Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MPU9250_SPI mbed
Diff: MahonyAHRS.h
- Revision:
- 27:7dd32c696d17
- Child:
- 28:76e2ba7a1ecd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/MahonyAHRS.h Wed Jul 06 09:30:37 2016 +0000
@@ -0,0 +1,247 @@
+//=====================================================================================================
+// MahonyAHRS.h
+//=====================================================================================================
+//
+// Madgwick's implementation of Mayhony's AHRS algorithm.
+// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
+//
+// Date Author Notes
+// 29/09/2011 SOH Madgwick Initial release
+// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
+//
+//=====================================================================================================
+
+//----------------------------------------------------------------------------------------------------
+// Variable declaration
+
+extern volatile float twoKp; // 2 * proportional gain (Kp)
+extern volatile float twoKi; // 2 * integral gain (Ki)
+extern volatile float q0, q1, q2, q3; // quaternion of sensor frame relative to auxiliary frame
+
+//---------------------------------------------------------------------------------------------------
+// Function declarations
+
+void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
+void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az);
+
+
+#include <math.h>
+
+//---------------------------------------------------------------------------------------------------
+// Definitions
+
+#define sampleFreq 512.0f // sample frequency in Hz
+#define twoKpDef (2.0f * 0.5f) // 2 * proportional gain
+#define twoKiDef (2.0f * 0.0f) // 2 * integral gain
+
+//---------------------------------------------------------------------------------------------------
+// Variable definitions
+
+volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp)
+volatile float twoKi = twoKiDef; // 2 * integral gain (Ki)
+volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
+volatile float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
+
+//---------------------------------------------------------------------------------------------------
+// Function declarations
+
+float invSqrt(float x);
+
+//====================================================================================================
+// Functions
+
+//---------------------------------------------------------------------------------------------------
+// AHRS algorithm update
+
+void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
+ float recipNorm;
+ float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
+ float hx, hy, bx, bz;
+ float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz;
+ float halfex, halfey, halfez;
+ float qa, qb, qc;
+
+ // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
+ if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
+ MahonyAHRSupdateIMU(gx, gy, gz, ax, ay, az);
+ return;
+ }
+
+ // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+ if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+ // Normalise accelerometer measurement
+ recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+ ax *= recipNorm;
+ ay *= recipNorm;
+ az *= recipNorm;
+
+ // Normalise magnetometer measurement
+ recipNorm = invSqrt(mx * mx + my * my + mz * mz);
+ mx *= recipNorm;
+ my *= recipNorm;
+ mz *= recipNorm;
+
+ // Auxiliary variables to avoid repeated arithmetic
+ q0q0 = q0 * q0;
+ q0q1 = q0 * q1;
+ q0q2 = q0 * q2;
+ q0q3 = q0 * q3;
+ q1q1 = q1 * q1;
+ q1q2 = q1 * q2;
+ q1q3 = q1 * q3;
+ q2q2 = q2 * q2;
+ q2q3 = q2 * q3;
+ q3q3 = q3 * q3;
+
+ // Reference direction of Earth's magnetic field
+ hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
+ hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
+ bx = sqrt(hx * hx + hy * hy);
+ bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
+
+ // Estimated direction of gravity and magnetic field
+ halfvx = q1q3 - q0q2;
+ halfvy = q0q1 + q2q3;
+ halfvz = q0q0 - 0.5f + q3q3;
+ halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
+ halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
+ halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
+
+ // Error is sum of cross product between estimated direction and measured direction of field vectors
+ halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy);
+ halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz);
+ halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx);
+
+ // Compute and apply integral feedback if enabled
+ if(twoKi > 0.0f) {
+ integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
+ integralFBy += twoKi * halfey * (1.0f / sampleFreq);
+ integralFBz += twoKi * halfez * (1.0f / sampleFreq);
+ gx += integralFBx; // apply integral feedback
+ gy += integralFBy;
+ gz += integralFBz;
+ }
+ else {
+ integralFBx = 0.0f; // prevent integral windup
+ integralFBy = 0.0f;
+ integralFBz = 0.0f;
+ }
+
+ // Apply proportional feedback
+ gx += twoKp * halfex;
+ gy += twoKp * halfey;
+ gz += twoKp * halfez;
+ }
+
+ // Integrate rate of change of quaternion
+ gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
+ gy *= (0.5f * (1.0f / sampleFreq));
+ gz *= (0.5f * (1.0f / sampleFreq));
+ qa = q0;
+ qb = q1;
+ qc = q2;
+ q0 += (-qb * gx - qc * gy - q3 * gz);
+ q1 += (qa * gx + qc * gz - q3 * gy);
+ q2 += (qa * gy - qb * gz + q3 * gx);
+ q3 += (qa * gz + qb * gy - qc * gx);
+
+ // Normalise quaternion
+ recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+ q0 *= recipNorm;
+ q1 *= recipNorm;
+ q2 *= recipNorm;
+ q3 *= recipNorm;
+}
+
+//---------------------------------------------------------------------------------------------------
+// IMU algorithm update
+
+void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
+ float recipNorm;
+ float halfvx, halfvy, halfvz;
+ float halfex, halfey, halfez;
+ float qa, qb, qc;
+
+ // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+ if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+ // Normalise accelerometer measurement
+ recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+ ax *= recipNorm;
+ ay *= recipNorm;
+ az *= recipNorm;
+
+ // Estimated direction of gravity and vector perpendicular to magnetic flux
+ halfvx = q1 * q3 - q0 * q2;
+ halfvy = q0 * q1 + q2 * q3;
+ halfvz = q0 * q0 - 0.5f + q3 * q3;
+
+ // Error is sum of cross product between estimated and measured direction of gravity
+ halfex = (ay * halfvz - az * halfvy);
+ halfey = (az * halfvx - ax * halfvz);
+ halfez = (ax * halfvy - ay * halfvx);
+
+ // Compute and apply integral feedback if enabled
+ if(twoKi > 0.0f) {
+ integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
+ integralFBy += twoKi * halfey * (1.0f / sampleFreq);
+ integralFBz += twoKi * halfez * (1.0f / sampleFreq);
+ gx += integralFBx; // apply integral feedback
+ gy += integralFBy;
+ gz += integralFBz;
+ }
+ else {
+ integralFBx = 0.0f; // prevent integral windup
+ integralFBy = 0.0f;
+ integralFBz = 0.0f;
+ }
+
+ // Apply proportional feedback
+ gx += twoKp * halfex;
+ gy += twoKp * halfey;
+ gz += twoKp * halfez;
+ }
+
+ // Integrate rate of change of quaternion
+ gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
+ gy *= (0.5f * (1.0f / sampleFreq));
+ gz *= (0.5f * (1.0f / sampleFreq));
+ qa = q0;
+ qb = q1;
+ qc = q2;
+ q0 += (-qb * gx - qc * gy - q3 * gz);
+ q1 += (qa * gx + qc * gz - q3 * gy);
+ q2 += (qa * gy - qb * gz + q3 * gx);
+ q3 += (qa * gz + qb * gy - qc * gx);
+
+ // Normalise quaternion
+ recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+ q0 *= recipNorm;
+ q1 *= recipNorm;
+ q2 *= recipNorm;
+ q3 *= recipNorm;
+}
+
+//---------------------------------------------------------------------------------------------------
+// Fast inverse square-root
+// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
+
+float invSqrt(float x) {
+ float halfx = 0.5f * x;
+ float y = x;
+ long i = *(long*)&y;
+ i = 0x5f3759df - (i>>1);
+ y = *(float*)&i;
+ y = y * (1.5f - (halfx * y * y));
+ return y;
+}
+
+//====================================================================================================
+// END OF CODE
+//====================================================================================================
+
+//=====================================================================================================
+// End of file
+//=====================================================================================================
+