CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
diff -r 83d0537c7d84 -r fdd22bb7aa52 cmsis_dsp/StatisticsFunctions/arm_rms_q31.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/StatisticsFunctions/arm_rms_q31.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,146 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_rms_q31.c    
+*    
+* Description:    Root Mean Square of the elements of a Q31 vector.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*   
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated.    
+* ---------------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**        
+ * @addtogroup RMS        
+ * @{        
+ */
+
+
+/**        
+ * @brief Root Mean Square of the elements of a Q31 vector.        
+ * @param[in]       *pSrc points to the input vector        
+ * @param[in]       blockSize length of the input vector        
+ * @param[out]      *pResult rms value returned here        
+ * @return none.        
+ *        
+ * @details        
+ * <b>Scaling and Overflow Behavior:</b>        
+ *        
+ *\par        
+ * The function is implemented using an internal 64-bit accumulator.        
+ * The input is represented in 1.31 format, and intermediate multiplication        
+ * yields a 2.62 format.        
+ * The accumulator maintains full precision of the intermediate multiplication results,         
+ * but provides only a single guard bit.        
+ * There is no saturation on intermediate additions.        
+ * If the accumulator overflows, it wraps around and distorts the result.         
+ * In order to avoid overflows completely, the input signal must be scaled down by         
+ * log2(blockSize) bits, as a total of blockSize additions are performed internally.         
+ * Finally, the 2.62 accumulator is right shifted by 31 bits to yield a 1.31 format value.        
+ *        
+ */
+
+void arm_rms_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult)
+{
+  q63_t sum = 0;                                 /* accumulator */
+  q31_t in;                                      /* Temporary variable to store the input */
+  uint32_t blkCnt;                               /* loop counter */
+
+#ifndef ARM_MATH_CM0
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  q31_t in1, in2, in3, in4;                      /* Temporary input variables */
+
+  /*loop Unrolling */
+  blkCnt = blockSize >> 2u;
+
+  /* First part of the processing with loop unrolling.  Compute 8 outputs at a time.        
+   ** a second loop below computes the remaining 1 to 7 samples. */
+  while(blkCnt > 0u)
+  {
+    /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
+    /* Compute sum of the squares and then store the result in a temporary variable, sum */
+    /* read two samples from source buffer */
+    in1 = pSrc[0];
+    in2 = pSrc[1];
+
+    /* calculate power and accumulate to accumulator */
+    sum += (q63_t) in1 *in1;
+    sum += (q63_t) in2 *in2;
+
+    /* read two samples from source buffer */
+    in3 = pSrc[2];
+    in4 = pSrc[3];
+
+    /* calculate power and accumulate to accumulator */
+    sum += (q63_t) in3 *in3;
+    sum += (q63_t) in4 *in4;
+
+
+    /* update source buffer to process next samples */
+    pSrc += 4u;
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* If the blockSize is not a multiple of 8, compute any remaining output samples here.        
+   ** No loop unrolling is used. */
+  blkCnt = blockSize % 0x4u;
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+  blkCnt = blockSize;
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+  while(blkCnt > 0u)
+  {
+    /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
+    /* Compute sum of the squares and then store the results in a temporary variable, sum */
+    in = *pSrc++;
+    sum += (q63_t) in *in;
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* Convert data in 2.62 to 1.31 by 31 right shifts and saturate */
+
+  sum = __SSAT(sum >> 31, 31);
+
+
+  /* Compute Rms and store the result in the destination vector */
+  arm_sqrt_q31((q31_t) ((q31_t) sum / (int32_t) blockSize), pResult);
+}
+
+/**        
+ * @} end of RMS group        
+ */