CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
cmsis_dsp/StatisticsFunctions/arm_var_q15.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_var_q15.c * * Description: Variance of an array of Q15 type. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @addtogroup variance * @{ */ /** * @brief Variance of the elements of a Q15 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult variance value returned here * @return none. * * @details * <b>Scaling and Overflow Behavior:</b> * * \par * The function is implemented using a 64-bit internal accumulator. * The input is represented in 1.15 format. * Intermediate multiplication yields a 2.30 format, and this * result is added without saturation to a 64-bit accumulator in 34.30 format. * With 33 guard bits in the accumulator, there is no risk of overflow, and the * full precision of the intermediate multiplication is preserved. * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower * 15 bits, and then saturated to yield a result in 1.15 format. * */ void arm_var_q15( q15_t * pSrc, uint32_t blockSize, q31_t * pResult) { q31_t sum = 0; /* Accumulator */ q31_t meanOfSquares, squareOfMean; /* Mean of square and square of mean */ q15_t mean; /* mean */ uint32_t blkCnt; /* loop counter */ q15_t t; /* Temporary variable */ q63_t sumOfSquares = 0; /* Accumulator */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t in; /* Input variable */ q15_t in1; /* Temporary variable */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in = *__SIMD32(pSrc)++; sum += ((in << 16) >> 16); sum += (in >> 16); sumOfSquares = __SMLALD(in, in, sumOfSquares); in = *__SIMD32(pSrc)++; sum += ((in << 16) >> 16); sum += (in >> 16); sumOfSquares = __SMLALD(in, in, sumOfSquares); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in1 = *pSrc++; sum += in1; sumOfSquares = __SMLALD(in1, in1, sumOfSquares); /* Decrement the loop counter */ blkCnt--; } /* Compute Mean of squares of the input samples * and then store the result in a temporary variable, meanOfSquares. */ t = (q15_t) ((1.0f / (float32_t) (blockSize - 1u)) * 16384); sumOfSquares = __SSAT((sumOfSquares >> 15u), 16u); meanOfSquares = (q31_t) ((sumOfSquares * t) >> 14u); #else /* Run the below code for Cortex-M0 */ q15_t in; /* Temporary variable */ /* Loop over blockSize number of values */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sumOfSquares. */ in = *pSrc++; sumOfSquares += (in * in); /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ /* Compute sum of all input values and then store the result in a temporary variable, sum. */ sum += in; /* Decrement the loop counter */ blkCnt--; } /* Compute Mean of squares of the input samples * and then store the result in a temporary variable, meanOfSquares. */ t = (q15_t) ((1.0f / (float32_t) (blockSize - 1u)) * 16384); sumOfSquares = __SSAT((sumOfSquares >> 15u), 16u); meanOfSquares = (q31_t) ((sumOfSquares * t) >> 14u); #endif /* #ifndef ARM_MATH_CM0 */ /* Compute mean of all input values */ t = (q15_t) ((1.0f / (float32_t) (blockSize * (blockSize - 1u))) * 32768); mean = __SSAT(sum, 16u); /* Compute square of mean */ squareOfMean = ((q31_t) mean * mean) >> 15; squareOfMean = (q31_t) (((q63_t) squareOfMean * t) >> 15); /* Compute variance and then store the result to the destination */ *pResult = (meanOfSquares - squareOfMean); } /** * @} end of variance group */