Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MPU9250_SPI mbed
Diff: MahonyAHRS.h
- Revision:
- 31:f30e4effec54
- Parent:
- 30:a1bbb934b053
diff -r a1bbb934b053 -r f30e4effec54 MahonyAHRS.h
--- a/MahonyAHRS.h Thu Jul 07 04:35:04 2016 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,247 +0,0 @@
-//=====================================================================================================
-// MahonyAHRS.h
-//=====================================================================================================
-//
-// Madgwick's implementation of Mayhony's AHRS algorithm.
-// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
-//
-// Date Author Notes
-// 29/09/2011 SOH Madgwick Initial release
-// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
-//
-//=====================================================================================================
-
-//----------------------------------------------------------------------------------------------------
-// Variable declaration
-
-extern volatile float twoKp; // 2 * proportional gain (Kp)
-extern volatile float twoKi; // 2 * integral gain (Ki)
-extern volatile float q0, q1, q2, q3; // quaternion of sensor frame relative to auxiliary frame
-
-//---------------------------------------------------------------------------------------------------
-// Function declarations
-
-void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
-void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az);
-
-
-#include <math.h>
-
-//---------------------------------------------------------------------------------------------------
-// Definitions
-
-#define sampleFreq 512.0f // sample frequency in Hz
-#define twoKpDef (2.0f * 0.5f) // 2 * proportional gain
-#define twoKiDef (2.0f * 0.0f) // 2 * integral gain
-
-//---------------------------------------------------------------------------------------------------
-// Variable definitions
-
-volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp)
-volatile float twoKi = twoKiDef; // 2 * integral gain (Ki)
-volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
-volatile float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
-
-//---------------------------------------------------------------------------------------------------
-// Function declarations
-
-float invSqrt(float x);
-
-//====================================================================================================
-// Functions
-
-//---------------------------------------------------------------------------------------------------
-// AHRS algorithm update
-
-void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
- float recipNorm;
- float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
- float hx, hy, bx, bz;
- float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz;
- float halfex, halfey, halfez;
- float qa, qb, qc;
-
- // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
- if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
- MahonyAHRSupdateIMU(gx, gy, gz, ax, ay, az);
- return;
- }
-
- // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
- if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
-
- // Normalise accelerometer measurement
- recipNorm = invSqrt(ax * ax + ay * ay + az * az);
- ax *= recipNorm;
- ay *= recipNorm;
- az *= recipNorm;
-
- // Normalise magnetometer measurement
- recipNorm = invSqrt(mx * mx + my * my + mz * mz);
- mx *= recipNorm;
- my *= recipNorm;
- mz *= recipNorm;
-
- // Auxiliary variables to avoid repeated arithmetic
- q0q0 = q0 * q0;
- q0q1 = q0 * q1;
- q0q2 = q0 * q2;
- q0q3 = q0 * q3;
- q1q1 = q1 * q1;
- q1q2 = q1 * q2;
- q1q3 = q1 * q3;
- q2q2 = q2 * q2;
- q2q3 = q2 * q3;
- q3q3 = q3 * q3;
-
- // Reference direction of Earth's magnetic field
- hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
- hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
- bx = sqrt(hx * hx + hy * hy);
- bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
-
- // Estimated direction of gravity and magnetic field
- halfvx = q1q3 - q0q2;
- halfvy = q0q1 + q2q3;
- halfvz = q0q0 - 0.5f + q3q3;
- halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
- halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
- halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
-
- // Error is sum of cross product between estimated direction and measured direction of field vectors
- halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy);
- halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz);
- halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx);
-
- // Compute and apply integral feedback if enabled
- if(twoKi > 0.0f) {
- integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
- integralFBy += twoKi * halfey * (1.0f / sampleFreq);
- integralFBz += twoKi * halfez * (1.0f / sampleFreq);
- gx += integralFBx; // apply integral feedback
- gy += integralFBy;
- gz += integralFBz;
- }
- else {
- integralFBx = 0.0f; // prevent integral windup
- integralFBy = 0.0f;
- integralFBz = 0.0f;
- }
-
- // Apply proportional feedback
- gx += twoKp * halfex;
- gy += twoKp * halfey;
- gz += twoKp * halfez;
- }
-
- // Integrate rate of change of quaternion
- gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
- gy *= (0.5f * (1.0f / sampleFreq));
- gz *= (0.5f * (1.0f / sampleFreq));
- qa = q0;
- qb = q1;
- qc = q2;
- q0 += (-qb * gx - qc * gy - q3 * gz);
- q1 += (qa * gx + qc * gz - q3 * gy);
- q2 += (qa * gy - qb * gz + q3 * gx);
- q3 += (qa * gz + qb * gy - qc * gx);
-
- // Normalise quaternion
- recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
- q0 *= recipNorm;
- q1 *= recipNorm;
- q2 *= recipNorm;
- q3 *= recipNorm;
-}
-
-//---------------------------------------------------------------------------------------------------
-// IMU algorithm update
-
-void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
- float recipNorm;
- float halfvx, halfvy, halfvz;
- float halfex, halfey, halfez;
- float qa, qb, qc;
-
- // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
- if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
-
- // Normalise accelerometer measurement
- recipNorm = invSqrt(ax * ax + ay * ay + az * az);
- ax *= recipNorm;
- ay *= recipNorm;
- az *= recipNorm;
-
- // Estimated direction of gravity and vector perpendicular to magnetic flux
- halfvx = q1 * q3 - q0 * q2;
- halfvy = q0 * q1 + q2 * q3;
- halfvz = q0 * q0 - 0.5f + q3 * q3;
-
- // Error is sum of cross product between estimated and measured direction of gravity
- halfex = (ay * halfvz - az * halfvy);
- halfey = (az * halfvx - ax * halfvz);
- halfez = (ax * halfvy - ay * halfvx);
-
- // Compute and apply integral feedback if enabled
- if(twoKi > 0.0f) {
- integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
- integralFBy += twoKi * halfey * (1.0f / sampleFreq);
- integralFBz += twoKi * halfez * (1.0f / sampleFreq);
- gx += integralFBx; // apply integral feedback
- gy += integralFBy;
- gz += integralFBz;
- }
- else {
- integralFBx = 0.0f; // prevent integral windup
- integralFBy = 0.0f;
- integralFBz = 0.0f;
- }
-
- // Apply proportional feedback
- gx += twoKp * halfex;
- gy += twoKp * halfey;
- gz += twoKp * halfez;
- }
-
- // Integrate rate of change of quaternion
- gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
- gy *= (0.5f * (1.0f / sampleFreq));
- gz *= (0.5f * (1.0f / sampleFreq));
- qa = q0;
- qb = q1;
- qc = q2;
- q0 += (-qb * gx - qc * gy - q3 * gz);
- q1 += (qa * gx + qc * gz - q3 * gy);
- q2 += (qa * gy - qb * gz + q3 * gx);
- q3 += (qa * gz + qb * gy - qc * gx);
-
- // Normalise quaternion
- recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
- q0 *= recipNorm;
- q1 *= recipNorm;
- q2 *= recipNorm;
- q3 *= recipNorm;
-}
-
-//---------------------------------------------------------------------------------------------------
-// Fast inverse square-root
-// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
-
-float invSqrt(float x) {
- float halfx = 0.5f * x;
- float y = x;
- long i = *(long*)&y;
- i = 0x5f3759df - (i>>1);
- y = *(float*)&i;
- y = y * (1.5f - (halfx * y * y));
- return y;
-}
-
-//====================================================================================================
-// END OF CODE
-//====================================================================================================
-
-//=====================================================================================================
-// End of file
-//=====================================================================================================
-