CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
cmsis_dsp/MatrixFunctions/arm_mat_scale_q31.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_mat_scale_q31.c * * Description: Multiplies a Q31 matrix by a scalar. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.5 2010/04/26 * incorporated review comments and updated with latest CMSIS layer * * Version 0.0.3 2010/03/10 * Initial version * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixScale * @{ */ /** * @brief Q31 matrix scaling. * @param[in] *pSrc points to input matrix * @param[in] scaleFract fractional portion of the scale factor * @param[in] shift number of bits to shift the result by * @param[out] *pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. * * @details * <b>Scaling and Overflow Behavior:</b> * \par * The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format. * These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format. */ arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, int32_t shift, arm_matrix_instance_q31 * pDst) { q31_t *pIn = pSrc->pData; /* input data matrix pointer */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ int32_t totShift = shift + 1; /* shift to apply after scaling */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix scaling */ q31_t in1, in2, out1; /* temporary variabels */ #ifndef ARM_MATH_CM0 q31_t in3, in4, out2, out3, out4; /* temporary variables */ #endif // #ifndef ARM_MAT_CM0 #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch */ if((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif // #ifdef ARM_MATH_MATRIX_CHECK { /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C(m,n) = A(m,n) * k */ /* Read values from input */ in1 = *pIn; in2 = *(pIn + 1); in3 = *(pIn + 2); in4 = *(pIn + 3); /* multiply input with scaler value */ in1 = ((q63_t) in1 * scaleFract) >> 32; in2 = ((q63_t) in2 * scaleFract) >> 32; in3 = ((q63_t) in3 * scaleFract) >> 32; in4 = ((q63_t) in4 * scaleFract) >> 32; /* apply shifting */ out1 = in1 << totShift; out2 = in2 << totShift; /* saturate the results. */ if(in1 != (out1 >> totShift)) out1 = 0x7FFFFFFF ^ (in1 >> 31); if(in2 != (out2 >> totShift)) out2 = 0x7FFFFFFF ^ (in2 >> 31); out3 = in3 << totShift; out4 = in4 << totShift; *pOut = out1; *(pOut + 1) = out2; if(in3 != (out3 >> totShift)) out3 = 0x7FFFFFFF ^ (in3 >> 31); if(in4 != (out4 >> totShift)) out4 = 0x7FFFFFFF ^ (in4 >> 31); *(pOut + 2) = out3; *(pOut + 3) = out4; /* update pointers to process next sampels */ pIn += 4u; pOut += 4u; /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #ifndef ARM_MATH_CM0 */ while(blkCnt > 0u) { /* C(m,n) = A(m,n) * k */ /* Scale, saturate and then store the results in the destination buffer. */ in1 = *pIn++; in2 = ((q63_t) in1 * scaleFract) >> 32; out1 = in2 << totShift; if(in2 != (out1 >> totShift)) out1 = 0x7FFFFFFF ^ (in2 >> 31); *pOut++ = out1; /* Decrement the numSamples loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixScale group */