYData,
group-onsemi 0:098463de4c5d 5493 q31_t x,
group-onsemi 0:098463de4c5d 5494 uint32_t nValues)
group-onsemi 0:098463de4c5d 5495 {
group-onsemi 0:098463de4c5d 5496 q31_t y; /* output */
group-onsemi 0:098463de4c5d 5497 q31_t y0, y1; /* Nearest output values */
group-onsemi 0:098463de4c5d 5498 q31_t fract; /* fractional part */
group-onsemi 0:098463de4c5d 5499 int32_t index; /* Index to read nearest output values */
group-onsemi 0:098463de4c5d 5500
group-onsemi 0:098463de4c5d 5501 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 5502 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 5503 /* Index value calculation */
group-onsemi 0:098463de4c5d 5504 index = ((x & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 5505
group-onsemi 0:098463de4c5d 5506 if(index >= (int32_t)(nValues - 1))
group-onsemi 0:098463de4c5d 5507 {
group-onsemi 0:098463de4c5d 5508 return (pYData[nValues - 1]);
group-onsemi 0:098463de4c5d 5509 }
group-onsemi 0:098463de4c5d 5510 else if(index < 0)
group-onsemi 0:098463de4c5d 5511 {
group-onsemi 0:098463de4c5d 5512 return (pYData[0]);
group-onsemi 0:098463de4c5d 5513 }
group-onsemi 0:098463de4c5d 5514 else
group-onsemi 0:098463de4c5d 5515 {
group-onsemi 0:098463de4c5d 5516 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 5517 /* shift left by 11 to keep fract in 1.31 format */
group-onsemi 0:098463de4c5d 5518 fract = (x & 0x000FFFFF) << 11;
group-onsemi 0:098463de4c5d 5519
group-onsemi 0:098463de4c5d 5520 /* Read two nearest output values from the index in 1.31(q31) format */
group-onsemi 0:098463de4c5d 5521 y0 = pYData[index];
group-onsemi 0:098463de4c5d 5522 y1 = pYData[index + 1];
group-onsemi 0:098463de4c5d 5523
group-onsemi 0:098463de4c5d 5524 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
group-onsemi 0:098463de4c5d 5525 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
group-onsemi 0:098463de4c5d 5526
group-onsemi 0:098463de4c5d 5527 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
group-onsemi 0:098463de4c5d 5528 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
group-onsemi 0:098463de4c5d 5529
group-onsemi 0:098463de4c5d 5530 /* Convert y to 1.31 format */
group-onsemi 0:098463de4c5d 5531 return (y << 1u);
group-onsemi 0:098463de4c5d 5532 }
group-onsemi 0:098463de4c5d 5533 }
group-onsemi 0:098463de4c5d 5534
group-onsemi 0:098463de4c5d 5535
group-onsemi 0:098463de4c5d 5536 /**
group-onsemi 0:098463de4c5d 5537 *
group-onsemi 0:098463de4c5d 5538 * @brief Process function for the Q15 Linear Interpolation Function.
group-onsemi 0:098463de4c5d 5539 * @param[in] pYData pointer to Q15 Linear Interpolation table
group-onsemi 0:098463de4c5d 5540 * @param[in] x input sample to process
group-onsemi 0:098463de4c5d 5541 * @param[in] nValues number of table values
group-onsemi 0:098463de4c5d 5542 * @return y processed output sample.
group-onsemi 0:098463de4c5d 5543 *
group-onsemi 0:098463de4c5d 5544 * \par
group-onsemi 0:098463de4c5d 5545 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
group-onsemi 0:098463de4c5d 5546 * This function can support maximum of table size 2^12.
group-onsemi 0:098463de4c5d 5547 *
group-onsemi 0:098463de4c5d 5548 */
group-onsemi 0:098463de4c5d 5549 static __INLINE q15_t arm_linear_interp_q15(
group-onsemi 0:098463de4c5d 5550 q15_t * pYData,
group-onsemi 0:098463de4c5d 5551 q31_t x,
group-onsemi 0:098463de4c5d 5552 uint32_t nValues)
group-onsemi 0:098463de4c5d 5553 {
group-onsemi 0:098463de4c5d 5554 q63_t y; /* output */
group-onsemi 0:098463de4c5d 5555 q15_t y0, y1; /* Nearest output values */
group-onsemi 0:098463de4c5d 5556 q31_t fract; /* fractional part */
group-onsemi 0:098463de4c5d 5557 int32_t index; /* Index to read nearest output values */
group-onsemi 0:098463de4c5d 5558
group-onsemi 0:098463de4c5d 5559 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 5560 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 5561 /* Index value calculation */
group-onsemi 0:098463de4c5d 5562 index = ((x & (int32_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 5563
group-onsemi 0:098463de4c5d 5564 if(index >= (int32_t)(nValues - 1))
group-onsemi 0:098463de4c5d 5565 {
group-onsemi 0:098463de4c5d 5566 return (pYData[nValues - 1]);
group-onsemi 0:098463de4c5d 5567 }
group-onsemi 0:098463de4c5d 5568 else if(index < 0)
group-onsemi 0:098463de4c5d 5569 {
group-onsemi 0:098463de4c5d 5570 return (pYData[0]);
group-onsemi 0:098463de4c5d 5571 }
group-onsemi 0:098463de4c5d 5572 else
group-onsemi 0:098463de4c5d 5573 {
group-onsemi 0:098463de4c5d 5574 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 5575 /* fract is in 12.20 format */
group-onsemi 0:098463de4c5d 5576 fract = (x & 0x000FFFFF);
group-onsemi 0:098463de4c5d 5577
group-onsemi 0:098463de4c5d 5578 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 5579 y0 = pYData[index];
group-onsemi 0:098463de4c5d 5580 y1 = pYData[index + 1];
group-onsemi 0:098463de4c5d 5581
group-onsemi 0:098463de4c5d 5582 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
group-onsemi 0:098463de4c5d 5583 y = ((q63_t) y0 * (0xFFFFF - fract));
group-onsemi 0:098463de4c5d 5584
group-onsemi 0:098463de4c5d 5585 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
group-onsemi 0:098463de4c5d 5586 y += ((q63_t) y1 * (fract));
group-onsemi 0:098463de4c5d 5587
group-onsemi 0:098463de4c5d 5588 /* convert y to 1.15 format */
group-onsemi 0:098463de4c5d 5589 return (q15_t) (y >> 20);
group-onsemi 0:098463de4c5d 5590 }
group-onsemi 0:098463de4c5d 5591 }
group-onsemi 0:098463de4c5d 5592
group-onsemi 0:098463de4c5d 5593
group-onsemi 0:098463de4c5d 5594 /**
group-onsemi 0:098463de4c5d 5595 *
group-onsemi 0:098463de4c5d 5596 * @brief Process function for the Q7 Linear Interpolation Function.
group-onsemi 0:098463de4c5d 5597 * @param[in] pYData pointer to Q7 Linear Interpolation table
group-onsemi 0:098463de4c5d 5598 * @param[in] x input sample to process
group-onsemi 0:098463de4c5d 5599 * @param[in] nValues number of table values
group-onsemi 0:098463de4c5d 5600 * @return y processed output sample.
group-onsemi 0:098463de4c5d 5601 *
group-onsemi 0:098463de4c5d 5602 * \par
group-onsemi 0:098463de4c5d 5603 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
group-onsemi 0:098463de4c5d 5604 * This function can support maximum of table size 2^12.
group-onsemi 0:098463de4c5d 5605 */
group-onsemi 0:098463de4c5d 5606 static __INLINE q7_t arm_linear_interp_q7(
group-onsemi 0:098463de4c5d 5607 q7_t * pYData,
group-onsemi 0:098463de4c5d 5608 q31_t x,
group-onsemi 0:098463de4c5d 5609 uint32_t nValues)
group-onsemi 0:098463de4c5d 5610 {
group-onsemi 0:098463de4c5d 5611 q31_t y; /* output */
group-onsemi 0:098463de4c5d 5612 q7_t y0, y1; /* Nearest output values */
group-onsemi 0:098463de4c5d 5613 q31_t fract; /* fractional part */
group-onsemi 0:098463de4c5d 5614 uint32_t index; /* Index to read nearest output values */
group-onsemi 0:098463de4c5d 5615
group-onsemi 0:098463de4c5d 5616 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 5617 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 5618 /* Index value calculation */
group-onsemi 0:098463de4c5d 5619 if (x < 0)
group-onsemi 0:098463de4c5d 5620 {
group-onsemi 0:098463de4c5d 5621 return (pYData[0]);
group-onsemi 0:098463de4c5d 5622 }
group-onsemi 0:098463de4c5d 5623 index = (x >> 20) & 0xfff;
group-onsemi 0:098463de4c5d 5624
group-onsemi 0:098463de4c5d 5625 if(index >= (nValues - 1))
group-onsemi 0:098463de4c5d 5626 {
group-onsemi 0:098463de4c5d 5627 return (pYData[nValues - 1]);
group-onsemi 0:098463de4c5d 5628 }
group-onsemi 0:098463de4c5d 5629 else
group-onsemi 0:098463de4c5d 5630 {
group-onsemi 0:098463de4c5d 5631 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 5632 /* fract is in 12.20 format */
group-onsemi 0:098463de4c5d 5633 fract = (x & 0x000FFFFF);
group-onsemi 0:098463de4c5d 5634
group-onsemi 0:098463de4c5d 5635 /* Read two nearest output values from the index and are in 1.7(q7) format */
group-onsemi 0:098463de4c5d 5636 y0 = pYData[index];
group-onsemi 0:098463de4c5d 5637 y1 = pYData[index + 1];
group-onsemi 0:098463de4c5d 5638
group-onsemi 0:098463de4c5d 5639 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
group-onsemi 0:098463de4c5d 5640 y = ((y0 * (0xFFFFF - fract)));
group-onsemi 0:098463de4c5d 5641
group-onsemi 0:098463de4c5d 5642 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
group-onsemi 0:098463de4c5d 5643 y += (y1 * fract);
group-onsemi 0:098463de4c5d 5644
group-onsemi 0:098463de4c5d 5645 /* convert y to 1.7(q7) format */
group-onsemi 0:098463de4c5d 5646 return (q7_t) (y >> 20);
group-onsemi 0:098463de4c5d 5647 }
group-onsemi 0:098463de4c5d 5648 }
group-onsemi 0:098463de4c5d 5649
group-onsemi 0:098463de4c5d 5650 /**
group-onsemi 0:098463de4c5d 5651 * @} end of LinearInterpolate group
group-onsemi 0:098463de4c5d 5652 */
group-onsemi 0:098463de4c5d 5653
group-onsemi 0:098463de4c5d 5654 /**
group-onsemi 0:098463de4c5d 5655 * @brief Fast approximation to the trigonometric sine function for floating-point data.
group-onsemi 0:098463de4c5d 5656 * @param[in] x input value in radians.
group-onsemi 0:098463de4c5d 5657 * @return sin(x).
group-onsemi 0:098463de4c5d 5658 */
group-onsemi 0:098463de4c5d 5659 float32_t arm_sin_f32(
group-onsemi 0:098463de4c5d 5660 float32_t x);
group-onsemi 0:098463de4c5d 5661
group-onsemi 0:098463de4c5d 5662
group-onsemi 0:098463de4c5d 5663 /**
group-onsemi 0:098463de4c5d 5664 * @brief Fast approximation to the trigonometric sine function for Q31 data.
group-onsemi 0:098463de4c5d 5665 * @param[in] x Scaled input value in radians.
group-onsemi 0:098463de4c5d 5666 * @return sin(x).
group-onsemi 0:098463de4c5d 5667 */
group-onsemi 0:098463de4c5d 5668 q31_t arm_sin_q31(
group-onsemi 0:098463de4c5d 5669 q31_t x);
group-onsemi 0:098463de4c5d 5670
group-onsemi 0:098463de4c5d 5671
group-onsemi 0:098463de4c5d 5672 /**
group-onsemi 0:098463de4c5d 5673 * @brief Fast approximation to the trigonometric sine function for Q15 data.
group-onsemi 0:098463de4c5d 5674 * @param[in] x Scaled input value in radians.
group-onsemi 0:098463de4c5d 5675 * @return sin(x).
group-onsemi 0:098463de4c5d 5676 */
group-onsemi 0:098463de4c5d 5677 q15_t arm_sin_q15(
group-onsemi 0:098463de4c5d 5678 q15_t x);
group-onsemi 0:098463de4c5d 5679
group-onsemi 0:098463de4c5d 5680
group-onsemi 0:098463de4c5d 5681 /**
group-onsemi 0:098463de4c5d 5682 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
group-onsemi 0:098463de4c5d 5683 * @param[in] x input value in radians.
group-onsemi 0:098463de4c5d 5684 * @return cos(x).
group-onsemi 0:098463de4c5d 5685 */
group-onsemi 0:098463de4c5d 5686 float32_t arm_cos_f32(
group-onsemi 0:098463de4c5d 5687 float32_t x);
group-onsemi 0:098463de4c5d 5688
group-onsemi 0:098463de4c5d 5689
group-onsemi 0:098463de4c5d 5690 /**
group-onsemi 0:098463de4c5d 5691 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
group-onsemi 0:098463de4c5d 5692 * @param[in] x Scaled input value in radians.
group-onsemi 0:098463de4c5d 5693 * @return cos(x).
group-onsemi 0:098463de4c5d 5694 */
group-onsemi 0:098463de4c5d 5695 q31_t arm_cos_q31(
group-onsemi 0:098463de4c5d 5696 q31_t x);
group-onsemi 0:098463de4c5d 5697
group-onsemi 0:098463de4c5d 5698
group-onsemi 0:098463de4c5d 5699 /**
group-onsemi 0:098463de4c5d 5700 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
group-onsemi 0:098463de4c5d 5701 * @param[in] x Scaled input value in radians.
group-onsemi 0:098463de4c5d 5702 * @return cos(x).
group-onsemi 0:098463de4c5d 5703 */
group-onsemi 0:098463de4c5d 5704 q15_t arm_cos_q15(
group-onsemi 0:098463de4c5d 5705 q15_t x);
group-onsemi 0:098463de4c5d 5706
group-onsemi 0:098463de4c5d 5707
group-onsemi 0:098463de4c5d 5708 /**
group-onsemi 0:098463de4c5d 5709 * @ingroup groupFastMath
group-onsemi 0:098463de4c5d 5710 */
group-onsemi 0:098463de4c5d 5711
group-onsemi 0:098463de4c5d 5712
group-onsemi 0:098463de4c5d 5713 /**
group-onsemi 0:098463de4c5d 5714 * @defgroup SQRT Square Root
group-onsemi 0:098463de4c5d 5715 *
group-onsemi 0:098463de4c5d 5716 * Computes the square root of a number.
group-onsemi 0:098463de4c5d 5717 * There are separate functions for Q15, Q31, and floating-point data types.
group-onsemi 0:098463de4c5d 5718 * The square root function is computed using the Newton-Raphson algorithm.
group-onsemi 0:098463de4c5d 5719 * This is an iterative algorithm of the form:
group-onsemi 0:098463de4c5d 5720 * <pre>
group-onsemi 0:098463de4c5d 5721 * x1 = x0 - f(x0)/f'(x0)
group-onsemi 0:098463de4c5d 5722 * </pre>
group-onsemi 0:098463de4c5d 5723 * where <code>x1</code> is the current estimate,
group-onsemi 0:098463de4c5d 5724 * <code>x0</code> is the previous estimate, and
group-onsemi 0:098463de4c5d 5725 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
group-onsemi 0:098463de4c5d 5726 * For the square root function, the algorithm reduces to:
group-onsemi 0:098463de4c5d 5727 * <pre>
group-onsemi 0:098463de4c5d 5728 * x0 = in/2 [initial guess]
group-onsemi 0:098463de4c5d 5729 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
group-onsemi 0:098463de4c5d 5730 * </pre>
group-onsemi 0:098463de4c5d 5731 */
group-onsemi 0:098463de4c5d 5732
group-onsemi 0:098463de4c5d 5733
group-onsemi 0:098463de4c5d 5734 /**
group-onsemi 0:098463de4c5d 5735 * @addtogroup SQRT
group-onsemi 0:098463de4c5d 5736 * @{
group-onsemi 0:098463de4c5d 5737 */
group-onsemi 0:098463de4c5d 5738
group-onsemi 0:098463de4c5d 5739 /**
group-onsemi 0:098463de4c5d 5740 * @brief Floating-point square root function.
group-onsemi 0:098463de4c5d 5741 * @param[in] in input value.
group-onsemi 0:098463de4c5d 5742 * @param[out] pOut square root of input value.
group-onsemi 0:098463de4c5d 5743 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
group-onsemi 0:098463de4c5d 5744 * <code>in</code> is negative value and returns zero output for negative values.
group-onsemi 0:098463de4c5d 5745 */
group-onsemi 0:098463de4c5d 5746 static __INLINE arm_status arm_sqrt_f32(
group-onsemi 0:098463de4c5d 5747 float32_t in,
group-onsemi 0:098463de4c5d 5748 float32_t * pOut)
group-onsemi 0:098463de4c5d 5749 {
group-onsemi 0:098463de4c5d 5750 if(in >= 0.0f)
group-onsemi 0:098463de4c5d 5751 {
group-onsemi 0:098463de4c5d 5752
group-onsemi 0:098463de4c5d 5753 #if (__FPU_USED == 1) && defined ( __CC_ARM )
group-onsemi 0:098463de4c5d 5754 *pOut = __sqrtf(in);
group-onsemi 0:098463de4c5d 5755 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
group-onsemi 0:098463de4c5d 5756 *pOut = __builtin_sqrtf(in);
group-onsemi 0:098463de4c5d 5757 #elif (__FPU_USED == 1) && defined(__GNUC__)
group-onsemi 0:098463de4c5d 5758 *pOut = __builtin_sqrtf(in);
group-onsemi 0:098463de4c5d 5759 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
group-onsemi 0:098463de4c5d 5760 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
group-onsemi 0:098463de4c5d 5761 #else
group-onsemi 0:098463de4c5d 5762 *pOut = sqrtf(in);
group-onsemi 0:098463de4c5d 5763 #endif
group-onsemi 0:098463de4c5d 5764
group-onsemi 0:098463de4c5d 5765 return (ARM_MATH_SUCCESS);
group-onsemi 0:098463de4c5d 5766 }
group-onsemi 0:098463de4c5d 5767 else
group-onsemi 0:098463de4c5d 5768 {
group-onsemi 0:098463de4c5d 5769 *pOut = 0.0f;
group-onsemi 0:098463de4c5d 5770 return (ARM_MATH_ARGUMENT_ERROR);
group-onsemi 0:098463de4c5d 5771 }
group-onsemi 0:098463de4c5d 5772 }
group-onsemi 0:098463de4c5d 5773
group-onsemi 0:098463de4c5d 5774
group-onsemi 0:098463de4c5d 5775 /**
group-onsemi 0:098463de4c5d 5776 * @brief Q31 square root function.
group-onsemi 0:098463de4c5d 5777 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
group-onsemi 0:098463de4c5d 5778 * @param[out] pOut square root of input value.
group-onsemi 0:098463de4c5d 5779 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
group-onsemi 0:098463de4c5d 5780 * <code>in</code> is negative value and returns zero output for negative values.
group-onsemi 0:098463de4c5d 5781 */
group-onsemi 0:098463de4c5d 5782 arm_status arm_sqrt_q31(
group-onsemi 0:098463de4c5d 5783 q31_t in,
group-onsemi 0:098463de4c5d 5784 q31_t * pOut);
group-onsemi 0:098463de4c5d 5785
group-onsemi 0:098463de4c5d 5786
group-onsemi 0:098463de4c5d 5787 /**
group-onsemi 0:098463de4c5d 5788 * @brief Q15 square root function.
group-onsemi 0:098463de4c5d 5789 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
group-onsemi 0:098463de4c5d 5790 * @param[out] pOut square root of input value.
group-onsemi 0:098463de4c5d 5791 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
group-onsemi 0:098463de4c5d 5792 * <code>in</code> is negative value and returns zero output for negative values.
group-onsemi 0:098463de4c5d 5793 */
group-onsemi 0:098463de4c5d 5794 arm_status arm_sqrt_q15(
group-onsemi 0:098463de4c5d 5795 q15_t in,
group-onsemi 0:098463de4c5d 5796 q15_t * pOut);
group-onsemi 0:098463de4c5d 5797
group-onsemi 0:098463de4c5d 5798 /**
group-onsemi 0:098463de4c5d 5799 * @} end of SQRT group
group-onsemi 0:098463de4c5d 5800 */
group-onsemi 0:098463de4c5d 5801
group-onsemi 0:098463de4c5d 5802
group-onsemi 0:098463de4c5d 5803 /**
group-onsemi 0:098463de4c5d 5804 * @brief floating-point Circular write function.
group-onsemi 0:098463de4c5d 5805 */
group-onsemi 0:098463de4c5d 5806 static __INLINE void arm_circularWrite_f32(
group-onsemi 0:098463de4c5d 5807 int32_t * circBuffer,
group-onsemi 0:098463de4c5d 5808 int32_t L,
group-onsemi 0:098463de4c5d 5809 uint16_t * writeOffset,
group-onsemi 0:098463de4c5d 5810 int32_t bufferInc,
group-onsemi 0:098463de4c5d 5811 const int32_t * src,
group-onsemi 0:098463de4c5d 5812 int32_t srcInc,
group-onsemi 0:098463de4c5d 5813 uint32_t blockSize)
group-onsemi 0:098463de4c5d 5814 {
group-onsemi 0:098463de4c5d 5815 uint32_t i = 0u;
group-onsemi 0:098463de4c5d 5816 int32_t wOffset;
group-onsemi 0:098463de4c5d 5817
group-onsemi 0:098463de4c5d 5818 /* Copy the value of Index pointer that points
group-onsemi 0:098463de4c5d 5819 * to the current location where the input samples to be copied */
group-onsemi 0:098463de4c5d 5820 wOffset = *writeOffset;
group-onsemi 0:098463de4c5d 5821
group-onsemi 0:098463de4c5d 5822 /* Loop over the blockSize */
group-onsemi 0:098463de4c5d 5823 i = blockSize;
group-onsemi 0:098463de4c5d 5824
group-onsemi 0:098463de4c5d 5825 while(i > 0u)
group-onsemi 0:098463de4c5d 5826 {
group-onsemi 0:098463de4c5d 5827 /* copy the input sample to the circular buffer */
group-onsemi 0:098463de4c5d 5828 circBuffer[wOffset] = *src;
group-onsemi 0:098463de4c5d 5829
group-onsemi 0:098463de4c5d 5830 /* Update the input pointer */
group-onsemi 0:098463de4c5d 5831 src += srcInc;
group-onsemi 0:098463de4c5d 5832
group-onsemi 0:098463de4c5d 5833 /* Circularly update wOffset. Watch out for positive and negative value */
group-onsemi 0:098463de4c5d 5834 wOffset += bufferInc;
group-onsemi 0:098463de4c5d 5835 if(wOffset >= L)
group-onsemi 0:098463de4c5d 5836 wOffset -= L;
group-onsemi 0:098463de4c5d 5837
group-onsemi 0:098463de4c5d 5838 /* Decrement the loop counter */
group-onsemi 0:098463de4c5d 5839 i--;
group-onsemi 0:098463de4c5d 5840 }
group-onsemi 0:098463de4c5d 5841
group-onsemi 0:098463de4c5d 5842 /* Update the index pointer */
group-onsemi 0:098463de4c5d 5843 *writeOffset = (uint16_t)wOffset;
group-onsemi 0:098463de4c5d 5844 }
group-onsemi 0:098463de4c5d 5845
group-onsemi 0:098463de4c5d 5846
group-onsemi 0:098463de4c5d 5847
group-onsemi 0:098463de4c5d 5848 /**
group-onsemi 0:098463de4c5d 5849 * @brief floating-point Circular Read function.
group-onsemi 0:098463de4c5d 5850 */
group-onsemi 0:098463de4c5d 5851 static __INLINE void arm_circularRead_f32(
group-onsemi 0:098463de4c5d 5852 int32_t * circBuffer,
group-onsemi 0:098463de4c5d 5853 int32_t L,
group-onsemi 0:098463de4c5d 5854 int32_t * readOffset,
group-onsemi 0:098463de4c5d 5855 int32_t bufferInc,
group-onsemi 0:098463de4c5d 5856 int32_t * dst,
group-onsemi 0:098463de4c5d 5857 int32_t * dst_base,
group-onsemi 0:098463de4c5d 5858 int32_t dst_length,
group-onsemi 0:098463de4c5d 5859 int32_t dstInc,
group-onsemi 0:098463de4c5d 5860 uint32_t blockSize)
group-onsemi 0:098463de4c5d 5861 {
group-onsemi 0:098463de4c5d 5862 uint32_t i = 0u;
group-onsemi 0:098463de4c5d 5863 int32_t rOffset, dst_end;
group-onsemi 0:098463de4c5d 5864
group-onsemi 0:098463de4c5d 5865 /* Copy the value of Index pointer that points
group-onsemi 0:098463de4c5d 5866 * to the current location from where the input samples to be read */
group-onsemi 0:098463de4c5d 5867 rOffset = *readOffset;
group-onsemi 0:098463de4c5d 5868 dst_end = (int32_t) (dst_base + dst_length);
group-onsemi 0:098463de4c5d 5869
group-onsemi 0:098463de4c5d 5870 /* Loop over the blockSize */
group-onsemi 0:098463de4c5d 5871 i = blockSize;
group-onsemi 0:098463de4c5d 5872
group-onsemi 0:098463de4c5d 5873 while(i > 0u)
group-onsemi 0:098463de4c5d 5874 {
group-onsemi 0:098463de4c5d 5875 /* copy the sample from the circular buffer to the destination buffer */
group-onsemi 0:098463de4c5d 5876 *dst = circBuffer[rOffset];
group-onsemi 0:098463de4c5d 5877
group-onsemi 0:098463de4c5d 5878 /* Update the input pointer */
group-onsemi 0:098463de4c5d 5879 dst += dstInc;
group-onsemi 0:098463de4c5d 5880
group-onsemi 0:098463de4c5d 5881 if(dst == (int32_t *) dst_end)
group-onsemi 0:098463de4c5d 5882 {
group-onsemi 0:098463de4c5d 5883 dst = dst_base;
group-onsemi 0:098463de4c5d 5884 }
group-onsemi 0:098463de4c5d 5885
group-onsemi 0:098463de4c5d 5886 /* Circularly update rOffset. Watch out for positive and negative value */
group-onsemi 0:098463de4c5d 5887 rOffset += bufferInc;
group-onsemi 0:098463de4c5d 5888
group-onsemi 0:098463de4c5d 5889 if(rOffset >= L)
group-onsemi 0:098463de4c5d 5890 {
group-onsemi 0:098463de4c5d 5891 rOffset -= L;
group-onsemi 0:098463de4c5d 5892 }
group-onsemi 0:098463de4c5d 5893
group-onsemi 0:098463de4c5d 5894 /* Decrement the loop counter */
group-onsemi 0:098463de4c5d 5895 i--;
group-onsemi 0:098463de4c5d 5896 }
group-onsemi 0:098463de4c5d 5897
group-onsemi 0:098463de4c5d 5898 /* Update the index pointer */
group-onsemi 0:098463de4c5d 5899 *readOffset = rOffset;
group-onsemi 0:098463de4c5d 5900 }
group-onsemi 0:098463de4c5d 5901
group-onsemi 0:098463de4c5d 5902
group-onsemi 0:098463de4c5d 5903 /**
group-onsemi 0:098463de4c5d 5904 * @brief Q15 Circular write function.
group-onsemi 0:098463de4c5d 5905 */
group-onsemi 0:098463de4c5d 5906 static __INLINE void arm_circularWrite_q15(
group-onsemi 0:098463de4c5d 5907 q15_t * circBuffer,
group-onsemi 0:098463de4c5d 5908 int32_t L,
group-onsemi 0:098463de4c5d 5909 uint16_t * writeOffset,
group-onsemi 0:098463de4c5d 5910 int32_t bufferInc,
group-onsemi 0:098463de4c5d 5911 const q15_t * src,
group-onsemi 0:098463de4c5d 5912 int32_t srcInc,
group-onsemi 0:098463de4c5d 5913 uint32_t blockSize)
group-onsemi 0:098463de4c5d 5914 {
group-onsemi 0:098463de4c5d 5915 uint32_t i = 0u;
group-onsemi 0:098463de4c5d 5916 int32_t wOffset;
group-onsemi 0:098463de4c5d 5917
group-onsemi 0:098463de4c5d 5918 /* Copy the value of Index pointer that points
group-onsemi 0:098463de4c5d 5919 * to the current location where the input samples to be copied */
group-onsemi 0:098463de4c5d 5920 wOffset = *writeOffset;
group-onsemi 0:098463de4c5d 5921
group-onsemi 0:098463de4c5d 5922 /* Loop over the blockSize */
group-onsemi 0:098463de4c5d 5923 i = blockSize;
group-onsemi 0:098463de4c5d 5924
group-onsemi 0:098463de4c5d 5925 while(i > 0u)
group-onsemi 0:098463de4c5d 5926 {
group-onsemi 0:098463de4c5d 5927 /* copy the input sample to the circular buffer */
group-onsemi 0:098463de4c5d 5928 circBuffer[wOffset] = *src;
group-onsemi 0:098463de4c5d 5929
group-onsemi 0:098463de4c5d 5930 /* Update the input pointer */
group-onsemi 0:098463de4c5d 5931 src += srcInc;
group-onsemi 0:098463de4c5d 5932
group-onsemi 0:098463de4c5d 5933 /* Circularly update wOffset. Watch out for positive and negative value */
group-onsemi 0:098463de4c5d 5934 wOffset += bufferInc;
group-onsemi 0:098463de4c5d 5935 if(wOffset >= L)
group-onsemi 0:098463de4c5d 5936 wOffset -= L;
group-onsemi 0:098463de4c5d 5937
group-onsemi 0:098463de4c5d 5938 /* Decrement the loop counter */
group-onsemi 0:098463de4c5d 5939 i--;
group-onsemi 0:098463de4c5d 5940 }
group-onsemi 0:098463de4c5d 5941
group-onsemi 0:098463de4c5d 5942 /* Update the index pointer */
group-onsemi 0:098463de4c5d 5943 *writeOffset = (uint16_t)wOffset;
group-onsemi 0:098463de4c5d 5944 }
group-onsemi 0:098463de4c5d 5945
group-onsemi 0:098463de4c5d 5946
group-onsemi 0:098463de4c5d 5947 /**
group-onsemi 0:098463de4c5d 5948 * @brief Q15 Circular Read function.
group-onsemi 0:098463de4c5d 5949 */
group-onsemi 0:098463de4c5d 5950 static __INLINE void arm_circularRead_q15(
group-onsemi 0:098463de4c5d 5951 q15_t * circBuffer,
group-onsemi 0:098463de4c5d 5952 int32_t L,
group-onsemi 0:098463de4c5d 5953 int32_t * readOffset,
group-onsemi 0:098463de4c5d 5954 int32_t bufferInc,
group-onsemi 0:098463de4c5d 5955 q15_t * dst,
group-onsemi 0:098463de4c5d 5956 q15_t * dst_base,
group-onsemi 0:098463de4c5d 5957 int32_t dst_length,
group-onsemi 0:098463de4c5d 5958 int32_t dstInc,
group-onsemi 0:098463de4c5d 5959 uint32_t blockSize)
group-onsemi 0:098463de4c5d 5960 {
group-onsemi 0:098463de4c5d 5961 uint32_t i = 0;
group-onsemi 0:098463de4c5d 5962 int32_t rOffset, dst_end;
group-onsemi 0:098463de4c5d 5963
group-onsemi 0:098463de4c5d 5964 /* Copy the value of Index pointer that points
group-onsemi 0:098463de4c5d 5965 * to the current location from where the input samples to be read */
group-onsemi 0:098463de4c5d 5966 rOffset = *readOffset;
group-onsemi 0:098463de4c5d 5967
group-onsemi 0:098463de4c5d 5968 dst_end = (int32_t) (dst_base + dst_length);
group-onsemi 0:098463de4c5d 5969
group-onsemi 0:098463de4c5d 5970 /* Loop over the blockSize */
group-onsemi 0:098463de4c5d 5971 i = blockSize;
group-onsemi 0:098463de4c5d 5972
group-onsemi 0:098463de4c5d 5973 while(i > 0u)
group-onsemi 0:098463de4c5d 5974 {
group-onsemi 0:098463de4c5d 5975 /* copy the sample from the circular buffer to the destination buffer */
group-onsemi 0:098463de4c5d 5976 *dst = circBuffer[rOffset];
group-onsemi 0:098463de4c5d 5977
group-onsemi 0:098463de4c5d 5978 /* Update the input pointer */
group-onsemi 0:098463de4c5d 5979 dst += dstInc;
group-onsemi 0:098463de4c5d 5980
group-onsemi 0:098463de4c5d 5981 if(dst == (q15_t *) dst_end)
group-onsemi 0:098463de4c5d 5982 {
group-onsemi 0:098463de4c5d 5983 dst = dst_base;
group-onsemi 0:098463de4c5d 5984 }
group-onsemi 0:098463de4c5d 5985
group-onsemi 0:098463de4c5d 5986 /* Circularly update wOffset. Watch out for positive and negative value */
group-onsemi 0:098463de4c5d 5987 rOffset += bufferInc;
group-onsemi 0:098463de4c5d 5988
group-onsemi 0:098463de4c5d 5989 if(rOffset >= L)
group-onsemi 0:098463de4c5d 5990 {
group-onsemi 0:098463de4c5d 5991 rOffset -= L;
group-onsemi 0:098463de4c5d 5992 }
group-onsemi 0:098463de4c5d 5993
group-onsemi 0:098463de4c5d 5994 /* Decrement the loop counter */
group-onsemi 0:098463de4c5d 5995 i--;
group-onsemi 0:098463de4c5d 5996 }
group-onsemi 0:098463de4c5d 5997
group-onsemi 0:098463de4c5d 5998 /* Update the index pointer */
group-onsemi 0:098463de4c5d 5999 *readOffset = rOffset;
group-onsemi 0:098463de4c5d 6000 }
group-onsemi 0:098463de4c5d 6001
group-onsemi 0:098463de4c5d 6002
group-onsemi 0:098463de4c5d 6003 /**
group-onsemi 0:098463de4c5d 6004 * @brief Q7 Circular write function.
group-onsemi 0:098463de4c5d 6005 */
group-onsemi 0:098463de4c5d 6006 static __INLINE void arm_circularWrite_q7(
group-onsemi 0:098463de4c5d 6007 q7_t * circBuffer,
group-onsemi 0:098463de4c5d 6008 int32_t L,
group-onsemi 0:098463de4c5d 6009 uint16_t * writeOffset,
group-onsemi 0:098463de4c5d 6010 int32_t bufferInc,
group-onsemi 0:098463de4c5d 6011 const q7_t * src,
group-onsemi 0:098463de4c5d 6012 int32_t srcInc,
group-onsemi 0:098463de4c5d 6013 uint32_t blockSize)
group-onsemi 0:098463de4c5d 6014 {
group-onsemi 0:098463de4c5d 6015 uint32_t i = 0u;
group-onsemi 0:098463de4c5d 6016 int32_t wOffset;
group-onsemi 0:098463de4c5d 6017
group-onsemi 0:098463de4c5d 6018 /* Copy the value of Index pointer that points
group-onsemi 0:098463de4c5d 6019 * to the current location where the input samples to be copied */
group-onsemi 0:098463de4c5d 6020 wOffset = *writeOffset;
group-onsemi 0:098463de4c5d 6021
group-onsemi 0:098463de4c5d 6022 /* Loop over the blockSize */
group-onsemi 0:098463de4c5d 6023 i = blockSize;
group-onsemi 0:098463de4c5d 6024
group-onsemi 0:098463de4c5d 6025 while(i > 0u)
group-onsemi 0:098463de4c5d 6026 {
group-onsemi 0:098463de4c5d 6027 /* copy the input sample to the circular buffer */
group-onsemi 0:098463de4c5d 6028 circBuffer[wOffset] = *src;
group-onsemi 0:098463de4c5d 6029
group-onsemi 0:098463de4c5d 6030 /* Update the input pointer */
group-onsemi 0:098463de4c5d 6031 src += srcInc;
group-onsemi 0:098463de4c5d 6032
group-onsemi 0:098463de4c5d 6033 /* Circularly update wOffset. Watch out for positive and negative value */
group-onsemi 0:098463de4c5d 6034 wOffset += bufferInc;
group-onsemi 0:098463de4c5d 6035 if(wOffset >= L)
group-onsemi 0:098463de4c5d 6036 wOffset -= L;
group-onsemi 0:098463de4c5d 6037
group-onsemi 0:098463de4c5d 6038 /* Decrement the loop counter */
group-onsemi 0:098463de4c5d 6039 i--;
group-onsemi 0:098463de4c5d 6040 }
group-onsemi 0:098463de4c5d 6041
group-onsemi 0:098463de4c5d 6042 /* Update the index pointer */
group-onsemi 0:098463de4c5d 6043 *writeOffset = (uint16_t)wOffset;
group-onsemi 0:098463de4c5d 6044 }
group-onsemi 0:098463de4c5d 6045
group-onsemi 0:098463de4c5d 6046
group-onsemi 0:098463de4c5d 6047 /**
group-onsemi 0:098463de4c5d 6048 * @brief Q7 Circular Read function.
group-onsemi 0:098463de4c5d 6049 */
group-onsemi 0:098463de4c5d 6050 static __INLINE void arm_circularRead_q7(
group-onsemi 0:098463de4c5d 6051 q7_t * circBuffer,
group-onsemi 0:098463de4c5d 6052 int32_t L,
group-onsemi 0:098463de4c5d 6053 int32_t * readOffset,
group-onsemi 0:098463de4c5d 6054 int32_t bufferInc,
group-onsemi 0:098463de4c5d 6055 q7_t * dst,
group-onsemi 0:098463de4c5d 6056 q7_t * dst_base,
group-onsemi 0:098463de4c5d 6057 int32_t dst_length,
group-onsemi 0:098463de4c5d 6058 int32_t dstInc,
group-onsemi 0:098463de4c5d 6059 uint32_t blockSize)
group-onsemi 0:098463de4c5d 6060 {
group-onsemi 0:098463de4c5d 6061 uint32_t i = 0;
group-onsemi 0:098463de4c5d 6062 int32_t rOffset, dst_end;
group-onsemi 0:098463de4c5d 6063
group-onsemi 0:098463de4c5d 6064 /* Copy the value of Index pointer that points
group-onsemi 0:098463de4c5d 6065 * to the current location from where the input samples to be read */
group-onsemi 0:098463de4c5d 6066 rOffset = *readOffset;
group-onsemi 0:098463de4c5d 6067
group-onsemi 0:098463de4c5d 6068 dst_end = (int32_t) (dst_base + dst_length);
group-onsemi 0:098463de4c5d 6069
group-onsemi 0:098463de4c5d 6070 /* Loop over the blockSize */
group-onsemi 0:098463de4c5d 6071 i = blockSize;
group-onsemi 0:098463de4c5d 6072
group-onsemi 0:098463de4c5d 6073 while(i > 0u)
group-onsemi 0:098463de4c5d 6074 {
group-onsemi 0:098463de4c5d 6075 /* copy the sample from the circular buffer to the destination buffer */
group-onsemi 0:098463de4c5d 6076 *dst = circBuffer[rOffset];
group-onsemi 0:098463de4c5d 6077
group-onsemi 0:098463de4c5d 6078 /* Update the input pointer */
group-onsemi 0:098463de4c5d 6079 dst += dstInc;
group-onsemi 0:098463de4c5d 6080
group-onsemi 0:098463de4c5d 6081 if(dst == (q7_t *) dst_end)
group-onsemi 0:098463de4c5d 6082 {
group-onsemi 0:098463de4c5d 6083 dst = dst_base;
group-onsemi 0:098463de4c5d 6084 }
group-onsemi 0:098463de4c5d 6085
group-onsemi 0:098463de4c5d 6086 /* Circularly update rOffset. Watch out for positive and negative value */
group-onsemi 0:098463de4c5d 6087 rOffset += bufferInc;
group-onsemi 0:098463de4c5d 6088
group-onsemi 0:098463de4c5d 6089 if(rOffset >= L)
group-onsemi 0:098463de4c5d 6090 {
group-onsemi 0:098463de4c5d 6091 rOffset -= L;
group-onsemi 0:098463de4c5d 6092 }
group-onsemi 0:098463de4c5d 6093
group-onsemi 0:098463de4c5d 6094 /* Decrement the loop counter */
group-onsemi 0:098463de4c5d 6095 i--;
group-onsemi 0:098463de4c5d 6096 }
group-onsemi 0:098463de4c5d 6097
group-onsemi 0:098463de4c5d 6098 /* Update the index pointer */
group-onsemi 0:098463de4c5d 6099 *readOffset = rOffset;
group-onsemi 0:098463de4c5d 6100 }
group-onsemi 0:098463de4c5d 6101
group-onsemi 0:098463de4c5d 6102
group-onsemi 0:098463de4c5d 6103 /**
group-onsemi 0:098463de4c5d 6104 * @brief Sum of the squares of the elements of a Q31 vector.
group-onsemi 0:098463de4c5d 6105 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6106 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6107 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6108 */
group-onsemi 0:098463de4c5d 6109 void arm_power_q31(
group-onsemi 0:098463de4c5d 6110 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6111 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6112 q63_t * pResult);
group-onsemi 0:098463de4c5d 6113
group-onsemi 0:098463de4c5d 6114
group-onsemi 0:098463de4c5d 6115 /**
group-onsemi 0:098463de4c5d 6116 * @brief Sum of the squares of the elements of a floating-point vector.
group-onsemi 0:098463de4c5d 6117 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6118 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6119 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6120 */
group-onsemi 0:098463de4c5d 6121 void arm_power_f32(
group-onsemi 0:098463de4c5d 6122 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6123 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6124 float32_t * pResult);
group-onsemi 0:098463de4c5d 6125
group-onsemi 0:098463de4c5d 6126
group-onsemi 0:098463de4c5d 6127 /**
group-onsemi 0:098463de4c5d 6128 * @brief Sum of the squares of the elements of a Q15 vector.
group-onsemi 0:098463de4c5d 6129 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6130 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6131 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6132 */
group-onsemi 0:098463de4c5d 6133 void arm_power_q15(
group-onsemi 0:098463de4c5d 6134 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6135 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6136 q63_t * pResult);
group-onsemi 0:098463de4c5d 6137
group-onsemi 0:098463de4c5d 6138
group-onsemi 0:098463de4c5d 6139 /**
group-onsemi 0:098463de4c5d 6140 * @brief Sum of the squares of the elements of a Q7 vector.
group-onsemi 0:098463de4c5d 6141 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6142 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6143 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6144 */
group-onsemi 0:098463de4c5d 6145 void arm_power_q7(
group-onsemi 0:098463de4c5d 6146 q7_t * pSrc,
group-onsemi 0:098463de4c5d 6147 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6148 q31_t * pResult);
group-onsemi 0:098463de4c5d 6149
group-onsemi 0:098463de4c5d 6150
group-onsemi 0:098463de4c5d 6151 /**
group-onsemi 0:098463de4c5d 6152 * @brief Mean value of a Q7 vector.
group-onsemi 0:098463de4c5d 6153 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6154 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6155 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6156 */
group-onsemi 0:098463de4c5d 6157 void arm_mean_q7(
group-onsemi 0:098463de4c5d 6158 q7_t * pSrc,
group-onsemi 0:098463de4c5d 6159 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6160 q7_t * pResult);
group-onsemi 0:098463de4c5d 6161
group-onsemi 0:098463de4c5d 6162
group-onsemi 0:098463de4c5d 6163 /**
group-onsemi 0:098463de4c5d 6164 * @brief Mean value of a Q15 vector.
group-onsemi 0:098463de4c5d 6165 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6166 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6167 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6168 */
group-onsemi 0:098463de4c5d 6169 void arm_mean_q15(
group-onsemi 0:098463de4c5d 6170 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6171 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6172 q15_t * pResult);
group-onsemi 0:098463de4c5d 6173
group-onsemi 0:098463de4c5d 6174
group-onsemi 0:098463de4c5d 6175 /**
group-onsemi 0:098463de4c5d 6176 * @brief Mean value of a Q31 vector.
group-onsemi 0:098463de4c5d 6177 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6178 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6179 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6180 */
group-onsemi 0:098463de4c5d 6181 void arm_mean_q31(
group-onsemi 0:098463de4c5d 6182 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6183 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6184 q31_t * pResult);
group-onsemi 0:098463de4c5d 6185
group-onsemi 0:098463de4c5d 6186
group-onsemi 0:098463de4c5d 6187 /**
group-onsemi 0:098463de4c5d 6188 * @brief Mean value of a floating-point vector.
group-onsemi 0:098463de4c5d 6189 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6190 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6191 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6192 */
group-onsemi 0:098463de4c5d 6193 void arm_mean_f32(
group-onsemi 0:098463de4c5d 6194 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6195 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6196 float32_t * pResult);
group-onsemi 0:098463de4c5d 6197
group-onsemi 0:098463de4c5d 6198
group-onsemi 0:098463de4c5d 6199 /**
group-onsemi 0:098463de4c5d 6200 * @brief Variance of the elements of a floating-point vector.
group-onsemi 0:098463de4c5d 6201 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6202 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6203 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6204 */
group-onsemi 0:098463de4c5d 6205 void arm_var_f32(
group-onsemi 0:098463de4c5d 6206 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6207 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6208 float32_t * pResult);
group-onsemi 0:098463de4c5d 6209
group-onsemi 0:098463de4c5d 6210
group-onsemi 0:098463de4c5d 6211 /**
group-onsemi 0:098463de4c5d 6212 * @brief Variance of the elements of a Q31 vector.
group-onsemi 0:098463de4c5d 6213 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6214 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6215 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6216 */
group-onsemi 0:098463de4c5d 6217 void arm_var_q31(
group-onsemi 0:098463de4c5d 6218 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6219 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6220 q31_t * pResult);
group-onsemi 0:098463de4c5d 6221
group-onsemi 0:098463de4c5d 6222
group-onsemi 0:098463de4c5d 6223 /**
group-onsemi 0:098463de4c5d 6224 * @brief Variance of the elements of a Q15 vector.
group-onsemi 0:098463de4c5d 6225 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6226 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6227 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6228 */
group-onsemi 0:098463de4c5d 6229 void arm_var_q15(
group-onsemi 0:098463de4c5d 6230 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6231 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6232 q15_t * pResult);
group-onsemi 0:098463de4c5d 6233
group-onsemi 0:098463de4c5d 6234
group-onsemi 0:098463de4c5d 6235 /**
group-onsemi 0:098463de4c5d 6236 * @brief Root Mean Square of the elements of a floating-point vector.
group-onsemi 0:098463de4c5d 6237 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6238 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6239 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6240 */
group-onsemi 0:098463de4c5d 6241 void arm_rms_f32(
group-onsemi 0:098463de4c5d 6242 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6243 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6244 float32_t * pResult);
group-onsemi 0:098463de4c5d 6245
group-onsemi 0:098463de4c5d 6246
group-onsemi 0:098463de4c5d 6247 /**
group-onsemi 0:098463de4c5d 6248 * @brief Root Mean Square of the elements of a Q31 vector.
group-onsemi 0:098463de4c5d 6249 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6250 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6251 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6252 */
group-onsemi 0:098463de4c5d 6253 void arm_rms_q31(
group-onsemi 0:098463de4c5d 6254 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6255 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6256 q31_t * pResult);
group-onsemi 0:098463de4c5d 6257
group-onsemi 0:098463de4c5d 6258
group-onsemi 0:098463de4c5d 6259 /**
group-onsemi 0:098463de4c5d 6260 * @brief Root Mean Square of the elements of a Q15 vector.
group-onsemi 0:098463de4c5d 6261 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6262 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6263 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6264 */
group-onsemi 0:098463de4c5d 6265 void arm_rms_q15(
group-onsemi 0:098463de4c5d 6266 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6267 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6268 q15_t * pResult);
group-onsemi 0:098463de4c5d 6269
group-onsemi 0:098463de4c5d 6270
group-onsemi 0:098463de4c5d 6271 /**
group-onsemi 0:098463de4c5d 6272 * @brief Standard deviation of the elements of a floating-point vector.
group-onsemi 0:098463de4c5d 6273 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6274 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6275 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6276 */
group-onsemi 0:098463de4c5d 6277 void arm_std_f32(
group-onsemi 0:098463de4c5d 6278 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6279 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6280 float32_t * pResult);
group-onsemi 0:098463de4c5d 6281
group-onsemi 0:098463de4c5d 6282
group-onsemi 0:098463de4c5d 6283 /**
group-onsemi 0:098463de4c5d 6284 * @brief Standard deviation of the elements of a Q31 vector.
group-onsemi 0:098463de4c5d 6285 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6286 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6287 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6288 */
group-onsemi 0:098463de4c5d 6289 void arm_std_q31(
group-onsemi 0:098463de4c5d 6290 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6291 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6292 q31_t * pResult);
group-onsemi 0:098463de4c5d 6293
group-onsemi 0:098463de4c5d 6294
group-onsemi 0:098463de4c5d 6295 /**
group-onsemi 0:098463de4c5d 6296 * @brief Standard deviation of the elements of a Q15 vector.
group-onsemi 0:098463de4c5d 6297 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6298 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6299 * @param[out] pResult is output value.
group-onsemi 0:098463de4c5d 6300 */
group-onsemi 0:098463de4c5d 6301 void arm_std_q15(
group-onsemi 0:098463de4c5d 6302 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6303 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6304 q15_t * pResult);
group-onsemi 0:098463de4c5d 6305
group-onsemi 0:098463de4c5d 6306
group-onsemi 0:098463de4c5d 6307 /**
group-onsemi 0:098463de4c5d 6308 * @brief Floating-point complex magnitude
group-onsemi 0:098463de4c5d 6309 * @param[in] pSrc points to the complex input vector
group-onsemi 0:098463de4c5d 6310 * @param[out] pDst points to the real output vector
group-onsemi 0:098463de4c5d 6311 * @param[in] numSamples number of complex samples in the input vector
group-onsemi 0:098463de4c5d 6312 */
group-onsemi 0:098463de4c5d 6313 void arm_cmplx_mag_f32(
group-onsemi 0:098463de4c5d 6314 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6315 float32_t * pDst,
group-onsemi 0:098463de4c5d 6316 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6317
group-onsemi 0:098463de4c5d 6318
group-onsemi 0:098463de4c5d 6319 /**
group-onsemi 0:098463de4c5d 6320 * @brief Q31 complex magnitude
group-onsemi 0:098463de4c5d 6321 * @param[in] pSrc points to the complex input vector
group-onsemi 0:098463de4c5d 6322 * @param[out] pDst points to the real output vector
group-onsemi 0:098463de4c5d 6323 * @param[in] numSamples number of complex samples in the input vector
group-onsemi 0:098463de4c5d 6324 */
group-onsemi 0:098463de4c5d 6325 void arm_cmplx_mag_q31(
group-onsemi 0:098463de4c5d 6326 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6327 q31_t * pDst,
group-onsemi 0:098463de4c5d 6328 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6329
group-onsemi 0:098463de4c5d 6330
group-onsemi 0:098463de4c5d 6331 /**
group-onsemi 0:098463de4c5d 6332 * @brief Q15 complex magnitude
group-onsemi 0:098463de4c5d 6333 * @param[in] pSrc points to the complex input vector
group-onsemi 0:098463de4c5d 6334 * @param[out] pDst points to the real output vector
group-onsemi 0:098463de4c5d 6335 * @param[in] numSamples number of complex samples in the input vector
group-onsemi 0:098463de4c5d 6336 */
group-onsemi 0:098463de4c5d 6337 void arm_cmplx_mag_q15(
group-onsemi 0:098463de4c5d 6338 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6339 q15_t * pDst,
group-onsemi 0:098463de4c5d 6340 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6341
group-onsemi 0:098463de4c5d 6342
group-onsemi 0:098463de4c5d 6343 /**
group-onsemi 0:098463de4c5d 6344 * @brief Q15 complex dot product
group-onsemi 0:098463de4c5d 6345 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 6346 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 6347 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 6348 * @param[out] realResult real part of the result returned here
group-onsemi 0:098463de4c5d 6349 * @param[out] imagResult imaginary part of the result returned here
group-onsemi 0:098463de4c5d 6350 */
group-onsemi 0:098463de4c5d 6351 void arm_cmplx_dot_prod_q15(
group-onsemi 0:098463de4c5d 6352 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 6353 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 6354 uint32_t numSamples,
group-onsemi 0:098463de4c5d 6355 q31_t * realResult,
group-onsemi 0:098463de4c5d 6356 q31_t * imagResult);
group-onsemi 0:098463de4c5d 6357
group-onsemi 0:098463de4c5d 6358
group-onsemi 0:098463de4c5d 6359 /**
group-onsemi 0:098463de4c5d 6360 * @brief Q31 complex dot product
group-onsemi 0:098463de4c5d 6361 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 6362 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 6363 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 6364 * @param[out] realResult real part of the result returned here
group-onsemi 0:098463de4c5d 6365 * @param[out] imagResult imaginary part of the result returned here
group-onsemi 0:098463de4c5d 6366 */
group-onsemi 0:098463de4c5d 6367 void arm_cmplx_dot_prod_q31(
group-onsemi 0:098463de4c5d 6368 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 6369 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 6370 uint32_t numSamples,
group-onsemi 0:098463de4c5d 6371 q63_t * realResult,
group-onsemi 0:098463de4c5d 6372 q63_t * imagResult);
group-onsemi 0:098463de4c5d 6373
group-onsemi 0:098463de4c5d 6374
group-onsemi 0:098463de4c5d 6375 /**
group-onsemi 0:098463de4c5d 6376 * @brief Floating-point complex dot product
group-onsemi 0:098463de4c5d 6377 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 6378 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 6379 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 6380 * @param[out] realResult real part of the result returned here
group-onsemi 0:098463de4c5d 6381 * @param[out] imagResult imaginary part of the result returned here
group-onsemi 0:098463de4c5d 6382 */
group-onsemi 0:098463de4c5d 6383 void arm_cmplx_dot_prod_f32(
group-onsemi 0:098463de4c5d 6384 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 6385 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 6386 uint32_t numSamples,
group-onsemi 0:098463de4c5d 6387 float32_t * realResult,
group-onsemi 0:098463de4c5d 6388 float32_t * imagResult);
group-onsemi 0:098463de4c5d 6389
group-onsemi 0:098463de4c5d 6390
group-onsemi 0:098463de4c5d 6391 /**
group-onsemi 0:098463de4c5d 6392 * @brief Q15 complex-by-real multiplication
group-onsemi 0:098463de4c5d 6393 * @param[in] pSrcCmplx points to the complex input vector
group-onsemi 0:098463de4c5d 6394 * @param[in] pSrcReal points to the real input vector
group-onsemi 0:098463de4c5d 6395 * @param[out] pCmplxDst points to the complex output vector
group-onsemi 0:098463de4c5d 6396 * @param[in] numSamples number of samples in each vector
group-onsemi 0:098463de4c5d 6397 */
group-onsemi 0:098463de4c5d 6398 void arm_cmplx_mult_real_q15(
group-onsemi 0:098463de4c5d 6399 q15_t * pSrcCmplx,
group-onsemi 0:098463de4c5d 6400 q15_t * pSrcReal,
group-onsemi 0:098463de4c5d 6401 q15_t * pCmplxDst,
group-onsemi 0:098463de4c5d 6402 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6403
group-onsemi 0:098463de4c5d 6404
group-onsemi 0:098463de4c5d 6405 /**
group-onsemi 0:098463de4c5d 6406 * @brief Q31 complex-by-real multiplication
group-onsemi 0:098463de4c5d 6407 * @param[in] pSrcCmplx points to the complex input vector
group-onsemi 0:098463de4c5d 6408 * @param[in] pSrcReal points to the real input vector
group-onsemi 0:098463de4c5d 6409 * @param[out] pCmplxDst points to the complex output vector
group-onsemi 0:098463de4c5d 6410 * @param[in] numSamples number of samples in each vector
group-onsemi 0:098463de4c5d 6411 */
group-onsemi 0:098463de4c5d 6412 void arm_cmplx_mult_real_q31(
group-onsemi 0:098463de4c5d 6413 q31_t * pSrcCmplx,
group-onsemi 0:098463de4c5d 6414 q31_t * pSrcReal,
group-onsemi 0:098463de4c5d 6415 q31_t * pCmplxDst,
group-onsemi 0:098463de4c5d 6416 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6417
group-onsemi 0:098463de4c5d 6418
group-onsemi 0:098463de4c5d 6419 /**
group-onsemi 0:098463de4c5d 6420 * @brief Floating-point complex-by-real multiplication
group-onsemi 0:098463de4c5d 6421 * @param[in] pSrcCmplx points to the complex input vector
group-onsemi 0:098463de4c5d 6422 * @param[in] pSrcReal points to the real input vector
group-onsemi 0:098463de4c5d 6423 * @param[out] pCmplxDst points to the complex output vector
group-onsemi 0:098463de4c5d 6424 * @param[in] numSamples number of samples in each vector
group-onsemi 0:098463de4c5d 6425 */
group-onsemi 0:098463de4c5d 6426 void arm_cmplx_mult_real_f32(
group-onsemi 0:098463de4c5d 6427 float32_t * pSrcCmplx,
group-onsemi 0:098463de4c5d 6428 float32_t * pSrcReal,
group-onsemi 0:098463de4c5d 6429 float32_t * pCmplxDst,
group-onsemi 0:098463de4c5d 6430 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6431
group-onsemi 0:098463de4c5d 6432
group-onsemi 0:098463de4c5d 6433 /**
group-onsemi 0:098463de4c5d 6434 * @brief Minimum value of a Q7 vector.
group-onsemi 0:098463de4c5d 6435 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6436 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6437 * @param[out] result is output pointer
group-onsemi 0:098463de4c5d 6438 * @param[in] index is the array index of the minimum value in the input buffer.
group-onsemi 0:098463de4c5d 6439 */
group-onsemi 0:098463de4c5d 6440 void arm_min_q7(
group-onsemi 0:098463de4c5d 6441 q7_t * pSrc,
group-onsemi 0:098463de4c5d 6442 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6443 q7_t * result,
group-onsemi 0:098463de4c5d 6444 uint32_t * index);
group-onsemi 0:098463de4c5d 6445
group-onsemi 0:098463de4c5d 6446
group-onsemi 0:098463de4c5d 6447 /**
group-onsemi 0:098463de4c5d 6448 * @brief Minimum value of a Q15 vector.
group-onsemi 0:098463de4c5d 6449 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6450 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6451 * @param[out] pResult is output pointer
group-onsemi 0:098463de4c5d 6452 * @param[in] pIndex is the array index of the minimum value in the input buffer.
group-onsemi 0:098463de4c5d 6453 */
group-onsemi 0:098463de4c5d 6454 void arm_min_q15(
group-onsemi 0:098463de4c5d 6455 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6456 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6457 q15_t * pResult,
group-onsemi 0:098463de4c5d 6458 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6459
group-onsemi 0:098463de4c5d 6460
group-onsemi 0:098463de4c5d 6461 /**
group-onsemi 0:098463de4c5d 6462 * @brief Minimum value of a Q31 vector.
group-onsemi 0:098463de4c5d 6463 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6464 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6465 * @param[out] pResult is output pointer
group-onsemi 0:098463de4c5d 6466 * @param[out] pIndex is the array index of the minimum value in the input buffer.
group-onsemi 0:098463de4c5d 6467 */
group-onsemi 0:098463de4c5d 6468 void arm_min_q31(
group-onsemi 0:098463de4c5d 6469 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6470 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6471 q31_t * pResult,
group-onsemi 0:098463de4c5d 6472 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6473
group-onsemi 0:098463de4c5d 6474
group-onsemi 0:098463de4c5d 6475 /**
group-onsemi 0:098463de4c5d 6476 * @brief Minimum value of a floating-point vector.
group-onsemi 0:098463de4c5d 6477 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6478 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6479 * @param[out] pResult is output pointer
group-onsemi 0:098463de4c5d 6480 * @param[out] pIndex is the array index of the minimum value in the input buffer.
group-onsemi 0:098463de4c5d 6481 */
group-onsemi 0:098463de4c5d 6482 void arm_min_f32(
group-onsemi 0:098463de4c5d 6483 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6484 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6485 float32_t * pResult,
group-onsemi 0:098463de4c5d 6486 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6487
group-onsemi 0:098463de4c5d 6488
group-onsemi 0:098463de4c5d 6489 /**
group-onsemi 0:098463de4c5d 6490 * @brief Maximum value of a Q7 vector.
group-onsemi 0:098463de4c5d 6491 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 6492 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6493 * @param[out] pResult maximum value returned here
group-onsemi 0:098463de4c5d 6494 * @param[out] pIndex index of maximum value returned here
group-onsemi 0:098463de4c5d 6495 */
group-onsemi 0:098463de4c5d 6496 void arm_max_q7(
group-onsemi 0:098463de4c5d 6497 q7_t * pSrc,
group-onsemi 0:098463de4c5d 6498 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6499 q7_t * pResult,
group-onsemi 0:098463de4c5d 6500 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6501
group-onsemi 0:098463de4c5d 6502
group-onsemi 0:098463de4c5d 6503 /**
group-onsemi 0:098463de4c5d 6504 * @brief Maximum value of a Q15 vector.
group-onsemi 0:098463de4c5d 6505 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 6506 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6507 * @param[out] pResult maximum value returned here
group-onsemi 0:098463de4c5d 6508 * @param[out] pIndex index of maximum value returned here
group-onsemi 0:098463de4c5d 6509 */
group-onsemi 0:098463de4c5d 6510 void arm_max_q15(
group-onsemi 0:098463de4c5d 6511 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6512 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6513 q15_t * pResult,
group-onsemi 0:098463de4c5d 6514 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6515
group-onsemi 0:098463de4c5d 6516
group-onsemi 0:098463de4c5d 6517 /**
group-onsemi 0:098463de4c5d 6518 * @brief Maximum value of a Q31 vector.
group-onsemi 0:098463de4c5d 6519 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 6520 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6521 * @param[out] pResult maximum value returned here
group-onsemi 0:098463de4c5d 6522 * @param[out] pIndex index of maximum value returned here
group-onsemi 0:098463de4c5d 6523 */
group-onsemi 0:098463de4c5d 6524 void arm_max_q31(
group-onsemi 0:098463de4c5d 6525 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6526 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6527 q31_t * pResult,
group-onsemi 0:098463de4c5d 6528 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6529
group-onsemi 0:098463de4c5d 6530
group-onsemi 0:098463de4c5d 6531 /**
group-onsemi 0:098463de4c5d 6532 * @brief Maximum value of a floating-point vector.
group-onsemi 0:098463de4c5d 6533 * @param[in] pSrc points to the input buffer
group-onsemi 0:098463de4c5d 6534 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6535 * @param[out] pResult maximum value returned here
group-onsemi 0:098463de4c5d 6536 * @param[out] pIndex index of maximum value returned here
group-onsemi 0:098463de4c5d 6537 */
group-onsemi 0:098463de4c5d 6538 void arm_max_f32(
group-onsemi 0:098463de4c5d 6539 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6540 uint32_t blockSize,
group-onsemi 0:098463de4c5d 6541 float32_t * pResult,
group-onsemi 0:098463de4c5d 6542 uint32_t * pIndex);
group-onsemi 0:098463de4c5d 6543
group-onsemi 0:098463de4c5d 6544
group-onsemi 0:098463de4c5d 6545 /**
group-onsemi 0:098463de4c5d 6546 * @brief Q15 complex-by-complex multiplication
group-onsemi 0:098463de4c5d 6547 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 6548 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 6549 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 6550 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 6551 */
group-onsemi 0:098463de4c5d 6552 void arm_cmplx_mult_cmplx_q15(
group-onsemi 0:098463de4c5d 6553 q15_t * pSrcA,
group-onsemi 0:098463de4c5d 6554 q15_t * pSrcB,
group-onsemi 0:098463de4c5d 6555 q15_t * pDst,
group-onsemi 0:098463de4c5d 6556 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6557
group-onsemi 0:098463de4c5d 6558
group-onsemi 0:098463de4c5d 6559 /**
group-onsemi 0:098463de4c5d 6560 * @brief Q31 complex-by-complex multiplication
group-onsemi 0:098463de4c5d 6561 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 6562 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 6563 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 6564 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 6565 */
group-onsemi 0:098463de4c5d 6566 void arm_cmplx_mult_cmplx_q31(
group-onsemi 0:098463de4c5d 6567 q31_t * pSrcA,
group-onsemi 0:098463de4c5d 6568 q31_t * pSrcB,
group-onsemi 0:098463de4c5d 6569 q31_t * pDst,
group-onsemi 0:098463de4c5d 6570 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6571
group-onsemi 0:098463de4c5d 6572
group-onsemi 0:098463de4c5d 6573 /**
group-onsemi 0:098463de4c5d 6574 * @brief Floating-point complex-by-complex multiplication
group-onsemi 0:098463de4c5d 6575 * @param[in] pSrcA points to the first input vector
group-onsemi 0:098463de4c5d 6576 * @param[in] pSrcB points to the second input vector
group-onsemi 0:098463de4c5d 6577 * @param[out] pDst points to the output vector
group-onsemi 0:098463de4c5d 6578 * @param[in] numSamples number of complex samples in each vector
group-onsemi 0:098463de4c5d 6579 */
group-onsemi 0:098463de4c5d 6580 void arm_cmplx_mult_cmplx_f32(
group-onsemi 0:098463de4c5d 6581 float32_t * pSrcA,
group-onsemi 0:098463de4c5d 6582 float32_t * pSrcB,
group-onsemi 0:098463de4c5d 6583 float32_t * pDst,
group-onsemi 0:098463de4c5d 6584 uint32_t numSamples);
group-onsemi 0:098463de4c5d 6585
group-onsemi 0:098463de4c5d 6586
group-onsemi 0:098463de4c5d 6587 /**
group-onsemi 0:098463de4c5d 6588 * @brief Converts the elements of the floating-point vector to Q31 vector.
group-onsemi 0:098463de4c5d 6589 * @param[in] pSrc points to the floating-point input vector
group-onsemi 0:098463de4c5d 6590 * @param[out] pDst points to the Q31 output vector
group-onsemi 0:098463de4c5d 6591 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6592 */
group-onsemi 0:098463de4c5d 6593 void arm_float_to_q31(
group-onsemi 0:098463de4c5d 6594 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6595 q31_t * pDst,
group-onsemi 0:098463de4c5d 6596 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6597
group-onsemi 0:098463de4c5d 6598
group-onsemi 0:098463de4c5d 6599 /**
group-onsemi 0:098463de4c5d 6600 * @brief Converts the elements of the floating-point vector to Q15 vector.
group-onsemi 0:098463de4c5d 6601 * @param[in] pSrc points to the floating-point input vector
group-onsemi 0:098463de4c5d 6602 * @param[out] pDst points to the Q15 output vector
group-onsemi 0:098463de4c5d 6603 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6604 */
group-onsemi 0:098463de4c5d 6605 void arm_float_to_q15(
group-onsemi 0:098463de4c5d 6606 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6607 q15_t * pDst,
group-onsemi 0:098463de4c5d 6608 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6609
group-onsemi 0:098463de4c5d 6610
group-onsemi 0:098463de4c5d 6611 /**
group-onsemi 0:098463de4c5d 6612 * @brief Converts the elements of the floating-point vector to Q7 vector.
group-onsemi 0:098463de4c5d 6613 * @param[in] pSrc points to the floating-point input vector
group-onsemi 0:098463de4c5d 6614 * @param[out] pDst points to the Q7 output vector
group-onsemi 0:098463de4c5d 6615 * @param[in] blockSize length of the input vector
group-onsemi 0:098463de4c5d 6616 */
group-onsemi 0:098463de4c5d 6617 void arm_float_to_q7(
group-onsemi 0:098463de4c5d 6618 float32_t * pSrc,
group-onsemi 0:098463de4c5d 6619 q7_t * pDst,
group-onsemi 0:098463de4c5d 6620 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6621
group-onsemi 0:098463de4c5d 6622
group-onsemi 0:098463de4c5d 6623 /**
group-onsemi 0:098463de4c5d 6624 * @brief Converts the elements of the Q31 vector to Q15 vector.
group-onsemi 0:098463de4c5d 6625 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6626 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 6627 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6628 */
group-onsemi 0:098463de4c5d 6629 void arm_q31_to_q15(
group-onsemi 0:098463de4c5d 6630 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6631 q15_t * pDst,
group-onsemi 0:098463de4c5d 6632 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6633
group-onsemi 0:098463de4c5d 6634
group-onsemi 0:098463de4c5d 6635 /**
group-onsemi 0:098463de4c5d 6636 * @brief Converts the elements of the Q31 vector to Q7 vector.
group-onsemi 0:098463de4c5d 6637 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6638 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 6639 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6640 */
group-onsemi 0:098463de4c5d 6641 void arm_q31_to_q7(
group-onsemi 0:098463de4c5d 6642 q31_t * pSrc,
group-onsemi 0:098463de4c5d 6643 q7_t * pDst,
group-onsemi 0:098463de4c5d 6644 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6645
group-onsemi 0:098463de4c5d 6646
group-onsemi 0:098463de4c5d 6647 /**
group-onsemi 0:098463de4c5d 6648 * @brief Converts the elements of the Q15 vector to floating-point vector.
group-onsemi 0:098463de4c5d 6649 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6650 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 6651 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6652 */
group-onsemi 0:098463de4c5d 6653 void arm_q15_to_float(
group-onsemi 0:098463de4c5d 6654 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6655 float32_t * pDst,
group-onsemi 0:098463de4c5d 6656 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6657
group-onsemi 0:098463de4c5d 6658
group-onsemi 0:098463de4c5d 6659 /**
group-onsemi 0:098463de4c5d 6660 * @brief Converts the elements of the Q15 vector to Q31 vector.
group-onsemi 0:098463de4c5d 6661 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6662 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 6663 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6664 */
group-onsemi 0:098463de4c5d 6665 void arm_q15_to_q31(
group-onsemi 0:098463de4c5d 6666 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6667 q31_t * pDst,
group-onsemi 0:098463de4c5d 6668 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6669
group-onsemi 0:098463de4c5d 6670
group-onsemi 0:098463de4c5d 6671 /**
group-onsemi 0:098463de4c5d 6672 * @brief Converts the elements of the Q15 vector to Q7 vector.
group-onsemi 0:098463de4c5d 6673 * @param[in] pSrc is input pointer
group-onsemi 0:098463de4c5d 6674 * @param[out] pDst is output pointer
group-onsemi 0:098463de4c5d 6675 * @param[in] blockSize is the number of samples to process
group-onsemi 0:098463de4c5d 6676 */
group-onsemi 0:098463de4c5d 6677 void arm_q15_to_q7(
group-onsemi 0:098463de4c5d 6678 q15_t * pSrc,
group-onsemi 0:098463de4c5d 6679 q7_t * pDst,
group-onsemi 0:098463de4c5d 6680 uint32_t blockSize);
group-onsemi 0:098463de4c5d 6681
group-onsemi 0:098463de4c5d 6682
group-onsemi 0:098463de4c5d 6683 /**
group-onsemi 0:098463de4c5d 6684 * @ingroup groupInterpolation
group-onsemi 0:098463de4c5d 6685 */
group-onsemi 0:098463de4c5d 6686
group-onsemi 0:098463de4c5d 6687 /**
group-onsemi 0:098463de4c5d 6688 * @defgroup BilinearInterpolate Bilinear Interpolation
group-onsemi 0:098463de4c5d 6689 *
group-onsemi 0:098463de4c5d 6690 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
group-onsemi 0:098463de4c5d 6691 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
group-onsemi 0:098463de4c5d 6692 * determines values between the grid points.
group-onsemi 0:098463de4c5d 6693 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
group-onsemi 0:098463de4c5d 6694 * Bilinear interpolation is often used in image processing to rescale images.
group-onsemi 0:098463de4c5d 6695 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
group-onsemi 0:098463de4c5d 6696 *
group-onsemi 0:098463de4c5d 6697 * <b>Algorithm</b>
group-onsemi 0:098463de4c5d 6698 * \par
group-onsemi 0:098463de4c5d 6699 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
group-onsemi 0:098463de4c5d 6700 * For floating-point, the instance structure is defined as:
group-onsemi 0:098463de4c5d 6701 * <pre>
group-onsemi 0:098463de4c5d 6702 * typedef struct
group-onsemi 0:098463de4c5d 6703 * {
group-onsemi 0:098463de4c5d 6704 * uint16_t numRows;
group-onsemi 0:098463de4c5d 6705 * uint16_t numCols;
group-onsemi 0:098463de4c5d 6706 * float32_t *pData;
group-onsemi 0:098463de4c5d 6707 * } arm_bilinear_interp_instance_f32;
group-onsemi 0:098463de4c5d 6708 * </pre>
group-onsemi 0:098463de4c5d 6709 *
group-onsemi 0:098463de4c5d 6710 * \par
group-onsemi 0:098463de4c5d 6711 * where <code>numRows</code> specifies the number of rows in the table;
group-onsemi 0:098463de4c5d 6712 * <code>numCols</code> specifies the number of columns in the table;
group-onsemi 0:098463de4c5d 6713 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
group-onsemi 0:098463de4c5d 6714 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
group-onsemi 0:098463de4c5d 6715 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
group-onsemi 0:098463de4c5d 6716 *
group-onsemi 0:098463de4c5d 6717 * \par
group-onsemi 0:098463de4c5d 6718 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
group-onsemi 0:098463de4c5d 6719 * <pre>
group-onsemi 0:098463de4c5d 6720 * XF = floor(x)
group-onsemi 0:098463de4c5d 6721 * YF = floor(y)
group-onsemi 0:098463de4c5d 6722 * </pre>
group-onsemi 0:098463de4c5d 6723 * \par
group-onsemi 0:098463de4c5d 6724 * The interpolated output point is computed as:
group-onsemi 0:098463de4c5d 6725 * <pre>
group-onsemi 0:098463de4c5d 6726 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
group-onsemi 0:098463de4c5d 6727 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
group-onsemi 0:098463de4c5d 6728 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
group-onsemi 0:098463de4c5d 6729 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
group-onsemi 0:098463de4c5d 6730 * </pre>
group-onsemi 0:098463de4c5d 6731 * Note that the coordinates (x, y) contain integer and fractional components.
group-onsemi 0:098463de4c5d 6732 * The integer components specify which portion of the table to use while the
group-onsemi 0:098463de4c5d 6733 * fractional components control the interpolation processor.
group-onsemi 0:098463de4c5d 6734 *
group-onsemi 0:098463de4c5d 6735 * \par
group-onsemi 0:098463de4c5d 6736 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
group-onsemi 0:098463de4c5d 6737 */
group-onsemi 0:098463de4c5d 6738
group-onsemi 0:098463de4c5d 6739 /**
group-onsemi 0:098463de4c5d 6740 * @addtogroup BilinearInterpolate
group-onsemi 0:098463de4c5d 6741 * @{
group-onsemi 0:098463de4c5d 6742 */
group-onsemi 0:098463de4c5d 6743
group-onsemi 0:098463de4c5d 6744
group-onsemi 0:098463de4c5d 6745 /**
group-onsemi 0:098463de4c5d 6746 *
group-onsemi 0:098463de4c5d 6747 * @brief Floating-point bilinear interpolation.
group-onsemi 0:098463de4c5d 6748 * @param[in,out] S points to an instance of the interpolation structure.
group-onsemi 0:098463de4c5d 6749 * @param[in] X interpolation coordinate.
group-onsemi 0:098463de4c5d 6750 * @param[in] Y interpolation coordinate.
group-onsemi 0:098463de4c5d 6751 * @return out interpolated value.
group-onsemi 0:098463de4c5d 6752 */
group-onsemi 0:098463de4c5d 6753 static __INLINE float32_t arm_bilinear_interp_f32(
group-onsemi 0:098463de4c5d 6754 const arm_bilinear_interp_instance_f32 * S,
group-onsemi 0:098463de4c5d 6755 float32_t X,
group-onsemi 0:098463de4c5d 6756 float32_t Y)
group-onsemi 0:098463de4c5d 6757 {
group-onsemi 0:098463de4c5d 6758 float32_t out;
group-onsemi 0:098463de4c5d 6759 float32_t f00, f01, f10, f11;
group-onsemi 0:098463de4c5d 6760 float32_t *pData = S->pData;
group-onsemi 0:098463de4c5d 6761 int32_t xIndex, yIndex, index;
group-onsemi 0:098463de4c5d 6762 float32_t xdiff, ydiff;
group-onsemi 0:098463de4c5d 6763 float32_t b1, b2, b3, b4;
group-onsemi 0:098463de4c5d 6764
group-onsemi 0:098463de4c5d 6765 xIndex = (int32_t) X;
group-onsemi 0:098463de4c5d 6766 yIndex = (int32_t) Y;
group-onsemi 0:098463de4c5d 6767
group-onsemi 0:098463de4c5d 6768 /* Care taken for table outside boundary */
group-onsemi 0:098463de4c5d 6769 /* Returns zero output when values are outside table boundary */
group-onsemi 0:098463de4c5d 6770 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
group-onsemi 0:098463de4c5d 6771 {
group-onsemi 0:098463de4c5d 6772 return (0);
group-onsemi 0:098463de4c5d 6773 }
group-onsemi 0:098463de4c5d 6774
group-onsemi 0:098463de4c5d 6775 /* Calculation of index for two nearest points in X-direction */
group-onsemi 0:098463de4c5d 6776 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
group-onsemi 0:098463de4c5d 6777
group-onsemi 0:098463de4c5d 6778
group-onsemi 0:098463de4c5d 6779 /* Read two nearest points in X-direction */
group-onsemi 0:098463de4c5d 6780 f00 = pData[index];
group-onsemi 0:098463de4c5d 6781 f01 = pData[index + 1];
group-onsemi 0:098463de4c5d 6782
group-onsemi 0:098463de4c5d 6783 /* Calculation of index for two nearest points in Y-direction */
group-onsemi 0:098463de4c5d 6784 index = (xIndex - 1) + (yIndex) * S->numCols;
group-onsemi 0:098463de4c5d 6785
group-onsemi 0:098463de4c5d 6786
group-onsemi 0:098463de4c5d 6787 /* Read two nearest points in Y-direction */
group-onsemi 0:098463de4c5d 6788 f10 = pData[index];
group-onsemi 0:098463de4c5d 6789 f11 = pData[index + 1];
group-onsemi 0:098463de4c5d 6790
group-onsemi 0:098463de4c5d 6791 /* Calculation of intermediate values */
group-onsemi 0:098463de4c5d 6792 b1 = f00;
group-onsemi 0:098463de4c5d 6793 b2 = f01 - f00;
group-onsemi 0:098463de4c5d 6794 b3 = f10 - f00;
group-onsemi 0:098463de4c5d 6795 b4 = f00 - f01 - f10 + f11;
group-onsemi 0:098463de4c5d 6796
group-onsemi 0:098463de4c5d 6797 /* Calculation of fractional part in X */
group-onsemi 0:098463de4c5d 6798 xdiff = X - xIndex;
group-onsemi 0:098463de4c5d 6799
group-onsemi 0:098463de4c5d 6800 /* Calculation of fractional part in Y */
group-onsemi 0:098463de4c5d 6801 ydiff = Y - yIndex;
group-onsemi 0:098463de4c5d 6802
group-onsemi 0:098463de4c5d 6803 /* Calculation of bi-linear interpolated output */
group-onsemi 0:098463de4c5d 6804 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
group-onsemi 0:098463de4c5d 6805
group-onsemi 0:098463de4c5d 6806 /* return to application */
group-onsemi 0:098463de4c5d 6807 return (out);
group-onsemi 0:098463de4c5d 6808 }
group-onsemi 0:098463de4c5d 6809
group-onsemi 0:098463de4c5d 6810
group-onsemi 0:098463de4c5d 6811 /**
group-onsemi 0:098463de4c5d 6812 *
group-onsemi 0:098463de4c5d 6813 * @brief Q31 bilinear interpolation.
group-onsemi 0:098463de4c5d 6814 * @param[in,out] S points to an instance of the interpolation structure.
group-onsemi 0:098463de4c5d 6815 * @param[in] X interpolation coordinate in 12.20 format.
group-onsemi 0:098463de4c5d 6816 * @param[in] Y interpolation coordinate in 12.20 format.
group-onsemi 0:098463de4c5d 6817 * @return out interpolated value.
group-onsemi 0:098463de4c5d 6818 */
group-onsemi 0:098463de4c5d 6819 static __INLINE q31_t arm_bilinear_interp_q31(
group-onsemi 0:098463de4c5d 6820 arm_bilinear_interp_instance_q31 * S,
group-onsemi 0:098463de4c5d 6821 q31_t X,
group-onsemi 0:098463de4c5d 6822 q31_t Y)
group-onsemi 0:098463de4c5d 6823 {
group-onsemi 0:098463de4c5d 6824 q31_t out; /* Temporary output */
group-onsemi 0:098463de4c5d 6825 q31_t acc = 0; /* output */
group-onsemi 0:098463de4c5d 6826 q31_t xfract, yfract; /* X, Y fractional parts */
group-onsemi 0:098463de4c5d 6827 q31_t x1, x2, y1, y2; /* Nearest output values */
group-onsemi 0:098463de4c5d 6828 int32_t rI, cI; /* Row and column indices */
group-onsemi 0:098463de4c5d 6829 q31_t *pYData = S->pData; /* pointer to output table values */
group-onsemi 0:098463de4c5d 6830 uint32_t nCols = S->numCols; /* num of rows */
group-onsemi 0:098463de4c5d 6831
group-onsemi 0:098463de4c5d 6832 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 6833 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 6834 /* Index value calculation */
group-onsemi 0:098463de4c5d 6835 rI = ((X & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 6836
group-onsemi 0:098463de4c5d 6837 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 6838 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 6839 /* Index value calculation */
group-onsemi 0:098463de4c5d 6840 cI = ((Y & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 6841
group-onsemi 0:098463de4c5d 6842 /* Care taken for table outside boundary */
group-onsemi 0:098463de4c5d 6843 /* Returns zero output when values are outside table boundary */
group-onsemi 0:098463de4c5d 6844 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
group-onsemi 0:098463de4c5d 6845 {
group-onsemi 0:098463de4c5d 6846 return (0);
group-onsemi 0:098463de4c5d 6847 }
group-onsemi 0:098463de4c5d 6848
group-onsemi 0:098463de4c5d 6849 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 6850 /* shift left xfract by 11 to keep 1.31 format */
group-onsemi 0:098463de4c5d 6851 xfract = (X & 0x000FFFFF) << 11u;
group-onsemi 0:098463de4c5d 6852
group-onsemi 0:098463de4c5d 6853 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 6854 x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
group-onsemi 0:098463de4c5d 6855 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
group-onsemi 0:098463de4c5d 6856
group-onsemi 0:098463de4c5d 6857 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 6858 /* shift left yfract by 11 to keep 1.31 format */
group-onsemi 0:098463de4c5d 6859 yfract = (Y & 0x000FFFFF) << 11u;
group-onsemi 0:098463de4c5d 6860
group-onsemi 0:098463de4c5d 6861 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 6862 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
group-onsemi 0:098463de4c5d 6863 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
group-onsemi 0:098463de4c5d 6864
group-onsemi 0:098463de4c5d 6865 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
group-onsemi 0:098463de4c5d 6866 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
group-onsemi 0:098463de4c5d 6867 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
group-onsemi 0:098463de4c5d 6868
group-onsemi 0:098463de4c5d 6869 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
group-onsemi 0:098463de4c5d 6870 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
group-onsemi 0:098463de4c5d 6871 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
group-onsemi 0:098463de4c5d 6872
group-onsemi 0:098463de4c5d 6873 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
group-onsemi 0:098463de4c5d 6874 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
group-onsemi 0:098463de4c5d 6875 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
group-onsemi 0:098463de4c5d 6876
group-onsemi 0:098463de4c5d 6877 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
group-onsemi 0:098463de4c5d 6878 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
group-onsemi 0:098463de4c5d 6879 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
group-onsemi 0:098463de4c5d 6880
group-onsemi 0:098463de4c5d 6881 /* Convert acc to 1.31(q31) format */
group-onsemi 0:098463de4c5d 6882 return ((q31_t)(acc << 2));
group-onsemi 0:098463de4c5d 6883 }
group-onsemi 0:098463de4c5d 6884
group-onsemi 0:098463de4c5d 6885
group-onsemi 0:098463de4c5d 6886 /**
group-onsemi 0:098463de4c5d 6887 * @brief Q15 bilinear interpolation.
group-onsemi 0:098463de4c5d 6888 * @param[in,out] S points to an instance of the interpolation structure.
group-onsemi 0:098463de4c5d 6889 * @param[in] X interpolation coordinate in 12.20 format.
group-onsemi 0:098463de4c5d 6890 * @param[in] Y interpolation coordinate in 12.20 format.
group-onsemi 0:098463de4c5d 6891 * @return out interpolated value.
group-onsemi 0:098463de4c5d 6892 */
group-onsemi 0:098463de4c5d 6893 static __INLINE q15_t arm_bilinear_interp_q15(
group-onsemi 0:098463de4c5d 6894 arm_bilinear_interp_instance_q15 * S,
group-onsemi 0:098463de4c5d 6895 q31_t X,
group-onsemi 0:098463de4c5d 6896 q31_t Y)
group-onsemi 0:098463de4c5d 6897 {
group-onsemi 0:098463de4c5d 6898 q63_t acc = 0; /* output */
group-onsemi 0:098463de4c5d 6899 q31_t out; /* Temporary output */
group-onsemi 0:098463de4c5d 6900 q15_t x1, x2, y1, y2; /* Nearest output values */
group-onsemi 0:098463de4c5d 6901 q31_t xfract, yfract; /* X, Y fractional parts */
group-onsemi 0:098463de4c5d 6902 int32_t rI, cI; /* Row and column indices */
group-onsemi 0:098463de4c5d 6903 q15_t *pYData = S->pData; /* pointer to output table values */
group-onsemi 0:098463de4c5d 6904 uint32_t nCols = S->numCols; /* num of rows */
group-onsemi 0:098463de4c5d 6905
group-onsemi 0:098463de4c5d 6906 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 6907 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 6908 /* Index value calculation */
group-onsemi 0:098463de4c5d 6909 rI = ((X & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 6910
group-onsemi 0:098463de4c5d 6911 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 6912 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 6913 /* Index value calculation */
group-onsemi 0:098463de4c5d 6914 cI = ((Y & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 6915
group-onsemi 0:098463de4c5d 6916 /* Care taken for table outside boundary */
group-onsemi 0:098463de4c5d 6917 /* Returns zero output when values are outside table boundary */
group-onsemi 0:098463de4c5d 6918 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
group-onsemi 0:098463de4c5d 6919 {
group-onsemi 0:098463de4c5d 6920 return (0);
group-onsemi 0:098463de4c5d 6921 }
group-onsemi 0:098463de4c5d 6922
group-onsemi 0:098463de4c5d 6923 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 6924 /* xfract should be in 12.20 format */
group-onsemi 0:098463de4c5d 6925 xfract = (X & 0x000FFFFF);
group-onsemi 0:098463de4c5d 6926
group-onsemi 0:098463de4c5d 6927 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 6928 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
group-onsemi 0:098463de4c5d 6929 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
group-onsemi 0:098463de4c5d 6930
group-onsemi 0:098463de4c5d 6931 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 6932 /* yfract should be in 12.20 format */
group-onsemi 0:098463de4c5d 6933 yfract = (Y & 0x000FFFFF);
group-onsemi 0:098463de4c5d 6934
group-onsemi 0:098463de4c5d 6935 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 6936 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
group-onsemi 0:098463de4c5d 6937 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
group-onsemi 0:098463de4c5d 6938
group-onsemi 0:098463de4c5d 6939 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
group-onsemi 0:098463de4c5d 6940
group-onsemi 0:098463de4c5d 6941 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
group-onsemi 0:098463de4c5d 6942 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
group-onsemi 0:098463de4c5d 6943 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
group-onsemi 0:098463de4c5d 6944 acc = ((q63_t) out * (0xFFFFF - yfract));
group-onsemi 0:098463de4c5d 6945
group-onsemi 0:098463de4c5d 6946 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
group-onsemi 0:098463de4c5d 6947 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
group-onsemi 0:098463de4c5d 6948 acc += ((q63_t) out * (xfract));
group-onsemi 0:098463de4c5d 6949
group-onsemi 0:098463de4c5d 6950 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
group-onsemi 0:098463de4c5d 6951 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
group-onsemi 0:098463de4c5d 6952 acc += ((q63_t) out * (yfract));
group-onsemi 0:098463de4c5d 6953
group-onsemi 0:098463de4c5d 6954 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
group-onsemi 0:098463de4c5d 6955 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
group-onsemi 0:098463de4c5d 6956 acc += ((q63_t) out * (yfract));
group-onsemi 0:098463de4c5d 6957
group-onsemi 0:098463de4c5d 6958 /* acc is in 13.51 format and down shift acc by 36 times */
group-onsemi 0:098463de4c5d 6959 /* Convert out to 1.15 format */
group-onsemi 0:098463de4c5d 6960 return ((q15_t)(acc >> 36));
group-onsemi 0:098463de4c5d 6961 }
group-onsemi 0:098463de4c5d 6962
group-onsemi 0:098463de4c5d 6963
group-onsemi 0:098463de4c5d 6964 /**
group-onsemi 0:098463de4c5d 6965 * @brief Q7 bilinear interpolation.
group-onsemi 0:098463de4c5d 6966 * @param[in,out] S points to an instance of the interpolation structure.
group-onsemi 0:098463de4c5d 6967 * @param[in] X interpolation coordinate in 12.20 format.
group-onsemi 0:098463de4c5d 6968 * @param[in] Y interpolation coordinate in 12.20 format.
group-onsemi 0:098463de4c5d 6969 * @return out interpolated value.
group-onsemi 0:098463de4c5d 6970 */
group-onsemi 0:098463de4c5d 6971 static __INLINE q7_t arm_bilinear_interp_q7(
group-onsemi 0:098463de4c5d 6972 arm_bilinear_interp_instance_q7 * S,
group-onsemi 0:098463de4c5d 6973 q31_t X,
group-onsemi 0:098463de4c5d 6974 q31_t Y)
group-onsemi 0:098463de4c5d 6975 {
group-onsemi 0:098463de4c5d 6976 q63_t acc = 0; /* output */
group-onsemi 0:098463de4c5d 6977 q31_t out; /* Temporary output */
group-onsemi 0:098463de4c5d 6978 q31_t xfract, yfract; /* X, Y fractional parts */
group-onsemi 0:098463de4c5d 6979 q7_t x1, x2, y1, y2; /* Nearest output values */
group-onsemi 0:098463de4c5d 6980 int32_t rI, cI; /* Row and column indices */
group-onsemi 0:098463de4c5d 6981 q7_t *pYData = S->pData; /* pointer to output table values */
group-onsemi 0:098463de4c5d 6982 uint32_t nCols = S->numCols; /* num of rows */
group-onsemi 0:098463de4c5d 6983
group-onsemi 0:098463de4c5d 6984 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 6985 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 6986 /* Index value calculation */
group-onsemi 0:098463de4c5d 6987 rI = ((X & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 6988
group-onsemi 0:098463de4c5d 6989 /* Input is in 12.20 format */
group-onsemi 0:098463de4c5d 6990 /* 12 bits for the table index */
group-onsemi 0:098463de4c5d 6991 /* Index value calculation */
group-onsemi 0:098463de4c5d 6992 cI = ((Y & (q31_t)0xFFF00000) >> 20);
group-onsemi 0:098463de4c5d 6993
group-onsemi 0:098463de4c5d 6994 /* Care taken for table outside boundary */
group-onsemi 0:098463de4c5d 6995 /* Returns zero output when values are outside table boundary */
group-onsemi 0:098463de4c5d 6996 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
group-onsemi 0:098463de4c5d 6997 {
group-onsemi 0:098463de4c5d 6998 return (0);
group-onsemi 0:098463de4c5d 6999 }
group-onsemi 0:098463de4c5d 7000
group-onsemi 0:098463de4c5d 7001 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 7002 /* xfract should be in 12.20 format */
group-onsemi 0:098463de4c5d 7003 xfract = (X & (q31_t)0x000FFFFF);
group-onsemi 0:098463de4c5d 7004
group-onsemi 0:098463de4c5d 7005 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 7006 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
group-onsemi 0:098463de4c5d 7007 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
group-onsemi 0:098463de4c5d 7008
group-onsemi 0:098463de4c5d 7009 /* 20 bits for the fractional part */
group-onsemi 0:098463de4c5d 7010 /* yfract should be in 12.20 format */
group-onsemi 0:098463de4c5d 7011 yfract = (Y & (q31_t)0x000FFFFF);
group-onsemi 0:098463de4c5d 7012
group-onsemi 0:098463de4c5d 7013 /* Read two nearest output values from the index */
group-onsemi 0:098463de4c5d 7014 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
group-onsemi 0:098463de4c5d 7015 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
group-onsemi 0:098463de4c5d 7016
group-onsemi 0:098463de4c5d 7017 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
group-onsemi 0:098463de4c5d 7018 out = ((x1 * (0xFFFFF - xfract)));
group-onsemi 0:098463de4c5d 7019 acc = (((q63_t) out * (0xFFFFF - yfract)));
group-onsemi 0:098463de4c5d 7020
group-onsemi 0:098463de4c5d 7021 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
group-onsemi 0:098463de4c5d 7022 out = ((x2 * (0xFFFFF - yfract)));
group-onsemi 0:098463de4c5d 7023 acc += (((q63_t) out * (xfract)));
group-onsemi 0:098463de4c5d 7024
group-onsemi 0:098463de4c5d 7025 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
group-onsemi 0:098463de4c5d 7026 out = ((y1 * (0xFFFFF - xfract)));
group-onsemi 0:098463de4c5d 7027 acc += (((q63_t) out * (yfract)));
group-onsemi 0:098463de4c5d 7028
group-onsemi 0:098463de4c5d 7029 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
group-onsemi 0:098463de4c5d 7030 out = ((y2 * (yfract)));
group-onsemi 0:098463de4c5d 7031 acc += (((q63_t) out * (xfract)));
group-onsemi 0:098463de4c5d 7032
group-onsemi 0:098463de4c5d 7033 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
group-onsemi 0:098463de4c5d 7034 return ((q7_t)(acc >> 40));
group-onsemi 0:098463de4c5d 7035 }
group-onsemi 0:098463de4c5d 7036
group-onsemi 0:098463de4c5d 7037 /**
group-onsemi 0:098463de4c5d 7038 * @} end of BilinearInterpolate group
group-onsemi 0:098463de4c5d 7039 */
group-onsemi 0:098463de4c5d 7040
group-onsemi 0:098463de4c5d 7041
group-onsemi 0:098463de4c5d 7042 /* SMMLAR */
group-onsemi 0:098463de4c5d 7043 #define multAcc_32x32_keep32_R(a, x, y) \
group-onsemi 0:098463de4c5d 7044 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
group-onsemi 0:098463de4c5d 7045
group-onsemi 0:098463de4c5d 7046 /* SMMLSR */
group-onsemi 0:098463de4c5d 7047 #define multSub_32x32_keep32_R(a, x, y) \
group-onsemi 0:098463de4c5d 7048 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
group-onsemi 0:098463de4c5d 7049
group-onsemi 0:098463de4c5d 7050 /* SMMULR */
group-onsemi 0:098463de4c5d 7051 #define mult_32x32_keep32_R(a, x, y) \
group-onsemi 0:098463de4c5d 7052 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
group-onsemi 0:098463de4c5d 7053
group-onsemi 0:098463de4c5d 7054 /* SMMLA */
group-onsemi 0:098463de4c5d 7055 #define multAcc_32x32_keep32(a, x, y) \
group-onsemi 0:098463de4c5d 7056 a += (q31_t) (((q63_t) x * y) >> 32)
group-onsemi 0:098463de4c5d 7057
group-onsemi 0:098463de4c5d 7058 /* SMMLS */
group-onsemi 0:098463de4c5d 7059 #define multSub_32x32_keep32(a, x, y) \
group-onsemi 0:098463de4c5d 7060 a -= (q31_t) (((q63_t) x * y) >> 32)
group-onsemi 0:098463de4c5d 7061
group-onsemi 0:098463de4c5d 7062 /* SMMUL */
group-onsemi 0:098463de4c5d 7063 #define mult_32x32_keep32(a, x, y) \
group-onsemi 0:098463de4c5d 7064 a = (q31_t) (((q63_t) x * y ) >> 32)
group-onsemi 0:098463de4c5d 7065
group-onsemi 0:098463de4c5d 7066
group-onsemi 0:098463de4c5d 7067 #if defined ( __CC_ARM )
group-onsemi 0:098463de4c5d 7068 /* Enter low optimization region - place directly above function definition */
group-onsemi 0:098463de4c5d 7069 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
group-onsemi 0:098463de4c5d 7070 #define LOW_OPTIMIZATION_ENTER \
group-onsemi 0:098463de4c5d 7071 _Pragma ("push") \
group-onsemi 0:098463de4c5d 7072 _Pragma ("O1")
group-onsemi 0:098463de4c5d 7073 #else
group-onsemi 0:098463de4c5d 7074 #define LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7075 #endif
group-onsemi 0:098463de4c5d 7076
group-onsemi 0:098463de4c5d 7077 /* Exit low optimization region - place directly after end of function definition */
group-onsemi 0:098463de4c5d 7078 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
group-onsemi 0:098463de4c5d 7079 #define LOW_OPTIMIZATION_EXIT \
group-onsemi 0:098463de4c5d 7080 _Pragma ("pop")
group-onsemi 0:098463de4c5d 7081 #else
group-onsemi 0:098463de4c5d 7082 #define LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7083 #endif
group-onsemi 0:098463de4c5d 7084
group-onsemi 0:098463de4c5d 7085 /* Enter low optimization region - place directly above function definition */
group-onsemi 0:098463de4c5d 7086 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7087
group-onsemi 0:098463de4c5d 7088 /* Exit low optimization region - place directly after end of function definition */
group-onsemi 0:098463de4c5d 7089 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7090
group-onsemi 0:098463de4c5d 7091 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
group-onsemi 0:098463de4c5d 7092 #define LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7093 #define LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7094 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7095 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7096
group-onsemi 0:098463de4c5d 7097 #elif defined(__GNUC__)
group-onsemi 0:098463de4c5d 7098 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
group-onsemi 0:098463de4c5d 7099 #define LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7100 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7101 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7102
group-onsemi 0:098463de4c5d 7103 #elif defined(__ICCARM__)
group-onsemi 0:098463de4c5d 7104 /* Enter low optimization region - place directly above function definition */
group-onsemi 0:098463de4c5d 7105 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
group-onsemi 0:098463de4c5d 7106 #define LOW_OPTIMIZATION_ENTER \
group-onsemi 0:098463de4c5d 7107 _Pragma ("optimize=low")
group-onsemi 0:098463de4c5d 7108 #else
group-onsemi 0:098463de4c5d 7109 #define LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7110 #endif
group-onsemi 0:098463de4c5d 7111
group-onsemi 0:098463de4c5d 7112 /* Exit low optimization region - place directly after end of function definition */
group-onsemi 0:098463de4c5d 7113 #define LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7114
group-onsemi 0:098463de4c5d 7115 /* Enter low optimization region - place directly above function definition */
group-onsemi 0:098463de4c5d 7116 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
group-onsemi 0:098463de4c5d 7117 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
group-onsemi 0:098463de4c5d 7118 _Pragma ("optimize=low")
group-onsemi 0:098463de4c5d 7119 #else
group-onsemi 0:098463de4c5d 7120 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7121 #endif
group-onsemi 0:098463de4c5d 7122
group-onsemi 0:098463de4c5d 7123 /* Exit low optimization region - place directly after end of function definition */
group-onsemi 0:098463de4c5d 7124 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7125
group-onsemi 0:098463de4c5d 7126 #elif defined(__CSMC__)
group-onsemi 0:098463de4c5d 7127 #define LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7128 #define LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7129 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7130 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7131
group-onsemi 0:098463de4c5d 7132 #elif defined(__TASKING__)
group-onsemi 0:098463de4c5d 7133 #define LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7134 #define LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7135 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
group-onsemi 0:098463de4c5d 7136 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
group-onsemi 0:098463de4c5d 7137
group-onsemi 0:098463de4c5d 7138 #endif
group-onsemi 0:098463de4c5d 7139
group-onsemi 0:098463de4c5d 7140
group-onsemi 0:098463de4c5d 7141 #ifdef __cplusplus
group-onsemi 0:098463de4c5d 7142 }
group-onsemi 0:098463de4c5d 7143 #endif
group-onsemi 0:098463de4c5d 7144
group-onsemi 0:098463de4c5d 7145
group-onsemi 0:098463de4c5d 7146 #if defined ( __GNUC__ )
group-onsemi 0:098463de4c5d 7147 #pragma GCC diagnostic pop
group-onsemi 0:098463de4c5d 7148 #endif
group-onsemi 0:098463de4c5d 7149
group-onsemi 0:098463de4c5d 7150 #endif /* _ARM_MATH_H */
group-onsemi 0:098463de4c5d 7151
group-onsemi 0:098463de4c5d 7152 /**
group-onsemi 0:098463de4c5d 7153 *
group-onsemi 0:098463de4c5d 7154 * End of file.
group-onsemi 0:098463de4c5d 7155 */