CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
cmsis_dsp/ControllerFunctions/arm_sin_cos_f32.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_sin_cos_f32.c * * Description: Sine and Cosine calculation for floating-point values. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupController */ /** * @defgroup SinCos Sine Cosine * * Computes the trigonometric sine and cosine values using a combination of table lookup * and linear interpolation. * There are separate functions for Q31 and floating-point data types. * The input to the floating-point version is in degrees while the * fixed-point Q31 have a scaled input with the range * [-1 0.9999] mapping to [-180 179] degrees. * * The implementation is based on table lookup using 360 values together with linear interpolation. * The steps used are: * -# Calculation of the nearest integer table index. * -# Compute the fractional portion (fract) of the input. * -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1. * -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>. * -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1. * -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>. */ /** * @addtogroup SinCos * @{ */ /** * \par * Cosine Table is generated from following loop * <pre>for(i = 0; i < 360; i++) * { * cosTable[i]= cos((i-180) * PI/180.0); * } </pre> */ static const float32_t cosTable[360] = { -0.999847695156391270f, -0.999390827019095760f, -0.998629534754573830f, -0.997564050259824200f, -0.996194698091745550f, -0.994521895368273290f, -0.992546151641321980f, -0.990268068741570250f, -0.987688340595137660f, -0.984807753012208020f, -0.981627183447663980f, -0.978147600733805690f, -0.974370064785235250f, -0.970295726275996470f, -0.965925826289068200f, -0.961261695938318670f, -0.956304755963035440f, -0.951056516295153530f, -0.945518575599316740f, -0.939692620785908320f, -0.933580426497201740f, -0.927183854566787310f, -0.920504853452440150f, -0.913545457642600760f, -0.906307787036649940f, -0.898794046299167040f, -0.891006524188367790f, -0.882947592858926770f, -0.874619707139395740f, -0.866025403784438710f, -0.857167300702112220f, -0.848048096156425960f, -0.838670567945424160f, -0.829037572555041620f, -0.819152044288991580f, -0.809016994374947340f, -0.798635510047292940f, -0.788010753606721900f, -0.777145961456970680f, -0.766044443118977900f, -0.754709580222772010f, -0.743144825477394130f, -0.731353701619170460f, -0.719339800338651300f, -0.707106781186547460f, -0.694658370458997030f, -0.681998360062498370f, -0.669130606358858240f, -0.656059028990507500f, -0.642787609686539360f, -0.629320391049837280f, -0.615661475325658290f, -0.601815023152048380f, -0.587785252292473030f, -0.573576436351045830f, -0.559192903470746680f, -0.544639035015027080f, -0.529919264233204790f, -0.515038074910054270f, -0.499999999999999780f, -0.484809620246337000f, -0.469471562785890530f, -0.453990499739546750f, -0.438371146789077510f, -0.422618261740699330f, -0.406736643075800100f, -0.390731128489273600f, -0.374606593415912070f, -0.358367949545300270f, -0.342020143325668710f, -0.325568154457156420f, -0.309016994374947340f, -0.292371704722736660f, -0.275637355816999050f, -0.258819045102520850f, -0.241921895599667790f, -0.224951054343864810f, -0.207911690817759120f, -0.190808995376544800f, -0.173648177666930300f, -0.156434465040231040f, -0.139173100960065350f, -0.121869343405147370f, -0.104528463267653330f, -0.087155742747658235f, -0.069756473744125330f, -0.052335956242943620f, -0.034899496702500733f, -0.017452406437283477f, 0.000000000000000061f, 0.017452406437283376f, 0.034899496702501080f, 0.052335956242943966f, 0.069756473744125455f, 0.087155742747658138f, 0.104528463267653460f, 0.121869343405147490f, 0.139173100960065690f, 0.156434465040230920f, 0.173648177666930410f, 0.190808995376544920f, 0.207911690817759450f, 0.224951054343864920f, 0.241921895599667900f, 0.258819045102520740f, 0.275637355816999160f, 0.292371704722736770f, 0.309016994374947450f, 0.325568154457156760f, 0.342020143325668820f, 0.358367949545300380f, 0.374606593415911960f, 0.390731128489273940f, 0.406736643075800210f, 0.422618261740699440f, 0.438371146789077460f, 0.453990499739546860f, 0.469471562785890860f, 0.484809620246337110f, 0.500000000000000110f, 0.515038074910054380f, 0.529919264233204900f, 0.544639035015027200f, 0.559192903470746790f, 0.573576436351046050f, 0.587785252292473140f, 0.601815023152048270f, 0.615661475325658290f, 0.629320391049837500f, 0.642787609686539360f, 0.656059028990507280f, 0.669130606358858240f, 0.681998360062498480f, 0.694658370458997370f, 0.707106781186547570f, 0.719339800338651190f, 0.731353701619170570f, 0.743144825477394240f, 0.754709580222772010f, 0.766044443118978010f, 0.777145961456970900f, 0.788010753606722010f, 0.798635510047292830f, 0.809016994374947450f, 0.819152044288991800f, 0.829037572555041620f, 0.838670567945424050f, 0.848048096156425960f, 0.857167300702112330f, 0.866025403784438710f, 0.874619707139395740f, 0.882947592858926990f, 0.891006524188367900f, 0.898794046299167040f, 0.906307787036649940f, 0.913545457642600870f, 0.920504853452440370f, 0.927183854566787420f, 0.933580426497201740f, 0.939692620785908430f, 0.945518575599316850f, 0.951056516295153530f, 0.956304755963035440f, 0.961261695938318890f, 0.965925826289068310f, 0.970295726275996470f, 0.974370064785235250f, 0.978147600733805690f, 0.981627183447663980f, 0.984807753012208020f, 0.987688340595137770f, 0.990268068741570360f, 0.992546151641321980f, 0.994521895368273290f, 0.996194698091745550f, 0.997564050259824200f, 0.998629534754573830f, 0.999390827019095760f, 0.999847695156391270f, 1.000000000000000000f, 0.999847695156391270f, 0.999390827019095760f, 0.998629534754573830f, 0.997564050259824200f, 0.996194698091745550f, 0.994521895368273290f, 0.992546151641321980f, 0.990268068741570360f, 0.987688340595137770f, 0.984807753012208020f, 0.981627183447663980f, 0.978147600733805690f, 0.974370064785235250f, 0.970295726275996470f, 0.965925826289068310f, 0.961261695938318890f, 0.956304755963035440f, 0.951056516295153530f, 0.945518575599316850f, 0.939692620785908430f, 0.933580426497201740f, 0.927183854566787420f, 0.920504853452440370f, 0.913545457642600870f, 0.906307787036649940f, 0.898794046299167040f, 0.891006524188367900f, 0.882947592858926990f, 0.874619707139395740f, 0.866025403784438710f, 0.857167300702112330f, 0.848048096156425960f, 0.838670567945424050f, 0.829037572555041620f, 0.819152044288991800f, 0.809016994374947450f, 0.798635510047292830f, 0.788010753606722010f, 0.777145961456970900f, 0.766044443118978010f, 0.754709580222772010f, 0.743144825477394240f, 0.731353701619170570f, 0.719339800338651190f, 0.707106781186547570f, 0.694658370458997370f, 0.681998360062498480f, 0.669130606358858240f, 0.656059028990507280f, 0.642787609686539360f, 0.629320391049837500f, 0.615661475325658290f, 0.601815023152048270f, 0.587785252292473140f, 0.573576436351046050f, 0.559192903470746790f, 0.544639035015027200f, 0.529919264233204900f, 0.515038074910054380f, 0.500000000000000110f, 0.484809620246337110f, 0.469471562785890860f, 0.453990499739546860f, 0.438371146789077460f, 0.422618261740699440f, 0.406736643075800210f, 0.390731128489273940f, 0.374606593415911960f, 0.358367949545300380f, 0.342020143325668820f, 0.325568154457156760f, 0.309016994374947450f, 0.292371704722736770f, 0.275637355816999160f, 0.258819045102520740f, 0.241921895599667900f, 0.224951054343864920f, 0.207911690817759450f, 0.190808995376544920f, 0.173648177666930410f, 0.156434465040230920f, 0.139173100960065690f, 0.121869343405147490f, 0.104528463267653460f, 0.087155742747658138f, 0.069756473744125455f, 0.052335956242943966f, 0.034899496702501080f, 0.017452406437283376f, 0.000000000000000061f, -0.017452406437283477f, -0.034899496702500733f, -0.052335956242943620f, -0.069756473744125330f, -0.087155742747658235f, -0.104528463267653330f, -0.121869343405147370f, -0.139173100960065350f, -0.156434465040231040f, -0.173648177666930300f, -0.190808995376544800f, -0.207911690817759120f, -0.224951054343864810f, -0.241921895599667790f, -0.258819045102520850f, -0.275637355816999050f, -0.292371704722736660f, -0.309016994374947340f, -0.325568154457156420f, -0.342020143325668710f, -0.358367949545300270f, -0.374606593415912070f, -0.390731128489273600f, -0.406736643075800100f, -0.422618261740699330f, -0.438371146789077510f, -0.453990499739546750f, -0.469471562785890530f, -0.484809620246337000f, -0.499999999999999780f, -0.515038074910054270f, -0.529919264233204790f, -0.544639035015027080f, -0.559192903470746680f, -0.573576436351045830f, -0.587785252292473030f, -0.601815023152048380f, -0.615661475325658290f, -0.629320391049837280f, -0.642787609686539360f, -0.656059028990507500f, -0.669130606358858240f, -0.681998360062498370f, -0.694658370458997030f, -0.707106781186547460f, -0.719339800338651300f, -0.731353701619170460f, -0.743144825477394130f, -0.754709580222772010f, -0.766044443118977900f, -0.777145961456970680f, -0.788010753606721900f, -0.798635510047292940f, -0.809016994374947340f, -0.819152044288991580f, -0.829037572555041620f, -0.838670567945424160f, -0.848048096156425960f, -0.857167300702112220f, -0.866025403784438710f, -0.874619707139395740f, -0.882947592858926770f, -0.891006524188367790f, -0.898794046299167040f, -0.906307787036649940f, -0.913545457642600760f, -0.920504853452440150f, -0.927183854566787310f, -0.933580426497201740f, -0.939692620785908320f, -0.945518575599316740f, -0.951056516295153530f, -0.956304755963035440f, -0.961261695938318670f, -0.965925826289068200f, -0.970295726275996470f, -0.974370064785235250f, -0.978147600733805690f, -0.981627183447663980f, -0.984807753012208020f, -0.987688340595137660f, -0.990268068741570250f, -0.992546151641321980f, -0.994521895368273290f, -0.996194698091745550f, -0.997564050259824200f, -0.998629534754573830f, -0.999390827019095760f, -0.999847695156391270f, -1.000000000000000000f }; /** * \par * Sine Table is generated from following loop * <pre>for(i = 0; i < 360; i++) * { * sinTable[i]= sin((i-180) * PI/180.0); * } </pre> */ static const float32_t sinTable[360] = { -0.017452406437283439f, -0.034899496702500699f, -0.052335956242943807f, -0.069756473744125524f, -0.087155742747658638f, -0.104528463267653730f, -0.121869343405147550f, -0.139173100960065740f, -0.156434465040230980f, -0.173648177666930280f, -0.190808995376544970f, -0.207911690817759310f, -0.224951054343864780f, -0.241921895599667730f, -0.258819045102521020f, -0.275637355816999660f, -0.292371704722737050f, -0.309016994374947510f, -0.325568154457156980f, -0.342020143325668880f, -0.358367949545300210f, -0.374606593415912240f, -0.390731128489274160f, -0.406736643075800430f, -0.422618261740699500f, -0.438371146789077290f, -0.453990499739546860f, -0.469471562785891080f, -0.484809620246337170f, -0.499999999999999940f, -0.515038074910054380f, -0.529919264233204900f, -0.544639035015026860f, -0.559192903470746900f, -0.573576436351046380f, -0.587785252292473250f, -0.601815023152048160f, -0.615661475325658400f, -0.629320391049837720f, -0.642787609686539470f, -0.656059028990507280f, -0.669130606358858350f, -0.681998360062498590f, -0.694658370458997140f, -0.707106781186547570f, -0.719339800338651410f, -0.731353701619170570f, -0.743144825477394240f, -0.754709580222771790f, -0.766044443118978010f, -0.777145961456971010f, -0.788010753606722010f, -0.798635510047292720f, -0.809016994374947450f, -0.819152044288992020f, -0.829037572555041740f, -0.838670567945424050f, -0.848048096156426070f, -0.857167300702112330f, -0.866025403784438710f, -0.874619707139395850f, -0.882947592858927100f, -0.891006524188367900f, -0.898794046299166930f, -0.906307787036650050f, -0.913545457642600980f, -0.920504853452440370f, -0.927183854566787420f, -0.933580426497201740f, -0.939692620785908430f, -0.945518575599316850f, -0.951056516295153640f, -0.956304755963035550f, -0.961261695938318890f, -0.965925826289068310f, -0.970295726275996470f, -0.974370064785235250f, -0.978147600733805690f, -0.981627183447663980f, -0.984807753012208020f, -0.987688340595137660f, -0.990268068741570360f, -0.992546151641322090f, -0.994521895368273400f, -0.996194698091745550f, -0.997564050259824200f, -0.998629534754573830f, -0.999390827019095760f, -0.999847695156391270f, -1.000000000000000000f, -0.999847695156391270f, -0.999390827019095760f, -0.998629534754573830f, -0.997564050259824200f, -0.996194698091745550f, -0.994521895368273290f, -0.992546151641321980f, -0.990268068741570250f, -0.987688340595137770f, -0.984807753012208020f, -0.981627183447663980f, -0.978147600733805580f, -0.974370064785235250f, -0.970295726275996470f, -0.965925826289068310f, -0.961261695938318890f, -0.956304755963035440f, -0.951056516295153530f, -0.945518575599316740f, -0.939692620785908320f, -0.933580426497201740f, -0.927183854566787420f, -0.920504853452440260f, -0.913545457642600870f, -0.906307787036649940f, -0.898794046299167040f, -0.891006524188367790f, -0.882947592858926880f, -0.874619707139395740f, -0.866025403784438600f, -0.857167300702112220f, -0.848048096156426070f, -0.838670567945423940f, -0.829037572555041740f, -0.819152044288991800f, -0.809016994374947450f, -0.798635510047292830f, -0.788010753606722010f, -0.777145961456970790f, -0.766044443118978010f, -0.754709580222772010f, -0.743144825477394240f, -0.731353701619170460f, -0.719339800338651080f, -0.707106781186547460f, -0.694658370458997250f, -0.681998360062498480f, -0.669130606358858240f, -0.656059028990507160f, -0.642787609686539250f, -0.629320391049837390f, -0.615661475325658180f, -0.601815023152048270f, -0.587785252292473140f, -0.573576436351046050f, -0.559192903470746900f, -0.544639035015027080f, -0.529919264233204900f, -0.515038074910054160f, -0.499999999999999940f, -0.484809620246337060f, -0.469471562785890810f, -0.453990499739546750f, -0.438371146789077400f, -0.422618261740699440f, -0.406736643075800150f, -0.390731128489273720f, -0.374606593415912010f, -0.358367949545300270f, -0.342020143325668710f, -0.325568154457156640f, -0.309016994374947400f, -0.292371704722736770f, -0.275637355816999160f, -0.258819045102520740f, -0.241921895599667730f, -0.224951054343865000f, -0.207911690817759310f, -0.190808995376544800f, -0.173648177666930330f, -0.156434465040230870f, -0.139173100960065440f, -0.121869343405147480f, -0.104528463267653460f, -0.087155742747658166f, -0.069756473744125302f, -0.052335956242943828f, -0.034899496702500969f, -0.017452406437283512f, 0.000000000000000000f, 0.017452406437283512f, 0.034899496702500969f, 0.052335956242943828f, 0.069756473744125302f, 0.087155742747658166f, 0.104528463267653460f, 0.121869343405147480f, 0.139173100960065440f, 0.156434465040230870f, 0.173648177666930330f, 0.190808995376544800f, 0.207911690817759310f, 0.224951054343865000f, 0.241921895599667730f, 0.258819045102520740f, 0.275637355816999160f, 0.292371704722736770f, 0.309016994374947400f, 0.325568154457156640f, 0.342020143325668710f, 0.358367949545300270f, 0.374606593415912010f, 0.390731128489273720f, 0.406736643075800150f, 0.422618261740699440f, 0.438371146789077400f, 0.453990499739546750f, 0.469471562785890810f, 0.484809620246337060f, 0.499999999999999940f, 0.515038074910054160f, 0.529919264233204900f, 0.544639035015027080f, 0.559192903470746900f, 0.573576436351046050f, 0.587785252292473140f, 0.601815023152048270f, 0.615661475325658180f, 0.629320391049837390f, 0.642787609686539250f, 0.656059028990507160f, 0.669130606358858240f, 0.681998360062498480f, 0.694658370458997250f, 0.707106781186547460f, 0.719339800338651080f, 0.731353701619170460f, 0.743144825477394240f, 0.754709580222772010f, 0.766044443118978010f, 0.777145961456970790f, 0.788010753606722010f, 0.798635510047292830f, 0.809016994374947450f, 0.819152044288991800f, 0.829037572555041740f, 0.838670567945423940f, 0.848048096156426070f, 0.857167300702112220f, 0.866025403784438600f, 0.874619707139395740f, 0.882947592858926880f, 0.891006524188367790f, 0.898794046299167040f, 0.906307787036649940f, 0.913545457642600870f, 0.920504853452440260f, 0.927183854566787420f, 0.933580426497201740f, 0.939692620785908320f, 0.945518575599316740f, 0.951056516295153530f, 0.956304755963035440f, 0.961261695938318890f, 0.965925826289068310f, 0.970295726275996470f, 0.974370064785235250f, 0.978147600733805580f, 0.981627183447663980f, 0.984807753012208020f, 0.987688340595137770f, 0.990268068741570250f, 0.992546151641321980f, 0.994521895368273290f, 0.996194698091745550f, 0.997564050259824200f, 0.998629534754573830f, 0.999390827019095760f, 0.999847695156391270f, 1.000000000000000000f, 0.999847695156391270f, 0.999390827019095760f, 0.998629534754573830f, 0.997564050259824200f, 0.996194698091745550f, 0.994521895368273400f, 0.992546151641322090f, 0.990268068741570360f, 0.987688340595137660f, 0.984807753012208020f, 0.981627183447663980f, 0.978147600733805690f, 0.974370064785235250f, 0.970295726275996470f, 0.965925826289068310f, 0.961261695938318890f, 0.956304755963035550f, 0.951056516295153640f, 0.945518575599316850f, 0.939692620785908430f, 0.933580426497201740f, 0.927183854566787420f, 0.920504853452440370f, 0.913545457642600980f, 0.906307787036650050f, 0.898794046299166930f, 0.891006524188367900f, 0.882947592858927100f, 0.874619707139395850f, 0.866025403784438710f, 0.857167300702112330f, 0.848048096156426070f, 0.838670567945424050f, 0.829037572555041740f, 0.819152044288992020f, 0.809016994374947450f, 0.798635510047292720f, 0.788010753606722010f, 0.777145961456971010f, 0.766044443118978010f, 0.754709580222771790f, 0.743144825477394240f, 0.731353701619170570f, 0.719339800338651410f, 0.707106781186547570f, 0.694658370458997140f, 0.681998360062498590f, 0.669130606358858350f, 0.656059028990507280f, 0.642787609686539470f, 0.629320391049837720f, 0.615661475325658400f, 0.601815023152048160f, 0.587785252292473250f, 0.573576436351046380f, 0.559192903470746900f, 0.544639035015026860f, 0.529919264233204900f, 0.515038074910054380f, 0.499999999999999940f, 0.484809620246337170f, 0.469471562785891080f, 0.453990499739546860f, 0.438371146789077290f, 0.422618261740699500f, 0.406736643075800430f, 0.390731128489274160f, 0.374606593415912240f, 0.358367949545300210f, 0.342020143325668880f, 0.325568154457156980f, 0.309016994374947510f, 0.292371704722737050f, 0.275637355816999660f, 0.258819045102521020f, 0.241921895599667730f, 0.224951054343864780f, 0.207911690817759310f, 0.190808995376544970f, 0.173648177666930280f, 0.156434465040230980f, 0.139173100960065740f, 0.121869343405147550f, 0.104528463267653730f, 0.087155742747658638f, 0.069756473744125524f, 0.052335956242943807f, 0.034899496702500699f, 0.017452406437283439f, 0.000000000000000122f }; /** * @brief Floating-point sin_cos function. * @param[in] theta input value in degrees * @param[out] *pSinVal points to the processed sine output. * @param[out] *pCosVal points to the processed cos output. * @return none. */ void arm_sin_cos_f32( float32_t theta, float32_t * pSinVal, float32_t * pCosVal) { int32_t i; /* Index for reading nearwst output values */ float32_t x1 = -179.0f; /* Initial input value */ float32_t y0, y1; /* nearest output values */ float32_t y2, y3; float32_t fract; /* fractional part of input */ /* Calculation of fractional part */ if(theta > 0.0f) { fract = theta - (float32_t) ((int32_t) theta); } else { fract = (theta - (float32_t) ((int32_t) theta)) + 1.0f; } /* index calculation for reading nearest output values */ i = (uint32_t) (theta - x1); /* Checking min and max index of table */ if(i < 0) { i = 0; } else if(i >= 359) { i = 358; } /* reading nearest sine output values */ y0 = sinTable[i]; y1 = sinTable[i + 1u]; /* reading nearest cosine output values */ y2 = cosTable[i]; y3 = cosTable[i + 1u]; y1 = y1 - y0; y3 = y3 - y2; y1 = fract * y1; y3 = fract * y3; /* Calculation of sine value */ *pSinVal = y0 + y1; /* Calculation of cosine value */ *pCosVal = y2 + y3; } /** * @} end of SinCos group */