Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of DecaWave by
DW1000/DW1000.cpp
- Committer:
- manumaet
- Date:
- 2014-11-23
- Revision:
- 13:b4d27bf7062a
- Parent:
- 12:985aa9843c3c
- Child:
- 15:e1fea7e2aff1
File content as of revision 13:b4d27bf7062a:
#include "DW1000.h" DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : spi(MOSI, MISO, SCLK), cs(CS), irq(IRQ) { deselect(); // Chip must be deselected first spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000) spi.frequency(1000000); // with a 1MHz clock rate (worked up to 49MHz in our Test) //resetAll(); // we can do a soft reset if we want to (only needed for debugging) loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned of or there's receiving malfunction see User Manual LDELOAD on p22 & p158 writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error irq.rise(this, &DW1000::ISR); // attach Interrupt handler to rising edge } uint32_t DW1000::getDeviceID() { uint32_t result; readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); return result; } uint64_t DW1000::getEUI() { uint64_t result; readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); return result; } void DW1000::setEUI(uint64_t EUI) { writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); } float DW1000::getVoltage() { uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature float Voltage = buffer[5] * 0.0057 + 2.3; float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration see instance_common.c row 391 return Voltage; } void DW1000::sendString(char* message) { sendFrame((uint8_t*)message, strlen(message)+1); } char* DW1000::receiveString() { uint16_t framelength = 0; // get framelength readRegister(DW1000_RX_FINFO, 0, (uint8_t*)&framelength, 2); framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes char* receive = new char[framelength]; // get data from buffer readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)receive, framelength); return receive; } void DW1000::sendFrame(uint8_t* message, uint16_t length) { writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode TODO: only if receiving!! writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame including 2 CRC Bytes length += 2; length = ((backup & 0xFC) << 8) | (length & 0x03FF); writeRegister(DW1000_TX_FCTRL, 0, (uint8_t*)&length, 2); // TODO: make that bigger frames than 256 can be sent writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit receiveFrame(); // TODO: only if receiving!! } void DW1000::receiveFrame() { writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit } void DW1000::ISR() { uint64_t status; // get the entire system status readRegister(DW1000_SYS_STATUS, 0, (uint8_t*)&status, 5); status &= 0xFFFFFFFFFF; // only 40-Bit if (status & 0x4000) callbackRX(); if (status & 0x80) ;//callbackTX(); // TODO: mask TX done interrupt make TX handler } void DW1000::loadLDE() { uint16_t ldeload[] = {0x0301, 0x8000, 0x0200}; // initialise LDE algorithm LDELOAD User Manual p22 writeRegister(DW1000_PMSC, 0, (uint8_t*)&ldeload[0], 2); // set clock to XTAL so OTP is reliable writeRegister(DW1000_OTP_IF, 0x06, (uint8_t*)&ldeload[1], 2); // set LDELOAD bit in OTP wait_us(150); writeRegister(DW1000_PMSC, 0, (uint8_t*)&ldeload[2], 2); // recover to PLL clock } void DW1000::resetRX() { writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset } void DW1000::resetAll() { writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset wait_us(10); // wait for PLL to lock writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset } // SPI Interface ------------------------------------------------------------------------------------ uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { uint8_t result; readRegister(reg, subaddress, &result, 1); return result; } void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { writeRegister(reg, subaddress, &buffer, 1); } void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, false); for(int i=0; i<length; i++) // get data buffer[i] = spi.write(0x00); deselect(); } void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, true); for(int i=0; i<length; i++) // put data spi.write(buffer[i]); deselect(); } void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { reg |= (write * DW1000_WRITE_FLAG); select(); if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte spi.write(reg | DW1000_SUBADDRESS_FLAG); if (subaddress > 127) { // sub address too long, we need to set flag and send third header byte spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); spi.write((uint8_t)(subaddress >> 7)); } else { spi.write((uint8_t)subaddress); } } else { spi.write(reg); } } void DW1000::select() { cs = 0; } // set CS low to start transmission void DW1000::deselect() { cs = 1; } // set CS high to stop transmission