CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
cmsis_dsp/TransformFunctions/arm_dct4_f32.c@2:da51fb522205, 2013-05-30 (annotated)
- Committer:
- emilmont
- Date:
- Thu May 30 17:10:11 2013 +0100
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
Keep "cmsis-dsp" module in synch with its source
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
emilmont | 1:fdd22bb7aa52 | 1 | /* ---------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 2 | * Copyright (C) 2010 ARM Limited. All rights reserved. |
emilmont | 1:fdd22bb7aa52 | 3 | * |
emilmont | 1:fdd22bb7aa52 | 4 | * $Date: 15. February 2012 |
emilmont | 2:da51fb522205 | 5 | * $Revision: V1.1.0 |
emilmont | 1:fdd22bb7aa52 | 6 | * |
emilmont | 2:da51fb522205 | 7 | * Project: CMSIS DSP Library |
emilmont | 2:da51fb522205 | 8 | * Title: arm_dct4_f32.c |
emilmont | 1:fdd22bb7aa52 | 9 | * |
emilmont | 2:da51fb522205 | 10 | * Description: Processing function of DCT4 & IDCT4 F32. |
emilmont | 1:fdd22bb7aa52 | 11 | * |
emilmont | 1:fdd22bb7aa52 | 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
emilmont | 1:fdd22bb7aa52 | 13 | * |
emilmont | 1:fdd22bb7aa52 | 14 | * Version 1.1.0 2012/02/15 |
emilmont | 1:fdd22bb7aa52 | 15 | * Updated with more optimizations, bug fixes and minor API changes. |
emilmont | 1:fdd22bb7aa52 | 16 | * |
emilmont | 1:fdd22bb7aa52 | 17 | * Version 1.0.10 2011/7/15 |
emilmont | 1:fdd22bb7aa52 | 18 | * Big Endian support added and Merged M0 and M3/M4 Source code. |
emilmont | 1:fdd22bb7aa52 | 19 | * |
emilmont | 1:fdd22bb7aa52 | 20 | * Version 1.0.3 2010/11/29 |
emilmont | 1:fdd22bb7aa52 | 21 | * Re-organized the CMSIS folders and updated documentation. |
emilmont | 1:fdd22bb7aa52 | 22 | * |
emilmont | 1:fdd22bb7aa52 | 23 | * Version 1.0.2 2010/11/11 |
emilmont | 1:fdd22bb7aa52 | 24 | * Documentation updated. |
emilmont | 1:fdd22bb7aa52 | 25 | * |
emilmont | 1:fdd22bb7aa52 | 26 | * Version 1.0.1 2010/10/05 |
emilmont | 1:fdd22bb7aa52 | 27 | * Production release and review comments incorporated. |
emilmont | 1:fdd22bb7aa52 | 28 | * |
emilmont | 1:fdd22bb7aa52 | 29 | * Version 1.0.0 2010/09/20 |
emilmont | 1:fdd22bb7aa52 | 30 | * Production release and review comments incorporated. |
emilmont | 1:fdd22bb7aa52 | 31 | * -------------------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 32 | |
emilmont | 1:fdd22bb7aa52 | 33 | #include "arm_math.h" |
emilmont | 1:fdd22bb7aa52 | 34 | |
emilmont | 1:fdd22bb7aa52 | 35 | /** |
emilmont | 1:fdd22bb7aa52 | 36 | * @ingroup groupTransforms |
emilmont | 1:fdd22bb7aa52 | 37 | */ |
emilmont | 1:fdd22bb7aa52 | 38 | |
emilmont | 1:fdd22bb7aa52 | 39 | /** |
emilmont | 1:fdd22bb7aa52 | 40 | * @defgroup DCT4_IDCT4 DCT Type IV Functions |
emilmont | 1:fdd22bb7aa52 | 41 | * Representation of signals by minimum number of values is important for storage and transmission. |
emilmont | 1:fdd22bb7aa52 | 42 | * The possibility of large discontinuity between the beginning and end of a period of a signal |
emilmont | 1:fdd22bb7aa52 | 43 | * in DFT can be avoided by extending the signal so that it is even-symmetric. |
emilmont | 1:fdd22bb7aa52 | 44 | * Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the |
emilmont | 1:fdd22bb7aa52 | 45 | * spectrum and is very widely used in signal and image coding applications. |
emilmont | 1:fdd22bb7aa52 | 46 | * The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions. |
emilmont | 1:fdd22bb7aa52 | 47 | * DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular. |
emilmont | 1:fdd22bb7aa52 | 48 | * |
emilmont | 1:fdd22bb7aa52 | 49 | * DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal. |
emilmont | 1:fdd22bb7aa52 | 50 | * Reordering of the input data makes the computation of DCT just a problem of |
emilmont | 1:fdd22bb7aa52 | 51 | * computing the DFT of a real signal with a few additional operations. |
emilmont | 1:fdd22bb7aa52 | 52 | * This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations. |
emilmont | 1:fdd22bb7aa52 | 53 | * |
emilmont | 1:fdd22bb7aa52 | 54 | * DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used. |
emilmont | 1:fdd22bb7aa52 | 55 | * DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing. |
emilmont | 1:fdd22bb7aa52 | 56 | * DCT2 implementation can be described in the following steps: |
emilmont | 1:fdd22bb7aa52 | 57 | * - Re-ordering input |
emilmont | 1:fdd22bb7aa52 | 58 | * - Calculating Real FFT |
emilmont | 1:fdd22bb7aa52 | 59 | * - Multiplication of weights and Real FFT output and getting real part from the product. |
emilmont | 1:fdd22bb7aa52 | 60 | * |
emilmont | 1:fdd22bb7aa52 | 61 | * This process is explained by the block diagram below: |
emilmont | 1:fdd22bb7aa52 | 62 | * \image html DCT4.gif "Discrete Cosine Transform - type-IV" |
emilmont | 1:fdd22bb7aa52 | 63 | * |
emilmont | 1:fdd22bb7aa52 | 64 | * \par Algorithm: |
emilmont | 1:fdd22bb7aa52 | 65 | * The N-point type-IV DCT is defined as a real, linear transformation by the formula: |
emilmont | 1:fdd22bb7aa52 | 66 | * \image html DCT4Equation.gif |
emilmont | 1:fdd22bb7aa52 | 67 | * where <code>k = 0,1,2,.....N-1</code> |
emilmont | 1:fdd22bb7aa52 | 68 | *\par |
emilmont | 1:fdd22bb7aa52 | 69 | * Its inverse is defined as follows: |
emilmont | 1:fdd22bb7aa52 | 70 | * \image html IDCT4Equation.gif |
emilmont | 1:fdd22bb7aa52 | 71 | * where <code>n = 0,1,2,.....N-1</code> |
emilmont | 1:fdd22bb7aa52 | 72 | *\par |
emilmont | 1:fdd22bb7aa52 | 73 | * The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N). |
emilmont | 1:fdd22bb7aa52 | 74 | * The symmetry of the transform matrix indicates that the fast algorithms for the forward |
emilmont | 1:fdd22bb7aa52 | 75 | * and inverse transform computation are identical. |
emilmont | 1:fdd22bb7aa52 | 76 | * Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both. |
emilmont | 1:fdd22bb7aa52 | 77 | * |
emilmont | 1:fdd22bb7aa52 | 78 | * \par Lengths supported by the transform: |
emilmont | 1:fdd22bb7aa52 | 79 | * As DCT4 internally uses Real FFT, it supports all the lengths supported by arm_rfft_f32(). |
emilmont | 1:fdd22bb7aa52 | 80 | * The library provides separate functions for Q15, Q31, and floating-point data types. |
emilmont | 1:fdd22bb7aa52 | 81 | * \par Instance Structure |
emilmont | 1:fdd22bb7aa52 | 82 | * The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure. |
emilmont | 1:fdd22bb7aa52 | 83 | * A separate instance structure must be defined for each transform. |
emilmont | 1:fdd22bb7aa52 | 84 | * There are separate instance structure declarations for each of the 3 supported data types. |
emilmont | 1:fdd22bb7aa52 | 85 | * |
emilmont | 1:fdd22bb7aa52 | 86 | * \par Initialization Functions |
emilmont | 1:fdd22bb7aa52 | 87 | * There is also an associated initialization function for each data type. |
emilmont | 1:fdd22bb7aa52 | 88 | * The initialization function performs the following operations: |
emilmont | 1:fdd22bb7aa52 | 89 | * - Sets the values of the internal structure fields. |
emilmont | 1:fdd22bb7aa52 | 90 | * - Initializes Real FFT as its process function is used internally in DCT4, by calling arm_rfft_init_f32(). |
emilmont | 1:fdd22bb7aa52 | 91 | * \par |
emilmont | 1:fdd22bb7aa52 | 92 | * Use of the initialization function is optional. |
emilmont | 1:fdd22bb7aa52 | 93 | * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
emilmont | 1:fdd22bb7aa52 | 94 | * To place an instance structure into a const data section, the instance structure must be manually initialized. |
emilmont | 1:fdd22bb7aa52 | 95 | * Manually initialize the instance structure as follows: |
emilmont | 1:fdd22bb7aa52 | 96 | * <pre> |
emilmont | 1:fdd22bb7aa52 | 97 | *arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft}; |
emilmont | 1:fdd22bb7aa52 | 98 | *arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft}; |
emilmont | 1:fdd22bb7aa52 | 99 | *arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft}; |
emilmont | 1:fdd22bb7aa52 | 100 | * </pre> |
emilmont | 1:fdd22bb7aa52 | 101 | * where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4; |
emilmont | 1:fdd22bb7aa52 | 102 | * \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>; |
emilmont | 1:fdd22bb7aa52 | 103 | * \c pTwiddle points to the twiddle factor table; |
emilmont | 1:fdd22bb7aa52 | 104 | * \c pCosFactor points to the cosFactor table; |
emilmont | 1:fdd22bb7aa52 | 105 | * \c pRfft points to the real FFT instance; |
emilmont | 1:fdd22bb7aa52 | 106 | * \c pCfft points to the complex FFT instance; |
emilmont | 1:fdd22bb7aa52 | 107 | * The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32() |
emilmont | 1:fdd22bb7aa52 | 108 | * and arm_rfft_f32() respectively for details regarding static initialization. |
emilmont | 1:fdd22bb7aa52 | 109 | * |
emilmont | 1:fdd22bb7aa52 | 110 | * \par Fixed-Point Behavior |
emilmont | 1:fdd22bb7aa52 | 111 | * Care must be taken when using the fixed-point versions of the DCT4 transform functions. |
emilmont | 1:fdd22bb7aa52 | 112 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
emilmont | 1:fdd22bb7aa52 | 113 | * Refer to the function specific documentation below for usage guidelines. |
emilmont | 1:fdd22bb7aa52 | 114 | */ |
emilmont | 1:fdd22bb7aa52 | 115 | |
emilmont | 1:fdd22bb7aa52 | 116 | /** |
emilmont | 1:fdd22bb7aa52 | 117 | * @addtogroup DCT4_IDCT4 |
emilmont | 1:fdd22bb7aa52 | 118 | * @{ |
emilmont | 1:fdd22bb7aa52 | 119 | */ |
emilmont | 1:fdd22bb7aa52 | 120 | |
emilmont | 1:fdd22bb7aa52 | 121 | /** |
emilmont | 1:fdd22bb7aa52 | 122 | * @brief Processing function for the floating-point DCT4/IDCT4. |
emilmont | 1:fdd22bb7aa52 | 123 | * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. |
emilmont | 1:fdd22bb7aa52 | 124 | * @param[in] *pState points to state buffer. |
emilmont | 1:fdd22bb7aa52 | 125 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
emilmont | 1:fdd22bb7aa52 | 126 | * @return none. |
emilmont | 1:fdd22bb7aa52 | 127 | */ |
emilmont | 1:fdd22bb7aa52 | 128 | |
emilmont | 1:fdd22bb7aa52 | 129 | void arm_dct4_f32( |
emilmont | 1:fdd22bb7aa52 | 130 | const arm_dct4_instance_f32 * S, |
emilmont | 1:fdd22bb7aa52 | 131 | float32_t * pState, |
emilmont | 1:fdd22bb7aa52 | 132 | float32_t * pInlineBuffer) |
emilmont | 1:fdd22bb7aa52 | 133 | { |
emilmont | 1:fdd22bb7aa52 | 134 | uint32_t i; /* Loop counter */ |
emilmont | 1:fdd22bb7aa52 | 135 | float32_t *weights = S->pTwiddle; /* Pointer to the Weights table */ |
emilmont | 1:fdd22bb7aa52 | 136 | float32_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ |
emilmont | 1:fdd22bb7aa52 | 137 | float32_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ |
emilmont | 1:fdd22bb7aa52 | 138 | float32_t in; /* Temporary variable */ |
emilmont | 1:fdd22bb7aa52 | 139 | |
emilmont | 1:fdd22bb7aa52 | 140 | |
emilmont | 1:fdd22bb7aa52 | 141 | /* DCT4 computation involves DCT2 (which is calculated using RFFT) |
emilmont | 1:fdd22bb7aa52 | 142 | * along with some pre-processing and post-processing. |
emilmont | 1:fdd22bb7aa52 | 143 | * Computational procedure is explained as follows: |
emilmont | 1:fdd22bb7aa52 | 144 | * (a) Pre-processing involves multiplying input with cos factor, |
emilmont | 1:fdd22bb7aa52 | 145 | * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) |
emilmont | 1:fdd22bb7aa52 | 146 | * where, |
emilmont | 1:fdd22bb7aa52 | 147 | * r(n) -- output of preprocessing |
emilmont | 1:fdd22bb7aa52 | 148 | * u(n) -- input to preprocessing(actual Source buffer) |
emilmont | 1:fdd22bb7aa52 | 149 | * (b) Calculation of DCT2 using FFT is divided into three steps: |
emilmont | 1:fdd22bb7aa52 | 150 | * Step1: Re-ordering of even and odd elements of input. |
emilmont | 1:fdd22bb7aa52 | 151 | * Step2: Calculating FFT of the re-ordered input. |
emilmont | 1:fdd22bb7aa52 | 152 | * Step3: Taking the real part of the product of FFT output and weights. |
emilmont | 1:fdd22bb7aa52 | 153 | * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: |
emilmont | 1:fdd22bb7aa52 | 154 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
emilmont | 1:fdd22bb7aa52 | 155 | * where, |
emilmont | 1:fdd22bb7aa52 | 156 | * Y4 -- DCT4 output, Y2 -- DCT2 output |
emilmont | 1:fdd22bb7aa52 | 157 | * (d) Multiplying the output with the normalizing factor sqrt(2/N). |
emilmont | 1:fdd22bb7aa52 | 158 | */ |
emilmont | 1:fdd22bb7aa52 | 159 | |
emilmont | 1:fdd22bb7aa52 | 160 | /*-------- Pre-processing ------------*/ |
emilmont | 1:fdd22bb7aa52 | 161 | /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ |
emilmont | 1:fdd22bb7aa52 | 162 | arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N); |
emilmont | 1:fdd22bb7aa52 | 163 | arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N); |
emilmont | 1:fdd22bb7aa52 | 164 | |
emilmont | 1:fdd22bb7aa52 | 165 | /* ---------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 166 | * Step1: Re-ordering of even and odd elements as, |
emilmont | 1:fdd22bb7aa52 | 167 | * pState[i] = pInlineBuffer[2*i] and |
emilmont | 1:fdd22bb7aa52 | 168 | * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 |
emilmont | 1:fdd22bb7aa52 | 169 | ---------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 170 | |
emilmont | 1:fdd22bb7aa52 | 171 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 172 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 173 | |
emilmont | 1:fdd22bb7aa52 | 174 | /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ |
emilmont | 1:fdd22bb7aa52 | 175 | pS2 = pState + (S->N - 1u); |
emilmont | 1:fdd22bb7aa52 | 176 | |
emilmont | 1:fdd22bb7aa52 | 177 | /* pbuff initialized to input buffer */ |
emilmont | 1:fdd22bb7aa52 | 178 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 179 | |
emilmont | 1:fdd22bb7aa52 | 180 | #ifndef ARM_MATH_CM0 |
emilmont | 1:fdd22bb7aa52 | 181 | |
emilmont | 1:fdd22bb7aa52 | 182 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
emilmont | 1:fdd22bb7aa52 | 183 | |
emilmont | 1:fdd22bb7aa52 | 184 | /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ |
emilmont | 1:fdd22bb7aa52 | 185 | i = (uint32_t) S->Nby2 >> 2u; |
emilmont | 1:fdd22bb7aa52 | 186 | |
emilmont | 1:fdd22bb7aa52 | 187 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
emilmont | 1:fdd22bb7aa52 | 188 | ** a second loop below computes the remaining 1 to 3 samples. */ |
emilmont | 1:fdd22bb7aa52 | 189 | do |
emilmont | 1:fdd22bb7aa52 | 190 | { |
emilmont | 1:fdd22bb7aa52 | 191 | /* Re-ordering of even and odd elements */ |
emilmont | 1:fdd22bb7aa52 | 192 | /* pState[i] = pInlineBuffer[2*i] */ |
emilmont | 1:fdd22bb7aa52 | 193 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 194 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
emilmont | 1:fdd22bb7aa52 | 195 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 196 | |
emilmont | 1:fdd22bb7aa52 | 197 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 198 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 199 | |
emilmont | 1:fdd22bb7aa52 | 200 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 201 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 202 | |
emilmont | 1:fdd22bb7aa52 | 203 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 204 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 205 | |
emilmont | 1:fdd22bb7aa52 | 206 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 207 | i--; |
emilmont | 1:fdd22bb7aa52 | 208 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 209 | |
emilmont | 1:fdd22bb7aa52 | 210 | /* pbuff initialized to input buffer */ |
emilmont | 1:fdd22bb7aa52 | 211 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 212 | |
emilmont | 1:fdd22bb7aa52 | 213 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 214 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 215 | |
emilmont | 1:fdd22bb7aa52 | 216 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
emilmont | 1:fdd22bb7aa52 | 217 | i = (uint32_t) S->N >> 2u; |
emilmont | 1:fdd22bb7aa52 | 218 | |
emilmont | 1:fdd22bb7aa52 | 219 | /* Processing with loop unrolling 4 times as N is always multiple of 4. |
emilmont | 1:fdd22bb7aa52 | 220 | * Compute 4 outputs at a time */ |
emilmont | 1:fdd22bb7aa52 | 221 | do |
emilmont | 1:fdd22bb7aa52 | 222 | { |
emilmont | 1:fdd22bb7aa52 | 223 | /* Writing the re-ordered output back to inplace input buffer */ |
emilmont | 1:fdd22bb7aa52 | 224 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 225 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 226 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 227 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 228 | |
emilmont | 1:fdd22bb7aa52 | 229 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 230 | i--; |
emilmont | 1:fdd22bb7aa52 | 231 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 232 | |
emilmont | 1:fdd22bb7aa52 | 233 | |
emilmont | 1:fdd22bb7aa52 | 234 | /* --------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 235 | * Step2: Calculate RFFT for N-point input |
emilmont | 1:fdd22bb7aa52 | 236 | * ---------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 237 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
emilmont | 1:fdd22bb7aa52 | 238 | arm_rfft_f32(S->pRfft, pInlineBuffer, pState); |
emilmont | 1:fdd22bb7aa52 | 239 | |
emilmont | 1:fdd22bb7aa52 | 240 | /*---------------------------------------------------------------------- |
emilmont | 2:da51fb522205 | 241 | * Step3: Multiply the FFT output with the weights. |
emilmont | 2:da51fb522205 | 242 | *----------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 243 | arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N); |
emilmont | 1:fdd22bb7aa52 | 244 | |
emilmont | 1:fdd22bb7aa52 | 245 | /* ----------- Post-processing ---------- */ |
emilmont | 1:fdd22bb7aa52 | 246 | /* DCT-IV can be obtained from DCT-II by the equation, |
emilmont | 1:fdd22bb7aa52 | 247 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
emilmont | 1:fdd22bb7aa52 | 248 | * Hence, Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 249 | /* Getting only real part from the output and Converting to DCT-IV */ |
emilmont | 1:fdd22bb7aa52 | 250 | |
emilmont | 1:fdd22bb7aa52 | 251 | /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ |
emilmont | 1:fdd22bb7aa52 | 252 | i = ((uint32_t) S->N - 1u) >> 2u; |
emilmont | 1:fdd22bb7aa52 | 253 | |
emilmont | 1:fdd22bb7aa52 | 254 | /* pbuff initialized to input buffer. */ |
emilmont | 1:fdd22bb7aa52 | 255 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 256 | |
emilmont | 1:fdd22bb7aa52 | 257 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 258 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 259 | |
emilmont | 1:fdd22bb7aa52 | 260 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 261 | in = *pS1++ * (float32_t) 0.5; |
emilmont | 1:fdd22bb7aa52 | 262 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
emilmont | 1:fdd22bb7aa52 | 263 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 264 | |
emilmont | 1:fdd22bb7aa52 | 265 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 266 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 267 | |
emilmont | 1:fdd22bb7aa52 | 268 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
emilmont | 1:fdd22bb7aa52 | 269 | ** a second loop below computes the remaining 1 to 3 samples. */ |
emilmont | 1:fdd22bb7aa52 | 270 | do |
emilmont | 1:fdd22bb7aa52 | 271 | { |
emilmont | 1:fdd22bb7aa52 | 272 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
emilmont | 1:fdd22bb7aa52 | 273 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 274 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 275 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 276 | /* points to the next real value */ |
emilmont | 1:fdd22bb7aa52 | 277 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 278 | |
emilmont | 1:fdd22bb7aa52 | 279 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 280 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 281 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 282 | |
emilmont | 1:fdd22bb7aa52 | 283 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 284 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 285 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 286 | |
emilmont | 1:fdd22bb7aa52 | 287 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 288 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 289 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 290 | |
emilmont | 1:fdd22bb7aa52 | 291 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 292 | i--; |
emilmont | 1:fdd22bb7aa52 | 293 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 294 | |
emilmont | 1:fdd22bb7aa52 | 295 | /* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
emilmont | 1:fdd22bb7aa52 | 296 | ** No loop unrolling is used. */ |
emilmont | 1:fdd22bb7aa52 | 297 | i = ((uint32_t) S->N - 1u) % 0x4u; |
emilmont | 1:fdd22bb7aa52 | 298 | |
emilmont | 1:fdd22bb7aa52 | 299 | while(i > 0u) |
emilmont | 1:fdd22bb7aa52 | 300 | { |
emilmont | 1:fdd22bb7aa52 | 301 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
emilmont | 1:fdd22bb7aa52 | 302 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 303 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 304 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 305 | /* points to the next real value */ |
emilmont | 1:fdd22bb7aa52 | 306 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 307 | |
emilmont | 1:fdd22bb7aa52 | 308 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 309 | i--; |
emilmont | 1:fdd22bb7aa52 | 310 | } |
emilmont | 1:fdd22bb7aa52 | 311 | |
emilmont | 1:fdd22bb7aa52 | 312 | |
emilmont | 1:fdd22bb7aa52 | 313 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
emilmont | 1:fdd22bb7aa52 | 314 | |
emilmont | 1:fdd22bb7aa52 | 315 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
emilmont | 1:fdd22bb7aa52 | 316 | i = (uint32_t) S->N >> 2u; |
emilmont | 1:fdd22bb7aa52 | 317 | |
emilmont | 1:fdd22bb7aa52 | 318 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
emilmont | 1:fdd22bb7aa52 | 319 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 320 | |
emilmont | 1:fdd22bb7aa52 | 321 | /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ |
emilmont | 1:fdd22bb7aa52 | 322 | do |
emilmont | 1:fdd22bb7aa52 | 323 | { |
emilmont | 1:fdd22bb7aa52 | 324 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
emilmont | 1:fdd22bb7aa52 | 325 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 326 | *pbuff++ = in * S->normalize; |
emilmont | 1:fdd22bb7aa52 | 327 | |
emilmont | 1:fdd22bb7aa52 | 328 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 329 | *pbuff++ = in * S->normalize; |
emilmont | 1:fdd22bb7aa52 | 330 | |
emilmont | 1:fdd22bb7aa52 | 331 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 332 | *pbuff++ = in * S->normalize; |
emilmont | 1:fdd22bb7aa52 | 333 | |
emilmont | 1:fdd22bb7aa52 | 334 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 335 | *pbuff++ = in * S->normalize; |
emilmont | 1:fdd22bb7aa52 | 336 | |
emilmont | 1:fdd22bb7aa52 | 337 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 338 | i--; |
emilmont | 1:fdd22bb7aa52 | 339 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 340 | |
emilmont | 1:fdd22bb7aa52 | 341 | |
emilmont | 1:fdd22bb7aa52 | 342 | #else |
emilmont | 1:fdd22bb7aa52 | 343 | |
emilmont | 1:fdd22bb7aa52 | 344 | /* Run the below code for Cortex-M0 */ |
emilmont | 1:fdd22bb7aa52 | 345 | |
emilmont | 1:fdd22bb7aa52 | 346 | /* Initializing the loop counter to N/2 */ |
emilmont | 1:fdd22bb7aa52 | 347 | i = (uint32_t) S->Nby2; |
emilmont | 1:fdd22bb7aa52 | 348 | |
emilmont | 1:fdd22bb7aa52 | 349 | do |
emilmont | 1:fdd22bb7aa52 | 350 | { |
emilmont | 1:fdd22bb7aa52 | 351 | /* Re-ordering of even and odd elements */ |
emilmont | 1:fdd22bb7aa52 | 352 | /* pState[i] = pInlineBuffer[2*i] */ |
emilmont | 1:fdd22bb7aa52 | 353 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 354 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
emilmont | 1:fdd22bb7aa52 | 355 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 356 | |
emilmont | 1:fdd22bb7aa52 | 357 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 358 | i--; |
emilmont | 1:fdd22bb7aa52 | 359 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 360 | |
emilmont | 1:fdd22bb7aa52 | 361 | /* pbuff initialized to input buffer */ |
emilmont | 1:fdd22bb7aa52 | 362 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 363 | |
emilmont | 1:fdd22bb7aa52 | 364 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 365 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 366 | |
emilmont | 1:fdd22bb7aa52 | 367 | /* Initializing the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 368 | i = (uint32_t) S->N; |
emilmont | 1:fdd22bb7aa52 | 369 | |
emilmont | 1:fdd22bb7aa52 | 370 | do |
emilmont | 1:fdd22bb7aa52 | 371 | { |
emilmont | 1:fdd22bb7aa52 | 372 | /* Writing the re-ordered output back to inplace input buffer */ |
emilmont | 1:fdd22bb7aa52 | 373 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 374 | |
emilmont | 1:fdd22bb7aa52 | 375 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 376 | i--; |
emilmont | 1:fdd22bb7aa52 | 377 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 378 | |
emilmont | 1:fdd22bb7aa52 | 379 | |
emilmont | 1:fdd22bb7aa52 | 380 | /* --------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 381 | * Step2: Calculate RFFT for N-point input |
emilmont | 1:fdd22bb7aa52 | 382 | * ---------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 383 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
emilmont | 1:fdd22bb7aa52 | 384 | arm_rfft_f32(S->pRfft, pInlineBuffer, pState); |
emilmont | 1:fdd22bb7aa52 | 385 | |
emilmont | 1:fdd22bb7aa52 | 386 | /*---------------------------------------------------------------------- |
emilmont | 2:da51fb522205 | 387 | * Step3: Multiply the FFT output with the weights. |
emilmont | 2:da51fb522205 | 388 | *----------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 389 | arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N); |
emilmont | 1:fdd22bb7aa52 | 390 | |
emilmont | 1:fdd22bb7aa52 | 391 | /* ----------- Post-processing ---------- */ |
emilmont | 1:fdd22bb7aa52 | 392 | /* DCT-IV can be obtained from DCT-II by the equation, |
emilmont | 1:fdd22bb7aa52 | 393 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
emilmont | 1:fdd22bb7aa52 | 394 | * Hence, Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 395 | /* Getting only real part from the output and Converting to DCT-IV */ |
emilmont | 1:fdd22bb7aa52 | 396 | |
emilmont | 1:fdd22bb7aa52 | 397 | /* pbuff initialized to input buffer. */ |
emilmont | 1:fdd22bb7aa52 | 398 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 399 | |
emilmont | 1:fdd22bb7aa52 | 400 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 401 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 402 | |
emilmont | 1:fdd22bb7aa52 | 403 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 404 | in = *pS1++ * (float32_t) 0.5; |
emilmont | 1:fdd22bb7aa52 | 405 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
emilmont | 1:fdd22bb7aa52 | 406 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 407 | |
emilmont | 1:fdd22bb7aa52 | 408 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 409 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 410 | |
emilmont | 1:fdd22bb7aa52 | 411 | /* Initializing the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 412 | i = ((uint32_t) S->N - 1u); |
emilmont | 1:fdd22bb7aa52 | 413 | |
emilmont | 1:fdd22bb7aa52 | 414 | do |
emilmont | 1:fdd22bb7aa52 | 415 | { |
emilmont | 1:fdd22bb7aa52 | 416 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
emilmont | 1:fdd22bb7aa52 | 417 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 418 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 419 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 420 | /* points to the next real value */ |
emilmont | 1:fdd22bb7aa52 | 421 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 422 | |
emilmont | 1:fdd22bb7aa52 | 423 | |
emilmont | 1:fdd22bb7aa52 | 424 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 425 | i--; |
emilmont | 1:fdd22bb7aa52 | 426 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 427 | |
emilmont | 1:fdd22bb7aa52 | 428 | |
emilmont | 1:fdd22bb7aa52 | 429 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
emilmont | 1:fdd22bb7aa52 | 430 | |
emilmont | 1:fdd22bb7aa52 | 431 | /* Initializing the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 432 | i = (uint32_t) S->N; |
emilmont | 1:fdd22bb7aa52 | 433 | |
emilmont | 1:fdd22bb7aa52 | 434 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
emilmont | 1:fdd22bb7aa52 | 435 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 436 | |
emilmont | 1:fdd22bb7aa52 | 437 | do |
emilmont | 1:fdd22bb7aa52 | 438 | { |
emilmont | 1:fdd22bb7aa52 | 439 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
emilmont | 1:fdd22bb7aa52 | 440 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 441 | *pbuff++ = in * S->normalize; |
emilmont | 1:fdd22bb7aa52 | 442 | |
emilmont | 1:fdd22bb7aa52 | 443 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 444 | i--; |
emilmont | 1:fdd22bb7aa52 | 445 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 446 | |
emilmont | 1:fdd22bb7aa52 | 447 | #endif /* #ifndef ARM_MATH_CM0 */ |
emilmont | 1:fdd22bb7aa52 | 448 | |
emilmont | 1:fdd22bb7aa52 | 449 | } |
emilmont | 1:fdd22bb7aa52 | 450 | |
emilmont | 1:fdd22bb7aa52 | 451 | /** |
emilmont | 1:fdd22bb7aa52 | 452 | * @} end of DCT4_IDCT4 group |
emilmont | 1:fdd22bb7aa52 | 453 | */ |