CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
Diff: cmsis_dsp/TransformFunctions/arm_rfft_f32.c
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cmsis_dsp/TransformFunctions/arm_rfft_f32.c Wed Nov 28 12:30:09 2012 +0000 @@ -0,0 +1,382 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010 ARM Limited. All rights reserved. +* +* $Date: 15. February 2012 +* $Revision: V1.1.0 +* +* Project: CMSIS DSP Library +* Title: arm_rfft_f32.c +* +* Description: RFFT & RIFFT Floating point process function +* +* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 +* +* Version 1.1.0 2012/02/15 +* Updated with more optimizations, bug fixes and minor API changes. +* +* Version 1.0.10 2011/7/15 +* Big Endian support added and Merged M0 and M3/M4 Source code. +* +* Version 1.0.3 2010/11/29 +* Re-organized the CMSIS folders and updated documentation. +* +* Version 1.0.2 2010/11/11 +* Documentation updated. +* +* Version 1.0.1 2010/10/05 +* Production release and review comments incorporated. +* +* Version 1.0.0 2010/09/20 +* Production release and review comments incorporated. +* +* Version 0.0.7 2010/06/10 +* Misra-C changes done +* -------------------------------------------------------------------- */ + +#include "arm_math.h" + +/** + * @ingroup groupTransforms + */ + +/** + * @defgroup RFFT_RIFFT Real FFT Functions + * + * \par + * Complex FFT/IFFT typically assumes complex input and output. However many applications use real valued data in time domain. + * Real FFT/IFFT efficiently process real valued sequences with the advantage of requirement of low memory and with less complexity. + * + * \par + * This set of functions implements Real Fast Fourier Transforms(RFFT) and Real Inverse Fast Fourier Transform(RIFFT) + * for Q15, Q31, and floating-point data types. + * + * + * \par Algorithm: + * + * <b>Real Fast Fourier Transform:</b> + * \par + * Real FFT of N-point is calculated using CFFT of N/2-point and Split RFFT process as shown below figure. + * \par + * \image html RFFT.gif "Real Fast Fourier Transform" + * \par + * The RFFT functions operate on blocks of input and output data and each call to the function processes + * <code>fftLenR</code> samples through the transform. <code>pSrc</code> points to input array containing <code>fftLenR</code> values. + * <code>pDst</code> points to output array containing <code>2*fftLenR</code> values. \n + * Input for real FFT is in the order of + * <pre>{real[0], real[1], real[2], real[3], ..}</pre> + * Output for real FFT is complex and are in the order of + * <pre>{real(0), imag(0), real(1), imag(1), ...}</pre> + * + * <b>Real Inverse Fast Fourier Transform:</b> + * \par + * Real IFFT of N-point is calculated using Split RIFFT process and CFFT of N/2-point as shown below figure. + * \par + * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" + * \par + * The RIFFT functions operate on blocks of input and output data and each call to the function processes + * <code>2*fftLenR</code> samples through the transform. <code>pSrc</code> points to input array containing <code>2*fftLenR</code> values. + * <code>pDst</code> points to output array containing <code>fftLenR</code> values. \n + * Input for real IFFT is complex and are in the order of + * <pre>{real(0), imag(0), real(1), imag(1), ...}</pre> + * Output for real IFFT is real and in the order of + * <pre>{real[0], real[1], real[2], real[3], ..}</pre> + * + * \par Lengths supported by the transform: + * \par + * Real FFT/IFFT supports the lengths [128, 512, 2048], as it internally uses CFFT/CIFFT. + * + * \par Instance Structure + * A separate instance structure must be defined for each Instance but the twiddle factors can be reused. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Sets the values of the internal structure fields. + * - Initializes twiddle factor tables. + * - Initializes CFFT data structure fields. + * \par + * Use of the initialization function is optional. + * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. + * To place an instance structure into a const data section, the instance structure must be manually initialized. + * Manually initialize the instance structure as follows: + * <pre> + *arm_rfft_instance_f32 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; + *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; + *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; + * </pre> + * where <code>fftLenReal</code> length of RFFT/RIFFT; <code>fftLenBy2</code> length of CFFT/CIFFT. + * <code>ifftFlagR</code> Flag for selection of RFFT or RIFFT(Set ifftFlagR to calculate RIFFT otherwise calculates RFFT); + * <code>bitReverseFlagR</code> Flag for selection of output order(Set bitReverseFlagR to output in normal order otherwise output in bit reversed order); + * <code>twidCoefRModifier</code> modifier for twiddle factor table which supports 128, 512, 2048 RFFT lengths with same table; + * <code>pTwiddleAReal</code>points to A array of twiddle coefficients; <code>pTwiddleBReal</code>points to B array of twiddle coefficients; + * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure also needs to be initialized, refer to arm_cfft_radix4_f32() for details regarding + * static initialization of cfft structure. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the RFFT/RIFFT function. + * Refer to the function specific documentation below for usage guidelines. + */ + +/*-------------------------------------------------------------------- + * Internal functions prototypes + *--------------------------------------------------------------------*/ + +void arm_split_rfft_f32( + float32_t * pSrc, + uint32_t fftLen, + float32_t * pATable, + float32_t * pBTable, + float32_t * pDst, + uint32_t modifier); +void arm_split_rifft_f32( + float32_t * pSrc, + uint32_t fftLen, + float32_t * pATable, + float32_t * pBTable, + float32_t * pDst, + uint32_t modifier); + +/** + * @addtogroup RFFT_RIFFT + * @{ + */ + +/** + * @brief Processing function for the floating-point RFFT/RIFFT. + * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure. + * @param[in] *pSrc points to the input buffer. + * @param[out] *pDst points to the output buffer. + * @return none. + */ + +void arm_rfft_f32( + const arm_rfft_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst) +{ + const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft; + + + /* Calculation of Real IFFT of input */ + if(S->ifftFlagR == 1u) + { + /* Real IFFT core process */ + arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal, + S->pTwiddleBReal, pDst, S->twidCoefRModifier); + + + /* Complex radix-4 IFFT process */ + arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen, + S_CFFT->pTwiddle, + S_CFFT->twidCoefModifier, + S_CFFT->onebyfftLen); + + /* Bit reversal process */ + if(S->bitReverseFlagR == 1u) + { + arm_bitreversal_f32(pDst, S_CFFT->fftLen, + S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); + } + } + else + { + + /* Calculation of RFFT of input */ + + /* Complex radix-4 FFT process */ + arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen, + S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); + + /* Bit reversal process */ + if(S->bitReverseFlagR == 1u) + { + arm_bitreversal_f32(pSrc, S_CFFT->fftLen, + S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); + } + + + /* Real FFT core process */ + arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal, + S->pTwiddleBReal, pDst, S->twidCoefRModifier); + } + +} + +/** + * @} end of RFFT_RIFFT group + */ + +/** + * @brief Core Real FFT process + * @param[in] *pSrc points to the input buffer. + * @param[in] fftLen length of FFT. + * @param[in] *pATable points to the twiddle Coef A buffer. + * @param[in] *pBTable points to the twiddle Coef B buffer. + * @param[out] *pDst points to the output buffer. + * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. + * @return none. + */ + +void arm_split_rfft_f32( + float32_t * pSrc, + uint32_t fftLen, + float32_t * pATable, + float32_t * pBTable, + float32_t * pDst, + uint32_t modifier) +{ + uint32_t i; /* Loop Counter */ + float32_t outR, outI; /* Temporary variables for output */ + float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ + float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ + float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u]; /* temp pointers for output buffer */ + float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u]; /* temp pointers for input buffer */ + + /* Init coefficient pointers */ + pCoefA = &pATable[modifier * 2u]; + pCoefB = &pBTable[modifier * 2u]; + + i = fftLen - 1u; + + while(i > 0u) + { + /* + outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + + pSrc[2 * n - 2 * i] * pBTable[2 * i] + + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); + */ + + /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - + pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ + + /* read pATable[2 * i] */ + CoefA1 = *pCoefA++; + /* pATable[2 * i + 1] */ + CoefA2 = *pCoefA; + + /* pSrc[2 * i] * pATable[2 * i] */ + outR = *pSrc1 * CoefA1; + /* pSrc[2 * i] * CoefA2 */ + outI = *pSrc1++ * CoefA2; + + /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */ + outR -= (*pSrc1 + *pSrc2) * CoefA2; + /* pSrc[2 * i + 1] * CoefA1 */ + outI += *pSrc1++ * CoefA1; + + CoefB1 = *pCoefB; + + /* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */ + outI -= *pSrc2-- * CoefB1; + /* pSrc[2 * fftLen - 2 * i] * CoefA2 */ + outI -= *pSrc2 * CoefA2; + + /* pSrc[2 * fftLen - 2 * i] * CoefB1 */ + outR += *pSrc2-- * CoefB1; + + /* write output */ + *pDst1++ = outR; + *pDst1++ = outI; + + /* write complex conjugate output */ + *pDst2-- = -outI; + *pDst2-- = outR; + + /* update coefficient pointer */ + pCoefB = pCoefB + (modifier * 2u); + pCoefA = pCoefA + ((modifier * 2u) - 1u); + + i--; + + } + + pDst[2u * fftLen] = pSrc[0] - pSrc[1]; + pDst[(2u * fftLen) + 1u] = 0.0f; + + pDst[0] = pSrc[0] + pSrc[1]; + pDst[1] = 0.0f; + +} + + +/** + * @brief Core Real IFFT process + * @param[in] *pSrc points to the input buffer. + * @param[in] fftLen length of FFT. + * @param[in] *pATable points to the twiddle Coef A buffer. + * @param[in] *pBTable points to the twiddle Coef B buffer. + * @param[out] *pDst points to the output buffer. + * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. + * @return none. + */ + +void arm_split_rifft_f32( + float32_t * pSrc, + uint32_t fftLen, + float32_t * pATable, + float32_t * pBTable, + float32_t * pDst, + uint32_t modifier) +{ + float32_t outR, outI; /* Temporary variables for output */ + float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ + float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ + float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u]; + + pCoefA = &pATable[0]; + pCoefB = &pBTable[0]; + + while(fftLen > 0u) + { + /* + outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + + pIn[2 * n - 2 * i] * pBTable[2 * i] - + pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); + + outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - + pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); + + */ + + CoefA1 = *pCoefA++; + CoefA2 = *pCoefA; + + /* outR = (pSrc[2 * i] * CoefA1 */ + outR = *pSrc1 * CoefA1; + + /* - pSrc[2 * i] * CoefA2 */ + outI = -(*pSrc1++) * CoefA2; + + /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */ + outR += (*pSrc1 + *pSrc2) * CoefA2; + + /* pSrc[2 * i + 1] * CoefA1 */ + outI += (*pSrc1++) * CoefA1; + + CoefB1 = *pCoefB; + + /* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */ + outI -= *pSrc2-- * CoefB1; + + /* pSrc[2 * fftLen - 2 * i] * CoefB1 */ + outR += *pSrc2 * CoefB1; + + /* pSrc[2 * fftLen - 2 * i] * CoefA2 */ + outI += *pSrc2-- * CoefA2; + + /* write output */ + *pDst++ = outR; + *pDst++ = outI; + + /* update coefficient pointer */ + pCoefB = pCoefB + (modifier * 2u); + pCoefA = pCoefA + ((modifier * 2u) - 1u); + + /* Decrement loop count */ + fftLen--; + } + +}