CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

cmsis_dsp/StatisticsFunctions/arm_rms_f32.c

Committer:
emilmont
Date:
2013-05-30
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce

File content as of revision 2:da51fb522205:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_rms_f32.c    
*    
* Description:	Root mean square value of an array of F32 type    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated.    
* ---------------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupStats    
 */

/**    
 * @defgroup RMS Root mean square (RMS)    
 *    
 *     
 * Calculates the Root Mean Sqaure of the elements in the input vector.    
 * The underlying algorithm is used:    
 *    
 * <pre>    
 * 	Result = sqrt(((pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]) / blockSize));    
 * </pre>    
 *   
 * There are separate functions for floating point, Q31, and Q15 data types.     
 */

/**    
 * @addtogroup RMS    
 * @{    
 */


/**    
 * @brief Root Mean Square of the elements of a floating-point vector.    
 * @param[in]       *pSrc points to the input vector    
 * @param[in]       blockSize length of the input vector    
 * @param[out]      *pResult rms value returned here    
 * @return none.    
 *    
 */

void arm_rms_f32(
  float32_t * pSrc,
  uint32_t blockSize,
  float32_t * pResult)
{
  float32_t sum = 0.0f;                          /* Accumulator */
  float32_t in;                                  /* Tempoprary variable to store input value */
  uint32_t blkCnt;                               /* loop counter */

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* loop Unrolling */
  blkCnt = blockSize >> 2u;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
    /* Compute sum of the squares and then store the result in a temporary variable, sum  */
    in = *pSrc++;
    sum += in * in;
    in = *pSrc++;
    sum += in * in;
    in = *pSrc++;
    sum += in * in;
    in = *pSrc++;
    sum += in * in;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;

#else

  /* Run the below code for Cortex-M0 */

  /* Loop over blockSize number of values */
  blkCnt = blockSize;

#endif /* #ifndef ARM_MATH_CM0 */

  while(blkCnt > 0u)
  {
    /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
    /* Compute sum of the squares and then store the results in a temporary variable, sum  */
    in = *pSrc++;
    sum += in * in;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Compute Rms and store the result in the destination */
  arm_sqrt_f32(sum / (float32_t) blockSize, pResult);
}

/**    
 * @} end of RMS group    
 */