CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
cmsis_dsp/MatrixFunctions/arm_mat_add_q31.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_mat_add_q31.c * * Description: Q31 matrix addition * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.5 2010/04/26 * incorporated review comments and updated with latest CMSIS layer * * Version 0.0.3 2010/03/10 * Initial version * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixAdd * @{ */ /** * @brief Q31 matrix addition. * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. * * <b>Scaling and Overflow Behavior:</b> * \par * The function uses saturating arithmetic. * Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated. */ arm_status arm_mat_add_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst) { q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ q31_t inA1, inB1; /* temporary variables */ #ifndef ARM_MATH_CM0 q31_t inA2, inB2; /* temporary variables */ q31_t out1, out2; /* temporary variables */ #endif // #ifndef ARM_MATH_CM0 uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix addition */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif { /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add, saturate and then store the results in the destination buffer. */ /* Read values from source A */ inA1 = pIn1[0]; /* Read values from source B */ inB1 = pIn2[0]; /* Read values from source A */ inA2 = pIn1[1]; /* Add and saturate */ out1 = __QADD(inA1, inB1); /* Read values from source B */ inB2 = pIn2[1]; /* Read values from source A */ inA1 = pIn1[2]; /* Add and saturate */ out2 = __QADD(inA2, inB2); /* Read values from source B */ inB1 = pIn2[2]; /* Store result in destination */ pOut[0] = out1; pOut[1] = out2; /* Read values from source A */ inA2 = pIn1[3]; /* Read values from source B */ inB2 = pIn2[3]; /* Add and saturate */ out1 = __QADD(inA1, inB1); out2 = __QADD(inA2, inB2); /* Store result in destination */ pOut[2] = out1; pOut[3] = out2; /* update pointers to process next sampels */ pIn1 += 4u; pIn2 += 4u; pOut += 4u; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #ifndef ARM_MATH_CM0 */ while(blkCnt > 0u) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add, saturate and then store the results in the destination buffer. */ inA1 = *pIn1++; inB1 = *pIn2++; inA1 = __QADD(inA1, inB1); /* Decrement the loop counter */ blkCnt--; *pOut++ = inA1; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixAdd group */